Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

CBSE Questions for Class 11 Commerce Applied Mathematics Differentiation Quiz 10 - MCQExams.com

If y=(sinx)x, then dydx=
  • (sinx)x(ln(sinx)+xcotx)
  • (ln(sinx)+xcotx)
  • (sinx)x(ln(sinx)+xtanx)
  • (sinx)x(ln(sinx)cotx)
Solve:
If y=logxx, then dydx=
  • 1
  • logx
  • log(ex)
  • None of these
State True or False:
If y=xa2+x2+a2log(x+a2+x2)thendydx=2a2+x2.
  • True
  • False
ddxg(x)f(x)h(t)dt=
  • g(x)h(g(x))
  • h(g(x))h(f(x))
  • h(g(x)).g(x)h(f(x)).f(x)
  • none of these
The differential equation of all parabolas having their axis of symmetry coinciding with the axis of X is?
  • yd2ydx2+(dydx)2=0
  • xd2xdy2+(dxdy)2=0
  • yd2ydx2+dydx=0
  • None of these
If y=loge(x+loge(x+....)), then dydx at (x=e22,y=2) is
  • 1e21
  • log222(e21)
  • 2loge2(e21)
  • None of these
Find dydx for yex2+tanx+log(sinx)=0
  • None of these
  • (yex2.2xsec2x+cotxex2)
  • (yex2.2x+sec2x+cotxex2)
  • (yex2.2x+sec2x+cotxex2)
Differentiate 10xx+xx10+x10x w.r.t x.
  • 10xxxx(logx+1)+x10xx9(1+10logx)+x10x10x(1x+logx)
  • (1+logx)+xx10x9(1+10logx)+x10x10x(1x+logx)
  • 10xx(1+logx)+xx10x9(1+10logx)+(1x+logx)
  • 10xx(1+logx)+(1+10logx)+x10x10x(1x+logx)
The shortest distance between line yx=1 and curve x=y2 is
  • 34
  • 328
  • 822
  • 43
Let x+x+x+....... then dydx=
  • 12y1
  • xx+2y
  • 11+4x
  • y2x+y
Let y=acost+bsint then d2ydt2=
  • y
  • y
  • 2y
  • none of these
Let f(x)=1ax+b then f
  • \dfrac{2a^3}{b^2}
  • \dfrac{2a^2}{b^3}
  • \dfrac{2a^3}{b^3}
  • none of these
If f(x)=\dfrac{a^x}{x^a} then f'(a)=?
  • log a-1
  • log a-a
  • a log a-a
  • a log a+a
If y=2^{ax} and \dfrac{dy}{dx}=log 256 at x=1, then the value of a is?
  • 0
  • 1
  • 2
  • 3
If y=\tan^{-1}(\sec x+\tan x) then \dfrac{dy}{dx}=?
  • 1
  • \dfrac{1}{2}
  • -1
  • 0
If y=(x^{x})^{x} then \dfrac {dy}{dx}=
  • (x^{x})^{x}(1+2\log x)
  • (x^{x})^{x}(1-2\log x)
  • x(x^{x})^{x}(1+2\log x)
  • x(x^{x})^{x}(1-2\log x)
If y=\log\left(\dfrac {1+x}{1-x}\right)^{1/4}-\dfrac {1}{2}\tan^{-1}x, then \dfrac {dy}{dx} is equal to
  • \dfrac {x^{2}}{1-x^{4}}
  • \dfrac {2x^{2}}{1-x^{4}}
  • \dfrac {2x^{2}}{2(1-x^{4})}
  • None\ of\ these
If { x }^{ y }={ e }^{ x-y } then
 \frac { dy }{ dx } =\frac { logx }{ (1-logx)^{ 2 } } .
  • True
  • False
If ax^{2}+2hxy+by^{2}=1 then \dfrac { { d }^{ 2 }y }{ d{ x }^{ 2 } }  is equal to
  • \dfrac { { ab-h }^{ 2 } }{ \left( hx+by \right) ^{ 2 } }
  • \dfrac { { h }^{ 2 }-ab }{ \left( hx+by \right) ^{ 2 } }
  • \dfrac { { h }^{ 2 }+ab }{ \left( hx+by \right) ^{ 2 } }
  • \dfrac { { h }^{ 2 }-ab }{ \left( hy+by \right) ^{ 2 } }
If f(x) = |x^2 - 5x + 6|, then f'(x) equals
  • 2x - 5 for 2 < x < 3
  • 5 - 2x for 2 < x <3
  • 2x - 5 for x > 2
  • 5 - 2x for x < 3
If y=\ x^{2}\ sin\ x ,\ then\ \dfrac{dy}{dx} will be 
  • x ^{2}\ cos\ x \ +\ 2x \ sin\ x
  • 2x \ sin\ x
  • x ^{2}\ cos\ x
  • 2x \ cos\ x
The point(s) on the curve {y^3} + 3{x^2} = 12y where the tangent is vertical, is (are)
  • \left( { \pm \frac{4}{{\sqrt 3 \,}},\, - 2} \right)
  • \left( { \pm \frac{{\sqrt {11} }}{{3\,}},\,1} \right)
  • \left( {0,\,0} \right)
  • \left( { \pm \frac{4}{{\sqrt 3 \,}},\,2} \right)
If f(x)=\sqrt {(x+2\sqrt {2x-4})}+\sqrt {(x-2\sqrt {2x-4})}, then find the value of 72\ f'(66)
  • 8
  • 9
  • 11
  • 22
If x^p.y^q=(x+y)^{p+q} then \dfrac{dy}{dx}=?
  • \dfrac{y}{x}
  • -\dfrac{y}{x}
  • \dfrac{x}{y}
  • -\dfrac{x}{y}
If y=\sqrt { \tan { x+\sqrt { \tan { x+\sqrt { \tan { x+.....\infty  }  }  }  }  }  }    then \dfrac { dy }{ dx } =
  • \dfrac { \cos { ^{ 2 }x +1} }{ 2y}
  • \dfrac { \sec { ^{ 2 }x+1 } }{ 2y }
  • \dfrac { \tan { x } +1}{ 2y }
  • \dfrac { \cot { x } +1}{ 2y}
The line \dfrac{x}{a}+\dfrac{y}{b}=2 tangent to \left ( \dfrac{x}{a} \right )^{n}\left ( \dfrac{y}{b} \right )^{n}=at (a,b) then \epsilon ?
  • Z
  • R-Z
  • N
  • R-{o}
If y=|\cos x|+|\sin x|, then \dfrac {dy}{dx} at x=\dfrac {2\pi}{3}  is
  • \dfrac {1-\sqrt {3}}{2}
  • 0
  • \dfrac {\sqrt {3}-1}{2}
  • \dfrac {\sqrt {3}+1}{2}
If x^{m}.y^{n}=(x+y)^{m+n} then \dfrac {dy}{dx}=
  • \dfrac {y}{x}
  • -\dfrac {y}{x}
  • \dfrac {my}{x}
  • \dfrac {ny}{x}
If x^4 + 7x^2y^2 + 9y^4 = 24 xy^3 , then \dfrac{dy}{dx} =
  • \dfrac{x}{y}
  • \dfrac{y}{x}
  • - \dfrac{x}{y}
  • -\dfrac{y}{x}
if\,x\sqrt {1 + y}  + y\sqrt {1 + x}  = 0,\,then\,\dfrac{{dy}}{{dx}}is\,equal\,to\,
  • \dfrac{1}{{{{(1 + x)}^2}}}
  • - \,\dfrac{1}{{{{(1 + x)}^2}}}
  • \,\,\dfrac{1}{{(1 + {x^2})}}\,\,
  • \dfrac{1}{{(1 + x)}}
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers