CBSE Questions for Class 11 Commerce Applied Mathematics Differentiation Quiz 11 - MCQExams.com

If $$x+y=\sin(x+y)$$ then $$\dfrac{dy}{dx}$$=
  • $$\dfrac{1}{2}$$
  • $$0$$
  • $$-1$$
  • $$\dfrac{1}{3}$$
$$\sqrt { 1 - x ^ { 4 } } + \sqrt { 1 - y ^ { 4 } } = a \left( x ^ { 2 } - y ^ { 2 } \right)$$ , then  $$\frac { d y } { d x } = \frac { x } { y } \sqrt { \frac { 1 - y ^ { 4 } } { 1 - x ^ { 4 } } }$$. 
  • True
  • False
If $$x^{2}+y^{2}=4$$, then the value of $$\dfrac{dy}{dx}$$ at the point   $$(0,2)$$ is:
  • $$0$$
  • $$-32$$
  • $$4$$
  • $$-2$$
If $$x$$ $$sin$$ $$y$$$$=3 sin y$$ $$+$$ $$4 cos y$$, then $$\frac { dy }{ dx } =$$
  • $$\frac { { -sin }^{ 2 }y }{ 4 } $$
  • $$\frac { { sin }^{ 2 }y }{ 4 } $$
  • $$\frac { { -cos }^{ 2 }y }{ 4 } $$
  • $$\frac { { cos }^{ 2 }y }{ 4 } $$
If $$x+y=t-\dfrac{1}{t},x^{2}+y^{2}=t^{2}+\dfrac{1}{t^{2}}, $$ then $$\dfrac{dy}{dx}$$ is equal to
  • $$\dfrac{-y}{x}$$
  • $$-\dfrac{1}{x}$$
  • $$\dfrac{1}{x^{2}}$$
  • $$-\dfrac{1}{x^{2}}$$
If $$X={ { { { e }^{ y+e } }^{ y+e } }^{ y+e } }^{ y+...\infty  }$$, then $$\dfrac {dy}{dx}$$ is 
  • $$\dfrac {X}{1+X}$$
  • $$\dfrac {1}{X}$$
  • $$\dfrac {1-X}{X}$$
  • None of these
If $$a{x^2} + 2hxy + b{y^2} = 0$$ then $$\frac{{dy}}{{dx}}$$ is equal to
  • $$\frac{y}{x}$$
  • $$\frac{x}{y}$$
  • $$ - \frac{x}{y}$$
  • none of these
If $$y=a\ \sin\ x+b\ \cos\ x$$, then $$y^{2}+\left ( \dfrac{dy}{dx} \right )^{2}$$ is
  • function of $$x$$
  • function of $$y$$
  • function of $$x$$ and $$y$$
  • constant
If $$y=y(x)$$ and it follows the relation $$e^{xy^{2}}+y\cos(x^{2})=5$$ then $$y'(0)$$ is equal to
  • $$4$$
  • $$-16$$
  • $$-4$$
  • $$16$$
If $$y=a^{{a}^{{x}}}$$, then $$\dfrac {dy}{dx}=$$

  • $$y.a^{x}{(\log a)}^{2}$$
  • $$y.a^{x}.\log a$$
  • $${(y.a^{x})}^{2}$$
  • $$(y.a^{x})$$
Let $$f$$  be a differentiable function satisfying the condition $$f(\dfrac{x}{y})=\dfrac{f(x)}{f(y)}$$, for all $$x,y\neq 0\ \epsilon \ R$$ and $$f(y)\neq 0$$. If  $$f'(1)=2$$ then $$f'(x)$$ is equal to
  • $$2f(x)$$
  • $$\dfrac{2f(x)}{x}$$
  • $$2xf(x)$$
  • $$\dfrac{2f(x)}{2}$$
$$f\left( x \right) =\sqrt { 1+\sqrt { 6+\sqrt { 5+{ x }^{ 2 } }  }  }$$, then $$f'(2)=$$
  • $$1$$
  • $$\dfrac {1}{12}$$
  • $$\dfrac {1}{36}$$
  • $$None$$
Let $$f(x)$$ be differentiable function such that $$f\left(\dfrac{x+y}{1-xy}\right)=f(x)+f(y) \forall x$$ and $$y$$. If $$\underset { x\rightarrow 0 }{ lt } \dfrac { f\left( x \right)  }{ x } =\dfrac { 1 }{ 3 }$$ then $$f(1)$$ equals 
  • $$\dfrac{1}{4}$$
  • $$\dfrac{1}{6}$$
  • $$\dfrac{1}{12}$$
  • $$\dfrac{1}{8}$$
If $$f(x+y)=2f(x).f(y)$$ for all $$x,y$$, where $$f'(0)=3$$ and $$f'(4)=2$$ then $$f'(4)=3$$ is equal to
  • 6
  • 12
  • 4
  • 3
If $$y = {\log _{10}}\left( {\sin x} \right),$$ then $$\dfrac{dy}{dx}$$ equals to:
  • $$\sin x\,{\log _{10}}e$$
  • $$\cos x\,{\log _{10}}e$$
  • $$\cot x\,{\log _{10}}e$$
  • $$\cot x$$
If $$x\sqrt {1+y}+y\sqrt {1+x}=0$$, then $$\dfrac {dy}{dx}=$$
  • $$-\dfrac {1}{(x+1)^{2}}$$
  • $$\dfrac {1}{(x+1)^{2}}$$
  • $$-\dfrac {\sqrt {y+1}}{\sqrt {x+1}}$$
  • $$\dfrac {\sqrt {1+y}}{\sqrt {1+x}}$$
If $$y = \sin x \left[ \frac { 1 } { \sin x \cdot \sin 2 x } + \frac { 1 } { \sin 2 x \sin 3 x } + \ldots\right.$$ $$+ \frac { 1 } { \sin n x \sin ( n + 1 ) x } ]$$ then $$\frac { d y } { d x } =$$
  • $$\cot x - \cot ( n + 1 ) x$$
  • $$( n + 1 ) \cos e c ^ { 2 } ( n + 1 ) x - \cos e c ^ { 2 } x$$
  • $$\csc ^ { 2 } x - ( n + 1 ) \cos e c ^ { 2 } ( n + 1 ) x$$
  • $$\cot x + \cot ( n + 1 ) x$$
If $$(\cos x)^{y}=(\sin y)^{x}$$, then $$\dfrac{dy}{dx}=$$
  • $$\dfrac{\log (\sin y)+y \tan x}{\log (\cos x)- x \cot y}$$
  • $$\dfrac{\log (\sin y)-y \tan x}{\log (\cos x)+ x \cot y}$$
  • $$\dfrac{\log (\sin y)}{\log (\cos x)}$$
  • $$\dfrac{\log (\cos x)}{\log (\sin y)}$$
Let y be an implicit function of $$x$$ defined by $$x^{2x}-2x^x\cot\:y-1=0$$. Then $$y'\left(1\right)$$ equals 
  • $$-1$$
  • $$1$$
  • $$\log\:2$$
  • $$-\log\:2$$
If $$y=(x+\sqrt{x^{2}+a^{2}})^{n}$$ then $$\dfrac{dy}{dx}=$$
  • $$y$$
  • $$ny$$
  • $$\dfrac{ny}{\sqrt{x^{2}+a^{2}}}$$
  • $$\dfrac{y}{\sqrt{x^{2}+a^{2}}}$$
If $$x^m\cdot y^n=\left(x+y\right)^{m+n}$$, then $$\dfrac{dy}{dx}$$ is ?
  • $$\dfrac{y}{x}$$
  • $$\dfrac{x+y}{xy}$$
  • xy
  • $$\dfrac{x}{y}$$
If $$2^{x}-2^{y}=2^{x+y}$$ then $$\dfrac{dy}{dx}=$$
  • $$2^{y-x}$$
  • $$2^{y/x}$$
  • $$-2^{y/x}$$
  • $$2^{x/y}$$
If $$y = \exp \left\{ {{{\sin }^2}x + {{\sin }^4}x + {{\sin }^6}x + ....} \right\}$$ then $$\frac {dy}{dx}=$$
  • $${e^{{{\tan }^2}x}}$$
  • $${e^{{{\tan }^2}x}}{\sec ^2}x$$
  • $$2{e^{{{\tan }^2}x}}\tan x{\sec ^2}x$$
  • none
If $$y = {x^2} + \dfrac{1}{{{x^2} + \frac{1}{{{x^2} +  \ldots  \ldots \infty }}}},$$ then $$\dfrac{{dy}}{{dx}}=$$
  • $$\dfrac{{ - x{y^2}}}{{{y^2} + 1}}$$
  • $$\dfrac{{ 2xy}}{{2y-x^2}}$$
  • $$\dfrac{{ - {x^2}{y^2}}}{{{y^2} + 1}}$$
  • $$\dfrac{{ x{y^2}}}{{{y^2} + 1}}$$
If $$x\dfrac{dy}{dx}=y(\log y-\log x +1)$$, then the solution of the equation 
  • $$\log\left(\dfrac{x}{y}\right)=cy$$
  • $$\log\left(\dfrac{y}{x}\right)=cx$$
  • $$x \log\left(\dfrac{x}{y}\right)=cy$$
  • $$y \log\left(\dfrac{x}{y}\right)=cy$$
If $$y = \sec \left( {{{\tan }^{ - 1}}x} \right)$$, then $$\dfrac {dy}{dx}$$ at $$x=1$$ is equal to
  • $$\dfrac {1}{\sqrt 2}$$
  • $$\dfrac {1}{2}$$
  • $$1$$
  • $$\sqrt 2$$
If y(x) is the solution of the differential equation $$\left( x+2 \right) \dfrac { dy }{ dx } ={ x }^{ 2 }+4x-9,x\neq -2$$ and y(0)=0, then y(-4) is equal to :
  • 0
  • 2
  • 1
  • -1
The solution of the differential equation  $$\left( \dfrac { d y } { d x } \right) ^ { 2 } - 3 x \left( \dfrac { d y } { d x } \right) - 2 y = 8$$  is
  • $$y = 2 x ^ { 2 } + 4$$
  • $$y = 2 x ^ { 2 } - 4$$
  • $$y = 2 x + 4$$
  • $$y = 2 x - 4$$
A curve in the $$1^{st}$$ quadrant passes through $$(1,1)$$. Its drifferential equation is $$(y-xy^{2})dx+(x+x^{2}y^{2})dy=0$$. Hence the equation of the curve is 
  • $$y-\dfrac{1}{xy}=\ln y$$
  • $$y-\dfrac{1}{xy}=\ln x$$
  • $$y-xy=\ln y$$
  • $$y-xy=\ln x$$
If $$\dfrac {dy}{dx}=(e^ {y}-x)^ {-1}$$ where $$y(0)=0$$ then $$y$$ is expressed explicity as 
  • $$0.5\log_{e}(1+x^{2})$$
  • $$\log_{e}(1+x^{2})$$
  • $$\log _{ e } \left( x+\sqrt { 1+{ x }^{ 2 } } \right) $$
  • $$\\ \log _{ e } \left( x+\sqrt { 1-{ x }^{ 2 } } \right) $$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers