Explanation
loge(x+log(x+…)e)
∴y=logx+ye ∵ (as goes on to infinity)
ey=x+y
Differentiate on both sides
eydydx=1+dydx
∵dydx=1ey−1
∵at(x=e2−2,y=√2)=1e√2−1
Let y=10xx+xx10+x10x
Let h=10xx
Differentiate on both sides w.r.t x
dhdx=10xxlog(10).d(xx)dx
dhdx=10xxxx(logx+1) (∵log10=1)
Let t=xx10
Apply log on both sides
logt=x10logx
Differentiate on both sides with respect to x
1tdtdx=10x9logx+x9
dtdx=xx10x9(1+10logx)
Let m=x10x
logm=10xlogx
Differentiate both sides w.r.t x
1mdmdx=(10xlog10)logx+10xx
∴dmdx=x10x(10x)(1x+logx)
y=h+t+m
Differentiating on both sides
dydx=dhdx+dtdx+dmdx
∴dydx=10xxxx(logx+1)+x10xx9(1+10logx)+x10x10x(1x+logx)
We have,
y={{\left( {{x}^{x}} \right)}^{x}}
y={{x}^{{{x}^{2}}}}
On taking \log both sides, we get
\log y={{x}^{2}}\log x …… (1)
On differentiating w.r.t x, we get
\dfrac{1}{y}\dfrac{dy}{dx}=\dfrac{{{x}^{2}}}{x}+\log x\left( 2x \right)
\dfrac{1}{y}\dfrac{dy}{dx}=x+2x\log x
\dfrac{dy}{dx}=y\left( x+2x\log x \right)
\dfrac{dy}{dx}={{\left( {{x}^{x}} \right)}^{x}}\left( x+2x\log x \right)
\dfrac{dy}{dx}=x{{\left( {{x}^{x}} \right)}^{x}}\left( 1+2\log x \right)
Hence, this is the answer.
Equation of given curve is
{{\left( \dfrac{x}{a} \right)}^{n}}+{{\left( \dfrac{y}{b} \right)}^{n}}=2
Differentiation both side with respect to x and we get,
\dfrac{n}{a}{{\left( \dfrac{x}{a} \right)}^{n-1}}+\dfrac{n}{b}{{\left( \dfrac{y}{b} \right)}^{n-1}}\dfrac{dy}{dx}=0
\Rightarrow \dfrac{dy}{dx}=\dfrac{-\dfrac{n}{a}{{\left( \dfrac{x}{a} \right)}^{n-\grave{\ }}}}{\dfrac{n}{b}{{\left( \dfrac{y}{b} \right)}^{n-1}}}
\Rightarrow {{\left( \dfrac{dy}{dx} \right)}_{\left( a,b \right)}}=\dfrac{-b}{a}
Then, equation of tangent at point (a, b) is,
\left( y-b \right)=\dfrac{-b}{a}\left( x-a \right)
\Rightarrow ay-ab=-bx+ab
\Rightarrow bx+ay=2ab
\Rightarrow \dfrac{x}{a}+\dfrac{y}{b}=2
Thus, the given curve touches the line
\dfrac{x}{a}+\dfrac{y}{b}=2
At point \left( a,\,b \right) \forall \,n\in N
Please disable the adBlock and continue. Thank you.