Loading [MathJax]/jax/element/mml/optable/MathOperators.js

CBSE Questions for Class 11 Commerce Applied Mathematics Differentiation Quiz 12 - MCQExams.com

The differential of f(x)=2x2+x at x=0 and δx=0.15 is
  • 0.07
  • 0.075
  • 0.075
  • 0.15
Let f:[0,2]R be a twice differentiable function such that f"(x)>0, for all x(0,2) If ϕ(x)=f(x)+f(2x), then ϕis:
  • decreasing on (0,2)
  • decreasing on (0,1) and increasing on (1,2)
  • increasing on (0,2)
  • increasing on (0,1) and decreasing on (1,2)
If f(x)=|\cos x-\sin x|, then f'\left(\dfrac{\pi}{6}\right) equal to?
  • -\dfrac{1}{2}(1+\sqrt{3})
  • \dfrac{1}{2}(1+\sqrt{3})
  • -\dfrac{1}{2}(1-\sqrt{3})
  • \dfrac{1}{2}(1-\sqrt{3})
For the curve \sqrt{x}+\sqrt{y}=1,\ \dfrac{dy}{dx} at (1/4,1/4) is
  • 1/2
  • 1
  • -1
  • 2
If y^{2}=ae^{-2x}+(2/5)(cosx-2sinx)  then 
y\dfrac{dy}{dx}+y^{2}+sinx    is equal to 
  • -1
  • 1
  • 0
  • none of these
If x+y=\sin(x+y), then \dfrac{dy}{dx}=
  • \dfrac{1}{2}
  • 0
  • -1
  • \dfrac{1}{3}
The solution of \dfrac{dy}{dx} = 1+x+y+xy is
  • \log (1-y) = x+\dfrac{x^3}{2} + C
  • \log (1+y) = x-\dfrac{x^2}{2} + C
  • \log (1+y) = x+\dfrac{x^2}{2} + C
  • none of these
If  y ( x ):  Solution of a  D.E.

( x \log x ) \dfrac { d y } { d x } + y = 2 x \log x,   ( x , 1 )
y ( e ) = ? \quad x = e
  • e
  • 0
  • 2
  • 2e
If y^{2}+16=2xy, then which of the following is not the value of y'(5)?
  • -\dfrac {2}{3}
  • \dfrac {8}{3}
  • \dfrac {5}{3}
  • None of these
If xlog_e(log_ex)-x^2+y^2=4(y>0), then dy/dx at x=e is equal to:
  • \dfrac{e}{\sqrt{4+e^2}}
  • \dfrac{1+2e}{2\sqrt{4+e^2}}
  • \dfrac{2e-1}{2\sqrt{4+e^2}}
  • \dfrac{1+2e}{\sqrt{4+e^2}}
For  x > 1 ,  if  ( 2 x ) ^ { 2 y } = 4 e ^ { 2 x - 2 y } ,  then   \left( 1 + \log _ { \mathrm { e } } 2 \mathrm { x } \right) ^ { 2 } \dfrac { \mathrm { dy } } { \mathrm { dx } }  is equal to :
  • \log _ { e } 2 x
  • \dfrac { x \log _ { e } 2 x + \log _ { e } 2 } { x }
  • x \log _ { e } 2 x
  • \dfrac { x \log _ { e } 2 x - \log _ { e } 2 } { x }
Let y={ t }^{ 10 }+1, and x={ t }^{ 8 }+1, then \dfrac { { d }^{ 2 }y }{ { dx }^{ 2 } }  is 
  • \dfrac { 5 }{ 2 } t
  • 20{ t }^{ 8 }
  • \dfrac { 5 }{ 16{ t }^{ 6 } }
  • \dfrac { 15 }{ 16{ t }^{ 6 } }
Find f^{\prime} (3) if f(x)=x^3+5x^2-3x+5
  • 28
  • 54
  • 32
  • None 
If y = \sin ^ { - 1 } x then \frac { d y } { d x } is equal to 
  • \sec y
  • \cos x
  • \tan x
  • 1
If y=e^{\sin x }, then find \dfrac{dy}{dx}
  • e^{\sin x}{\cos x}
  • e^{\sin x}
  • e^{\cos x}
  • e^{\sin x \cos x}
If { (f\left( x \right) ) }^{ g(y) }={ e }^{ f\left( x \right)-g(y) } then \frac { dy }{ dx } 
  • \frac { { f }^{ \prime }(x)\log { f } (x) }{ g(y){ (1+\log { f } (x)) }^{ 2 } }
  • \frac { { f }^{ \prime }(x)\log { f } (x) }{ { g }^{ 1 }(y){ (1+\log { f } (x)) }^{ 2 } }
  • \frac { { f }(x)\log { f } (x) }{ { g }^{ \prime }(y){ (1-\log { f } (x)) }^{ 2 } }
  • 2\frac { { f }^{ \prime }(x)\log { f } (x) }{ g(y){ (1+\log { f } (x)) }^{ 2 } }
The derivative of \tan^{-1} \left (\dfrac {\sin x - \cos x}{\sin x + \cos x}\right ), with respect to \dfrac {x}{2}, where \left (x \epsilon \left (0, \dfrac {\pi}{2}\right )\right ) is
  • \dfrac {1}{2}
  • \dfrac {2}{3}
  • 1
  • 2
Differentiate the following function with respect to x.
x^n\tan x.
  • x^{n-1}(n \tan x+x\sec x).
  • x^{n-1}(n \tan x+x\sec^2x).
  • x^{n-1}(n \tan x+\sec^2x).
  • x^{n-1}(n \tan x+x\sec^{-2}x).
Differentiate the following function with respect to x.
x^3e^x.
  • x^2e^x(x).
  • e^x(3+x).
  • x^2(3+x).
  • x^2e^x(3+x).
Differentiate the following function with respect to x.
(2x^2+1)(3x+2).
  • 9x^2+4x+3.
  • 18x^2-8x-3.
  • 9x^2-4x-3.
  • 18x^2+8x+3.
Differentiate the following function with respect to x.
\dfrac{x^3}{3}-2\sqrt{x}+\dfrac{5}{x^2}.
  • x^2-x^{-1/2}-5x^{-3}.
  • x^2-x^{-1/2}-10x^{-3}.
  • x^2-x^{-1/2}+5x^{-3}.
  • -x^2+x^{-1/2}+10x^{-3}.
Differentiate the following function with respect to x.
x^2e^xlog x.
  • xe^x(x log x+2 log x).
  • xe^x(1+2 log x).
  • xe^x(1+x log x).
  • xe^x(1+x log x+2 log x).
Differentiate the following function with respect to x.
3^x+x^3+3^3.
  • 3^xlog 3+3x^2.
  • 3^xlog 3+3x.
  • 3^xlog 3+x^2.
  • xlog 3+3x^2.
Let x^k+y^k=a^k,(a,k > 0) and 
\dfrac{dy}{dx}+\left(\dfrac{y}{x}\right)^{1/3}=0, then k is :
  • \dfrac{1}{3}
  • \dfrac{2}{3}
  • \dfrac{4}{3}
  • \dfrac{3}{2}
Differentiate the following function with respect to x.
\sin x\cos x.
  • 2\cos 2x.
  • \dfrac {\cos 2x}{2}.
  • \cos 2x.
  • \cos x.
If y \sqrt{x^{2}+1}=\log (\sqrt{x^{2}+1}-x),  then  \left(x^{2}+1\right) \dfrac{d y}{d x}+x y+1=
  • 0
  • 1
  • 2
  • None of these
 Let u(x)  and  v(x)  be differentiable functions such that  \dfrac{u(x)}{v(x)}=7 .  If  \dfrac{u^{\prime}(x)}{v^{\prime}(x)}=p  and  \left(\dfrac{u(x)}{v(x)}\right)^{\prime}=q,  then  \dfrac{p+q}{p-q}  has the value equal to
  • 1
  • 0
  • 7
  • -7
f(x)=x^{2}+x g^{\prime}(1)+g^{\prime \prime}(2) and g(x)=f(1) x^{2}+x f^{\prime}(x)+f^{\prime \prime}(x)
The value of f(3)  is
  • 1
  • 0
  • -1
  • -2
lf {f}'({x})={g}({x}) and {g}'({x})=-{f}({x}) for all x and {f}(2)=4= {g}(2), then {f}^{2}(24)+{g}^{2}(24) is
  • 32
  • 24
  • 64
  • 48
Assertion(A): Let { f }({ x }) be twice differentiable function such that f^{ '' }(x)=-{ f }({ x }) and f^{ ' }(x)={ g }({ x }). lf { h }({ x })=[{ f }({ x })]^{ 2 }+[{ g }({ x })]^{ 2 } and { h }(1)=8, then { h }(2)=8

Reason (R): Derivative of a constant function is zero.
  • Both A and R are true R is correct reason of A
  • Both A and R are true R is not correct reason of A
  • A is true but R is false
  • A is false but R is true
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers