Explanation
loge(x+log(x+…)e)
∴y=logx+ye ∵ (as goes on to infinity)
ey=x+y
Differentiate on both sides
eydydx=1+dydx
∵dydx=1ey−1
∵at(x=e2−2,y=√2)=1e√2−1
Let y=10xx+xx10+x10x
Let h=10xx
Differentiate on both sides w.r.t x
dhdx=10xxlog(10).d(xx)dx
dhdx=10xxxx(logx+1) (∵log10=1)
Let t=xx10
Apply log on both sides
logt=x10logx
Differentiate on both sides with respect to x
1tdtdx=10x9logx+x9
dtdx=xx10x9(1+10logx)
Let m=x10x
logm=10xlogx
Differentiate both sides w.r.t x
1mdmdx=(10xlog10)logx+10xx
∴dmdx=x10x(10x)(1x+logx)
y=h+t+m
Differentiating on both sides
dydx=dhdx+dtdx+dmdx
∴dydx=10xxxx(logx+1)+x10xx9(1+10logx)+x10x10x(1x+logx)
We have,
y=(xx)x
y=xx2
On taking log both sides, we get
logy=x2logx …… (1)
On differentiating w.r.t x, we get
1ydydx=x2x+logx(2x)
1ydydx=x+2xlogx
dydx=y(x+2xlogx)
dydx=(xx)x(x+2xlogx)
dydx=x(xx)x(1+2logx)
Hence, this is the answer.
Equation of given curve is
(xa)n+(yb)n=2
Differentiation both side with respect to x and we get,
na(xa)n−1+nb(yb)n−1dydx=0
⇒dydx=−na(xa)n−ˊ nb(yb)n−1
⇒(dydx)(a,b)=−ba
Then, equation of tangent at point (a, b) is,
(y−b)=−ba(x−a)
⇒ay−ab=−bx+ab
⇒bx+ay=2ab
⇒xa+yb=2
Thus, the given curve touches the line
xa+yb=2
At point (a,b) ∀n∈N
Please disable the adBlock and continue. Thank you.