CBSE Questions for Class 11 Commerce Applied Mathematics Differentiation Quiz 1 - MCQExams.com

Differentiation gives us the instantaneous rate of change of one variable with respect to another.
  • True
  • False
If $$\displaystyle\mathrm{x}=\mathrm{e}^{\mathrm{y}+\mathrm{e}^{\mathrm{y}+\mathrm{e^y+...\infty}}},\ \mathrm{x}>0$$, then $$\displaystyle \frac{\mathrm{d}\mathrm{y}}{\mathrm{d}\mathrm{x}}$$ is
  • $$\displaystyle \frac{\mathrm{x}}{1+\mathrm{x}}$$
  • $$\displaystyle \frac{1}{\mathrm{x}}$$
  • $$\displaystyle \frac{1-\mathrm{x}}{\mathrm{x}}$$
  • $$\displaystyle \frac{1+\mathrm{x}}{\mathrm{x}}$$
Let $$\mathrm{y}$$ be an implicit function of $$\mathrm{x}$$ defined by $$\mathrm{x}^{2\mathrm{x}}-2\mathrm{x}^{\mathrm{x}} \cot y - 1=0.$$ Then $$\mathrm{y}'(1)$$ equals 
  • $$-1$$
  • $$1$$
  • $$\log 2$$
  • $$-\log 2$$
If $$f(1)=1, f'(1)=3$$, then the value of derivative of $$f(f(fx)))+(f(x))^2$$ at $$x=1$$ is?
  • $$9$$
  • $$33$$
  • $$12$$
  • $$20$$
For $$x\in R, f(x) = |\log2 - \sin x|$$ and $$g(x) = f(f(x))$$, then:
  • $$g$$ is not differentiable at $$x = 0$$
  • $$g'(0) = \cos (\log 2)$$
  • $$g'(0) = -\cos (\log 2)$$
  • $$g$$ is differentiable at $$x = 0$$ and $$g'(0) = -\sin (\log 2)$$
Consider the functions defined implicitly by the equation $$\mathrm{y}^{3}-3\mathrm{y}+\mathrm{x}=0$$ on various intervals in the real line. If $$x \in(-\infty, -2)\cup (2, \infty)$$, the equation implicitly defines a unique real valued differentiable function $$\mathrm{y}=\mathrm{f}(\mathrm{x})$$. If $$x \in(-2,2)$$, the equation implicitly defines a unique real valued differentiable function $$\mathrm{y}=\mathrm{g}(\mathrm{x})$$ satisfying $$\mathrm{g}(\mathrm{0})=0$$.
If $$\mathrm{f}(-10\sqrt{2})=2\sqrt{2}$$, then $$\mathrm{f''}(-10\sqrt{2})=$$
  • $$\displaystyle \frac{4\sqrt{2}}{7^{3}3^{2}}$$
  • $$-\displaystyle \frac{4\sqrt{2}}{7^{3}3^{2}}$$
  • $$\displaystyle \frac{4\sqrt{2}}{7^{3}3}$$
  • $$-\displaystyle \frac{4\sqrt{2}}{7^{3}3}$$
Consider the functions defined implicitly by the equation $$\mathrm{y}^{3}-3\mathrm{y}+\mathrm{x}=0$$ on various intervals in the real line. If $$x \in(-\infty, -2)\cup (2, \infty)$$, the equation implicitly defines a unique real valued differentiable function $$\mathrm{y}=\mathrm{f}(\mathrm{x})$$. If $$x \in(-2,2)$$, the equation implicitly defines a unique real valued differentiable function $$\mathrm{y}=\mathrm{g}(\mathrm{x})$$ satisfying $$\mathrm{g}(\mathrm{0})=0$$.

$$\displaystyle \int_{-\mathrm{l}}^{1}\mathrm{g}'(\mathrm{x}) dx =$$
  • $$2\mathrm{g}(-1)$$
  • $$0$$
  • $$-2\mathrm{g}(1)$$
  • $$2\mathrm{g}(1)$$
The value of '$$a$$' in order $$f(x)=\sqrt{3}\sin x-\cos x -2ax+b$$ decrease for all real values of $$x$$, is given by
  • $$a>1$$
  • $$a \ge 1$$
  • $$a \ge \overline{2}$$
  • $$a < \overline{2}$$
$$\displaystyle \frac{d}{dx}(xe^{x})$$
  • $$ xe^{x}+e^{x}$$
  • $$ xe^{x}-e^{x}$$
  • $$ xe^{x}+e^{2x}$$
  • $$ xe^{x}-e^{2x}$$
$$\displaystyle \frac{d}{dx}[f(x)\cdot g(x)] =f(x) \frac{d}{dx}g(x)+g(x) \frac{d}{dx}f(x)$$ is known as _____ rule.
  • Product
  • Sum
  • Multiplication
  • None of these
For instantaneous speed, the distance traveled by the object and the time taken are both equal to zero.
  • True
  • False
$$\displaystyle \frac{d}{dx}(\tan^{-1}\frac{\sqrt{x}-x}{1+x^{3/2}}.)$$
  • $$\displaystyle \frac{1}{1+x}.\frac{1}{2\sqrt{\left ( x \right )}}-\frac{1}{1+x^{2}}.$$
  • $$\displaystyle \frac{1}{1-x}.\frac{1}{2\sqrt{\left ( x \right )}}-\frac{1}{1+x^{2}}.$$
  • $$\displaystyle \frac{1}{1+x}.\frac{1}{2\sqrt{\left ( x \right )}}-\frac{1}{1+x^{3}}.$$
  • $$-\displaystyle \frac{1}{1+x}.\frac{1}{2\sqrt{\left ( x \right )}}-\frac{1}{1+x^{2}}.$$

 $$\displaystyle \frac{\mathrm{d}}{\mathrm{d}\mathrm{x}}[l \mathrm{o}\mathrm{g}(\mathrm{a}\mathrm{x})^{\mathrm{x}}]$$, where $$a$$ is a constant, is equal to
  • $$1$$
  • $$\log {ax}$$
  • $$1/a$$
  • $$\log {(ax)+1}$$
Derivative of $$2\tan x - 7\sec x$$ with respect to $$x$$ is:
  • $$2 \sec x + 7 \tan x $$
  • $$\sec x (2 \sec x + \tan x)$$
  • $$2 {\sec}^2 x + \sec x. \tan x$$
  • $$\sec x (2 \sec x - 7 \tan x)$$
$$\displaystyle \frac{d}{dx}( x^{2}e^{ax})$$
  • $$\displaystyle e^{ax}\left ( ax^{2}+2x \right )$$
  • $$\displaystyle e^{ax}\left ( 2ax^{2}+2x \right )$$
  • $$\displaystyle e^{ax}\left ( ax^{2}+2ax \right )$$
  • $$\displaystyle e^{ax}\left ( ax^{2}-2ax \right )$$
$$\displaystyle \frac{d}{dx}(\tan ^{-1}\frac{\cos x-\sin x}{\cos x+\sin x})$$
  • $$-1$$
  • $$-2$$
  • $$1$$
  • $$x$$
$$\displaystyle \frac{d}{dx}(\tan^{-1}\sqrt{\left ( \frac{1-\cos x}{1+\cos x} \right )})$$
  • $$\displaystyle \frac{1}{2}$$
  • $$\displaystyle \frac{1}{4}$$
  • $$\displaystyle \frac{1}{\sqrt2}$$
  • $$\displaystyle \frac{-1}{2}$$
If $$y=2  \sin  x -3x^4 + 8$$, then $$\dfrac{dy}{dx}$$ is
  • $$2\sin x -12 x^3$$
  • $$2 \cos x-12 x^3$$
  • $$2 \cos x+12 x^3$$
  • $$2 \sin x+12 x^3$$
If $$\displaystyle f(x)=|\cos x|$$ then $$f'\left ( \frac{3\pi }{4} \right )$$ is equal to-
  • $$\displaystyle -\frac{1}{\sqrt{2}}$$
  • $$\displaystyle \frac{1}{\sqrt{2}}$$
  • $$1$$
  • None of these
If $$\displaystyle xe^{xy}-y=\sin x $$ then $$\displaystyle \frac{dy}{dx}$$ at $$x = 0$$ is
  • $$0$$
  • $$1$$
  • $$-1$$
  • None of these
Differentiate with respect to x $$\displaystyle x^{4}+3x^{2}-2x$$
  • $$\displaystyle 4x^{3}+6x-2$$
  • $$\displaystyle 4x^{3}+6x-3$$
  • $$\displaystyle 4x^{4}+6x-2$$
  • None of the above
$$\displaystyle \frac{d}{dx}(x^{2}\cos x)$$
  • $$\displaystyle -x^{2}\sin x+2x\cos x.$$
  • $$\displaystyle -x^{2}\sin x-2x\cos x.$$
  • $$\displaystyle x^{2}\sin x+2x\cos x.$$
  • $$\displaystyle x^{2}\sin x-2x\cos x.$$
Obtain the differential equation whose solution is
$$\displaystyle y=x\sin \left ( x+A \right ),$$ A being constant.
  • $$\left ( xy_{1}-y \right )^{2}+x^{2}y^{2}=x^{4}$$
  • $$\left ( xy_{1}-y \right )^{2}-x^{2}y^{2}=x^{4}$$
  • $$\left ( xy_{1}-y \right )^{2}+x^{2}y^{2}=x^{2}$$
  • $$\left ( xy_{1}-y \right )^{2}-x^{2}y^{2}=x^{2}$$
If $$f(x) = \displaystyle \log \left | 2x \right |, x\neq 0 $$ then $$f'(x)$$ is equal to-
  • $$\displaystyle \frac{1}{x}$$
  • $$\displaystyle -\frac{1}{x}$$
  • $$\displaystyle \frac{1}{\left | x \right |}$$
  • None of these
Differentiate with respect to $$x:$$ $$\displaystyle e^{x}x^{5}$$
  • $$\displaystyle 5e^{x}x^{4}+e^{x}x^{5}$$
  • $$\displaystyle 4e^{x}x^{5}+e^{x}x^{5}$$
  • $$\displaystyle 5e^{x}x^{4}+e^{x}x^{4}$$
  • $$\displaystyle 4e^{x}x^{5}+e^{x}x^{4}$$
Differentiation of $$\displaystyle x^{3}+5x^{2}-2$$ with respect to $$x$$ is
  • $$3x^{2}+10x$$
  • $$3x^{2}+10$$
  • $$3x^{2}-2$$
  • $$3x^{2}+10x-2$$
Find the differential equations of all parabolas each having latus rectum $$4a$$ and whose axes are parallel to the x-axis.
  • $$\displaystyle x\left ( \frac{dy}{dx} \right )^{2}=a$$
  • $$\displaystyle x\left ( \frac{dy}{dx} \right )^{2}=-a$$
  • $$\displaystyle x\left ( \frac{dy}{dx} \right )^{2}=2a$$
  • $$\displaystyle x\left ( \frac{dy}{dx} \right )^{2}=-2a$$
$$\displaystyle \frac{d}{dx}(e^{x}\sin \sqrt{3}x)$$ equals-
  • $$\displaystyle e^{x}\sin (\sqrt{3}x+\dfrac{\pi}3 )$$
  • $$\displaystyle 2e^{x}\sin (\sqrt{3}x+\dfrac{\pi}3 )$$
  • $$\displaystyle \frac{1}{2}e^{x}\sin (\sqrt{3}x+\dfrac{\pi}3 )$$
  • $$\displaystyle \frac{1}{2}e^{x}\sin (\sqrt{3}x-\dfrac{\pi}3 )$$
If $$\displaystyle x+y=x^{y}$$ then $$\displaystyle \frac{dy}{dx}\ equals-$$
  • $$\displaystyle \frac{yx^{y-1}-1}{1-x^{y}\log x}$$
  • $$\displaystyle \frac{yx^{y-1}-1}{x^{y}\log x-1}$$
  • $$\displaystyle \frac{yx^{y-1}+1}{x^{y}\log x+1}$$
  • None of these
Let $$y = x^{x^{x .......}},$$ then $$\displaystyle \frac{dy}{dx}$$ is equal to
  • $$yx^{y - 1}$$
  • $$\displaystyle \frac{y^2}{x(1 - y log x)}$$
  • $$\displaystyle \frac{y}{x(1 + y log x)}$$
  • None of these
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers