Processing math: 100%

CBSE Questions for Class 11 Commerce Applied Mathematics Differentiation Quiz 1 - MCQExams.com

Differentiation gives us the instantaneous rate of change of one variable with respect to another.
  • True
  • False
If x=ey+ey+ey+..., x>0, then dydx is
  • x1+x
  • 1x
  • 1xx
  • 1+xx
Let y be an implicit function of x defined by x2x2xxcoty1=0. Then y(1) equals 
  • 1
  • 1
  • log2
  • log2
If f(1)=1,f(1)=3, then the value of derivative of f(f(fx)))+(f(x))2 at x=1 is?
  • 9
  • 33
  • 12
  • 20
For xR,f(x)=|log2sinx| and g(x)=f(f(x)), then:
  • g is not differentiable at x=0
  • g(0)=cos(log2)
  • g(0)=cos(log2)
  • g is differentiable at x=0 and g(0)=sin(log2)
Consider the functions defined implicitly by the equation y33y+x=0 on various intervals in the real line. If x(,2)(2,), the equation implicitly defines a unique real valued differentiable function y=f(x). If x(2,2), the equation implicitly defines a unique real valued differentiable function y=g(x) satisfying g(0)=0.
If f(102)=22, then f(102)=
  • 427332
  • 427332
  • 42733
  • 42733
Consider the functions defined implicitly by the equation y33y+x=0 on various intervals in the real line. If x(,2)(2,), the equation implicitly defines a unique real valued differentiable function y=f(x). If x(2,2), the equation implicitly defines a unique real valued differentiable function y=g(x) satisfying g(0)=0.

1lg(x)dx=
  • 2g(1)
  • 0
  • 2g(1)
  • 2g(1)
The value of 'a' in order f(x)=3sinxcosx2ax+b decrease for all real values of x, is given by
  • a>1
  • a1
  • a¯2
  • a<¯2
ddx(xex)
  • xex+ex
  • xexex
  • xex+e2x
  • xexe2x
ddx[f(x)g(x)]=f(x)ddxg(x)+g(x)ddxf(x) is known as _____ rule.
  • Product
  • Sum
  • Multiplication
  • None of these
For instantaneous speed, the distance traveled by the object and the time taken are both equal to zero.
  • True
  • False
ddx(tan1xx1+x3/2.)
  • 11+x.12(x)11+x2.
  • 11x.12(x)11+x2.
  • 11+x.12(x)11+x3.
  • 11+x.12(x)11+x2.

 ddx[log(ax)x], where a is a constant, is equal to
  • 1
  • logax
  • 1/a
  • log(ax)+1
Derivative of 2tanx7secx with respect to x is:
  • 2secx+7tanx
  • secx(2secx+tanx)
  • 2sec2x+secx.tanx
  • secx(2secx7tanx)
ddx(x2eax)
  • eax(ax2+2x)
  • eax(2ax2+2x)
  • eax(ax2+2ax)
  • eax(ax22ax)
ddx(tan1cosxsinxcosx+sinx)
  • 1
  • 2
  • 1
  • x
ddx(tan1(1cosx1+cosx))
  • 12
  • 14
  • 12
  • 12
If y=2sinx3x4+8, then dydx is
  • 2sinx12x3
  • 2cosx12x3
  • 2cosx+12x3
  • 2sinx+12x3
If f(x)=|cosx| then f(3π4) is equal to-
  • 12
  • 12
  • 1
  • None of these
If xexyy=sinx then dydx at x=0 is
  • 0
  • 1
  • 1
  • None of these
Differentiate with respect to x x4+3x22x
  • 4x3+6x2
  • 4x3+6x3
  • 4x4+6x2
  • None of the above
ddx(x2cosx)
  • x2sinx+2xcosx.
  • x2sinx2xcosx.
  • x2sinx+2xcosx.
  • x2sinx2xcosx.
Obtain the differential equation whose solution is
y=xsin(x+A), A being constant.
  • (xy1y)2+x2y2=x4
  • (xy1y)2x2y2=x4
  • (xy1y)2+x2y2=x2
  • (xy1y)2x2y2=x2
If f(x)=log|2x|,x0 then f(x) is equal to-
  • 1x
  • 1x
  • 1|x|
  • None of these
Differentiate with respect to x: exx5
  • 5exx4+exx5
  • 4exx5+exx5
  • 5exx4+exx4
  • 4exx5+exx4
Differentiation of x3+5x22 with respect to x is
  • 3x2+10x
  • 3x2+10
  • 3x22
  • 3x2+10x2
Find the differential equations of all parabolas each having latus rectum 4a and whose axes are parallel to the x-axis.
  • x(dydx)2=a
  • x(dydx)2=a
  • x(dydx)2=2a
  • x(dydx)2=2a
ddx(exsin3x) equals-
  • exsin(3x+π3)
  • 2exsin(3x+π3)
  • 12exsin(3x+π3)
  • 12exsin(3xπ3)
If x+y=xy then dydx equals
  • yxy111xylogx
  • yxy11xylogx1
  • yxy1+1xylogx+1
  • None of these
Let y=xxx......., then dydx is equal to
  • yxy1
  • y2x(1ylogx)
  • yx(1+ylogx)
  • None of these
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers