Processing math: 100%

CBSE Questions for Class 11 Commerce Applied Mathematics Differentiation Quiz 11 - MCQExams.com

If x+y=sin(x+y) then dydx=
  • 12
  • 0
  • 1
  • 13
1x4+1y4=a(x2y2) , then  dydx=xy1y41x4
  • True
  • False
If x2+y2=4, then the value of dydx at the point   (0,2) is:
  • 0
  • 32
  • 4
  • 2
If x sin y=3siny + 4cosy, then dydx=
  • sin2y4
  • sin2y4
  • cos2y4
  • cos2y4
If x+y=t1t,x2+y2=t2+1t2, then dydx is equal to
  • yx
  • 1x
  • 1x2
  • 1x2
If X=ey+ey+ey+ey+..., then dydx is 
  • X1+X
  • 1X
  • 1XX
  • None of these
If ax2+2hxy+by2=0 then dydx is equal to
  • yx
  • xy
  • xy
  • none of these
If y=a sin x+b cos x, then y2+(dydx)2 is
  • function of x
  • function of y
  • function of x and y
  • constant
If y=y(x) and it follows the relation exy2+ycos(x2)=5 then y(0) is equal to
  • 4
  • 16
  • 4
  • 16
If y=aax, then dydx=

  • y.ax(loga)2
  • y.ax.loga
  • (y.ax)2
  • (y.ax)
Let f  be a differentiable function satisfying the condition f(xy)=f(x)f(y), for all x,y0 ϵ R and f(y)0. If  f(1)=2 then f(x) is equal to
  • 2f(x)
  • 2f(x)x
  • 2xf(x)
  • 2f(x)2
f(x)=1+6+5+x2, then f(2)=
  • 1
  • 112
  • 136
  • None
Let f(x) be differentiable function such that f(x+y1xy)=f(x)+f(y)x and y. If ltx0f(x)x=13 then f(1) equals 
  • 14
  • 16
  • 112
  • 18
If f(x+y)=2f(x).f(y) for all x,y, where f(0)=3 and f(4)=2 then f(4)=3 is equal to
  • 6
  • 12
  • 4
  • 3
If y=log10(sinx), then dydx equals to:
  • sinxlog10e
  • cosxlog10e
  • cotxlog10e
  • cotx
If x1+y+y1+x=0, then dydx=
  • 1(x+1)2
  • 1(x+1)2
  • y+1x+1
  • 1+y1+x
If y=sinx[1sinxsin2x+1sin2xsin3x+ +1sinnxsin(n+1)x] then dydx=
  • cotxcot(n+1)x
  • (n+1)cosec2(n+1)xcosec2x
  • csc2x(n+1)cosec2(n+1)x
  • cotx+cot(n+1)x
If (cosx)y=(siny)x, then dydx=
  • log(siny)+ytanxlog(cosx)xcoty
  • log(siny)ytanxlog(cosx)+xcoty
  • log(siny)log(cosx)
  • log(cosx)log(siny)
Let y be an implicit function of x defined by x2x2xxcoty1=0. Then y(1) equals 
  • 1
  • 1
  • log2
  • log2
If y=(x+x2+a2)n then dydx=
  • y
  • ny
  • nyx2+a2
  • yx2+a2
If xmyn=(x+y)m+n, then dydx is ?
  • yx
  • x+yxy
  • xy
  • xy
If 2x2y=2x+y then dydx=
  • 2yx
  • 2y/x
  • 2y/x
  • 2x/y
If y=exp{sin2x+sin4x+sin6x+....} then dydx=
  • etan2x
  • etan2xsec2x
  • 2etan2xtanxsec2x
  • none
If y=x2+1x2+1x2+, then dydx=
  • xy2y2+1
  • 2xy2yx2
  • x2y2y2+1
  • xy2y2+1
If xdydx=y(logylogx+1), then the solution of the equation 
  • log(xy)=cy
  • log(yx)=cx
  • xlog(xy)=cy
  • ylog(xy)=cy
If y=sec(tan1x), then dydx at x=1 is equal to
  • 12
  • 12
  • 1
  • 2
If y(x) is the solution of the differential equation (x+2)dydx=x2+4x9,x2 and y(0)=0, then y(-4) is equal to :
  • 0
  • 2
  • 1
  • -1
The solution of the differential equation  (dydx)23x(dydx)2y=8  is
  • y=2x2+4
  • y=2x24
  • y=2x+4
  • y=2x4
A curve in the 1st quadrant passes through (1,1). Its drifferential equation is (yxy2)dx+(x+x2y2)dy=0. Hence the equation of the curve is 
  • y1xy=lny
  • y1xy=lnx
  • yxy=lny
  • yxy=lnx
If dydx=(eyx)1 where y(0)=0 then y is expressed explicity as 
  • 0.5loge(1+x2)
  • loge(1+x2)
  • loge(x+1+x2)
  • loge(x+1x2)
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers