Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

CBSE Questions for Class 11 Commerce Applied Mathematics Differentiation Quiz 11 - MCQExams.com

If x+y=sin(x+y) then dydx=
  • 12
  • 0
  • 1
  • 13
1x4+1y4=a(x2y2) , then  dydx=xy1y41x4
  • True
  • False
If x2+y2=4, then the value of dydx at the point   (0,2) is:
  • 0
  • 32
  • 4
  • 2
If x sin y=3siny + 4cosy, then dydx=
  • sin2y4
  • sin2y4
  • cos2y4
  • cos2y4
If x+y=t1t,x2+y2=t2+1t2, then dydx is equal to
  • yx
  • 1x
  • 1x2
  • 1x2
If X=ey+ey+ey+ey+..., then dydx is 
  • X1+X
  • 1X
  • 1XX
  • None of these
If ax2+2hxy+by2=0 then dydx is equal to
  • yx
  • xy
  • xy
  • none of these
If y=a sin x+b cos x, then y2+(dydx)2 is
  • function of x
  • function of y
  • function of x and y
  • constant
If y=y(x) and it follows the relation exy2+ycos(x2)=5 then y(0) is equal to
  • 4
  • 16
  • 4
  • 16
If y=aax, then dydx=

  • y.ax(loga)2
  • y.ax.loga
  • (y.ax)2
  • (y.ax)
Let f  be a differentiable function satisfying the condition f(xy)=f(x)f(y), for all x,y0 ϵ R and f(y)0. If  f(1)=2 then f(x) is equal to
  • 2f(x)
  • 2f(x)x
  • 2xf(x)
  • 2f(x)2
f(x)=1+6+5+x2, then f(2)=
  • 1
  • 112
  • 136
  • None
Let f(x) be differentiable function such that f(x+y1xy)=f(x)+f(y)x and y. If ltx0f(x)x=13 then f(1) equals 
  • 14
  • 16
  • 112
  • 18
If f(x+y)=2f(x).f(y) for all x,y, where f'(0)=3 and f'(4)=2 then f'(4)=3 is equal to
  • 6
  • 12
  • 4
  • 3
If y = {\log _{10}}\left( {\sin x} \right), then \dfrac{dy}{dx} equals to:
  • \sin x\,{\log _{10}}e
  • \cos x\,{\log _{10}}e
  • \cot x\,{\log _{10}}e
  • \cot x
If x\sqrt {1+y}+y\sqrt {1+x}=0, then \dfrac {dy}{dx}=
  • -\dfrac {1}{(x+1)^{2}}
  • \dfrac {1}{(x+1)^{2}}
  • -\dfrac {\sqrt {y+1}}{\sqrt {x+1}}
  • \dfrac {\sqrt {1+y}}{\sqrt {1+x}}
If y = \sin x \left[ \frac { 1 } { \sin x \cdot \sin 2 x } + \frac { 1 } { \sin 2 x \sin 3 x } + \ldots\right. + \frac { 1 } { \sin n x \sin ( n + 1 ) x } ] then \frac { d y } { d x } =
  • \cot x - \cot ( n + 1 ) x
  • ( n + 1 ) \cos e c ^ { 2 } ( n + 1 ) x - \cos e c ^ { 2 } x
  • \csc ^ { 2 } x - ( n + 1 ) \cos e c ^ { 2 } ( n + 1 ) x
  • \cot x + \cot ( n + 1 ) x
If (\cos x)^{y}=(\sin y)^{x}, then \dfrac{dy}{dx}=
  • \dfrac{\log (\sin y)+y \tan x}{\log (\cos x)- x \cot y}
  • \dfrac{\log (\sin y)-y \tan x}{\log (\cos x)+ x \cot y}
  • \dfrac{\log (\sin y)}{\log (\cos x)}
  • \dfrac{\log (\cos x)}{\log (\sin y)}
Let y be an implicit function of x defined by x^{2x}-2x^x\cot\:y-1=0. Then y'\left(1\right) equals 
  • -1
  • 1
  • \log\:2
  • -\log\:2
If y=(x+\sqrt{x^{2}+a^{2}})^{n} then \dfrac{dy}{dx}=
  • y
  • ny
  • \dfrac{ny}{\sqrt{x^{2}+a^{2}}}
  • \dfrac{y}{\sqrt{x^{2}+a^{2}}}
If x^m\cdot y^n=\left(x+y\right)^{m+n}, then \dfrac{dy}{dx} is ?
  • \dfrac{y}{x}
  • \dfrac{x+y}{xy}
  • xy
  • \dfrac{x}{y}
If 2^{x}-2^{y}=2^{x+y} then \dfrac{dy}{dx}=
  • 2^{y-x}
  • 2^{y/x}
  • -2^{y/x}
  • 2^{x/y}
If y = \exp \left\{ {{{\sin }^2}x + {{\sin }^4}x + {{\sin }^6}x + ....} \right\} then \frac {dy}{dx}=
  • {e^{{{\tan }^2}x}}
  • {e^{{{\tan }^2}x}}{\sec ^2}x
  • 2{e^{{{\tan }^2}x}}\tan x{\sec ^2}x
  • none
If y = {x^2} + \dfrac{1}{{{x^2} + \frac{1}{{{x^2} +  \ldots  \ldots \infty }}}}, then \dfrac{{dy}}{{dx}}=
  • \dfrac{{ - x{y^2}}}{{{y^2} + 1}}
  • \dfrac{{ 2xy}}{{2y-x^2}}
  • \dfrac{{ - {x^2}{y^2}}}{{{y^2} + 1}}
  • \dfrac{{ x{y^2}}}{{{y^2} + 1}}
If x\dfrac{dy}{dx}=y(\log y-\log x +1), then the solution of the equation 
  • \log\left(\dfrac{x}{y}\right)=cy
  • \log\left(\dfrac{y}{x}\right)=cx
  • x \log\left(\dfrac{x}{y}\right)=cy
  • y \log\left(\dfrac{x}{y}\right)=cy
If y = \sec \left( {{{\tan }^{ - 1}}x} \right), then \dfrac {dy}{dx} at x=1 is equal to
  • \dfrac {1}{\sqrt 2}
  • \dfrac {1}{2}
  • 1
  • \sqrt 2
If y(x) is the solution of the differential equation \left( x+2 \right) \dfrac { dy }{ dx } ={ x }^{ 2 }+4x-9,x\neq -2 and y(0)=0, then y(-4) is equal to :
  • 0
  • 2
  • 1
  • -1
The solution of the differential equation  \left( \dfrac { d y } { d x } \right) ^ { 2 } - 3 x \left( \dfrac { d y } { d x } \right) - 2 y = 8  is
  • y = 2 x ^ { 2 } + 4
  • y = 2 x ^ { 2 } - 4
  • y = 2 x + 4
  • y = 2 x - 4
A curve in the 1^{st} quadrant passes through (1,1). Its drifferential equation is (y-xy^{2})dx+(x+x^{2}y^{2})dy=0. Hence the equation of the curve is 
  • y-\dfrac{1}{xy}=\ln y
  • y-\dfrac{1}{xy}=\ln x
  • y-xy=\ln y
  • y-xy=\ln x
If \dfrac {dy}{dx}=(e^ {y}-x)^ {-1} where y(0)=0 then y is expressed explicity as 
  • 0.5\log_{e}(1+x^{2})
  • \log_{e}(1+x^{2})
  • \log _{ e } \left( x+\sqrt { 1+{ x }^{ 2 } } \right)
  • \\ \log _{ e } \left( x+\sqrt { 1-{ x }^{ 2 } } \right)
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers