Processing math: 23%

CBSE Questions for Class 11 Commerce Applied Mathematics Differentiation Quiz 1 - MCQExams.com

Differentiation gives us the instantaneous rate of change of one variable with respect to another.
  • True
  • False
If x=ey+ey+ey+..., x>0, then dydx is
  • x1+x
  • 1x
  • 1xx
  • 1+xx
Let y be an implicit function of x defined by x2x2xxcoty1=0. Then y(1) equals 
  • 1
  • 1
  • log2
  • log2
If f(1)=1,f(1)=3, then the value of derivative of f(f(fx)))+(f(x))2 at x=1 is?
  • 9
  • 33
  • 12
  • 20
For xR,f(x)=|log2sinx| and g(x)=f(f(x)), then:
  • g is not differentiable at x=0
  • g(0)=cos(log2)
  • g(0)=cos(log2)
  • g is differentiable at x=0 and g(0)=sin(log2)
Consider the functions defined implicitly by the equation y33y+x=0 on various intervals in the real line. If x(,2)(2,), the equation implicitly defines a unique real valued differentiable function y=f(x). If x(2,2), the equation implicitly defines a unique real valued differentiable function y=g(x) satisfying g(0)=0.
If f(102)=22, then f
  • \displaystyle \frac{4\sqrt{2}}{7^{3}3^{2}}
  • -\displaystyle \frac{4\sqrt{2}}{7^{3}3^{2}}
  • \displaystyle \frac{4\sqrt{2}}{7^{3}3}
  • -\displaystyle \frac{4\sqrt{2}}{7^{3}3}
Consider the functions defined implicitly by the equation \mathrm{y}^{3}-3\mathrm{y}+\mathrm{x}=0 on various intervals in the real line. If x \in(-\infty, -2)\cup (2, \infty), the equation implicitly defines a unique real valued differentiable function \mathrm{y}=\mathrm{f}(\mathrm{x}). If x \in(-2,2), the equation implicitly defines a unique real valued differentiable function \mathrm{y}=\mathrm{g}(\mathrm{x}) satisfying \mathrm{g}(\mathrm{0})=0.

\displaystyle \int_{-\mathrm{l}}^{1}\mathrm{g}'(\mathrm{x}) dx =
  • 2\mathrm{g}(-1)
  • 0
  • -2\mathrm{g}(1)
  • 2\mathrm{g}(1)
The value of 'a' in order f(x)=\sqrt{3}\sin x-\cos x -2ax+b decrease for all real values of x, is given by
  • a>1
  • a \ge 1
  • a \ge \overline{2}
  • a < \overline{2}
\displaystyle \frac{d}{dx}(xe^{x})
  • xe^{x}+e^{x}
  • xe^{x}-e^{x}
  • xe^{x}+e^{2x}
  • xe^{x}-e^{2x}
\displaystyle \frac{d}{dx}[f(x)\cdot g(x)] =f(x) \frac{d}{dx}g(x)+g(x) \frac{d}{dx}f(x) is known as _____ rule.
  • Product
  • Sum
  • Multiplication
  • None of these
For instantaneous speed, the distance traveled by the object and the time taken are both equal to zero.
  • True
  • False
\displaystyle \frac{d}{dx}(\tan^{-1}\frac{\sqrt{x}-x}{1+x^{3/2}}.)
  • \displaystyle \frac{1}{1+x}.\frac{1}{2\sqrt{\left ( x \right )}}-\frac{1}{1+x^{2}}.
  • \displaystyle \frac{1}{1-x}.\frac{1}{2\sqrt{\left ( x \right )}}-\frac{1}{1+x^{2}}.
  • \displaystyle \frac{1}{1+x}.\frac{1}{2\sqrt{\left ( x \right )}}-\frac{1}{1+x^{3}}.
  • -\displaystyle \frac{1}{1+x}.\frac{1}{2\sqrt{\left ( x \right )}}-\frac{1}{1+x^{2}}.

 \displaystyle \frac{\mathrm{d}}{\mathrm{d}\mathrm{x}}[l \mathrm{o}\mathrm{g}(\mathrm{a}\mathrm{x})^{\mathrm{x}}], where a is a constant, is equal to
  • 1
  • \log {ax}
  • 1/a
  • \log {(ax)+1}
Derivative of 2\tan x - 7\sec x with respect to x is:
  • 2 \sec x + 7 \tan x
  • \sec x (2 \sec x + \tan x)
  • 2 {\sec}^2 x + \sec x. \tan x
  • \sec x (2 \sec x - 7 \tan x)
\displaystyle \frac{d}{dx}( x^{2}e^{ax})
  • \displaystyle e^{ax}\left ( ax^{2}+2x \right )
  • \displaystyle e^{ax}\left ( 2ax^{2}+2x \right )
  • \displaystyle e^{ax}\left ( ax^{2}+2ax \right )
  • \displaystyle e^{ax}\left ( ax^{2}-2ax \right )
\displaystyle \frac{d}{dx}(\tan ^{-1}\frac{\cos x-\sin x}{\cos x+\sin x})
  • -1
  • -2
  • 1
  • x
\displaystyle \frac{d}{dx}(\tan^{-1}\sqrt{\left ( \frac{1-\cos x}{1+\cos x} \right )})
  • \displaystyle \frac{1}{2}
  • \displaystyle \frac{1}{4}
  • \displaystyle \frac{1}{\sqrt2}
  • \displaystyle \frac{-1}{2}
If y=2  \sin  x -3x^4 + 8, then \dfrac{dy}{dx} is
  • 2\sin x -12 x^3
  • 2 \cos x-12 x^3
  • 2 \cos x+12 x^3
  • 2 \sin x+12 x^3
If \displaystyle f(x)=|\cos x| then f'\left ( \frac{3\pi }{4} \right ) is equal to-
  • \displaystyle -\frac{1}{\sqrt{2}}
  • \displaystyle \frac{1}{\sqrt{2}}
  • 1
  • None of these
If \displaystyle xe^{xy}-y=\sin x then \displaystyle \frac{dy}{dx} at x = 0 is
  • 0
  • 1
  • -1
  • None of these
Differentiate with respect to x \displaystyle x^{4}+3x^{2}-2x
  • \displaystyle 4x^{3}+6x-2
  • \displaystyle 4x^{3}+6x-3
  • \displaystyle 4x^{4}+6x-2
  • None of the above
\displaystyle \frac{d}{dx}(x^{2}\cos x)
  • \displaystyle -x^{2}\sin x+2x\cos x.
  • \displaystyle -x^{2}\sin x-2x\cos x.
  • \displaystyle x^{2}\sin x+2x\cos x.
  • \displaystyle x^{2}\sin x-2x\cos x.
Obtain the differential equation whose solution is
\displaystyle y=x\sin \left ( x+A \right ), A being constant.
  • \left ( xy_{1}-y \right )^{2}+x^{2}y^{2}=x^{4}
  • \left ( xy_{1}-y \right )^{2}-x^{2}y^{2}=x^{4}
  • \left ( xy_{1}-y \right )^{2}+x^{2}y^{2}=x^{2}
  • \left ( xy_{1}-y \right )^{2}-x^{2}y^{2}=x^{2}
If f(x) = \displaystyle \log \left | 2x \right |, x\neq 0 then f'(x) is equal to-
  • \displaystyle \frac{1}{x}
  • \displaystyle -\frac{1}{x}
  • \displaystyle \frac{1}{\left | x \right |}
  • None of these
Differentiate with respect to x: \displaystyle e^{x}x^{5}
  • \displaystyle 5e^{x}x^{4}+e^{x}x^{5}
  • \displaystyle 4e^{x}x^{5}+e^{x}x^{5}
  • \displaystyle 5e^{x}x^{4}+e^{x}x^{4}
  • \displaystyle 4e^{x}x^{5}+e^{x}x^{4}
Differentiation of \displaystyle x^{3}+5x^{2}-2 with respect to x is
  • 3x^{2}+10x
  • 3x^{2}+10
  • 3x^{2}-2
  • 3x^{2}+10x-2
Find the differential equations of all parabolas each having latus rectum 4a and whose axes are parallel to the x-axis.
  • \displaystyle x\left ( \frac{dy}{dx} \right )^{2}=a
  • \displaystyle x\left ( \frac{dy}{dx} \right )^{2}=-a
  • \displaystyle x\left ( \frac{dy}{dx} \right )^{2}=2a
  • \displaystyle x\left ( \frac{dy}{dx} \right )^{2}=-2a
\displaystyle \frac{d}{dx}(e^{x}\sin \sqrt{3}x) equals-
  • \displaystyle e^{x}\sin (\sqrt{3}x+\dfrac{\pi}3 )
  • \displaystyle 2e^{x}\sin (\sqrt{3}x+\dfrac{\pi}3 )
  • \displaystyle \frac{1}{2}e^{x}\sin (\sqrt{3}x+\dfrac{\pi}3 )
  • \displaystyle \frac{1}{2}e^{x}\sin (\sqrt{3}x-\dfrac{\pi}3 )
If \displaystyle x+y=x^{y} then \displaystyle \frac{dy}{dx}\ equals-
  • \displaystyle \frac{yx^{y-1}-1}{1-x^{y}\log x}
  • \displaystyle \frac{yx^{y-1}-1}{x^{y}\log x-1}
  • \displaystyle \frac{yx^{y-1}+1}{x^{y}\log x+1}
  • None of these
Let y = x^{x^{x .......}}, then \displaystyle \frac{dy}{dx} is equal to
  • yx^{y - 1}
  • \displaystyle \frac{y^2}{x(1 - y log x)}
  • \displaystyle \frac{y}{x(1 + y log x)}
  • None of these
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers