Explanation
Given:
Present value $$= ₹\ 10000$$
Interest rate $$= 10 \%$$ per annum
Amount $$(A) = P (1+(r/100))^n$$
Now substituting the values in above formula we get,
$$\Rightarrow A = 10000 (11/10)^3$$
$$\Rightarrow A = 121 (10) (11)$$
∴ Compound interest $$= A – P$$
$$= 13310 – 10000= ₹\ 3310$$
Let the population be $$P$$.
So, the increased population will be $$P + 1200$$.
The population after $$11\% $$ decrease in population becomes $$P - 32$$.
Therefore,
$${{P}} - 32 = \left( {{{P}} + 1200} \right) - \dfrac{{11}}{{100}}\left( {{{P}} + 1200} \right)$$
$${{P}} = 10000$$
So, the total population is $$10000$$.
Please disable the adBlock and continue. Thank you.