Processing math: 100%

CBSE Questions for Class 11 Commerce Applied Mathematics Differentiation Quiz 12 - MCQExams.com

The differential of f(x)=2x2+x at x=0 and δx=0.15 is
  • 0.07
  • 0.075
  • 0.075
  • 0.15
Let f:[0,2]R be a twice differentiable function such that f"(x)>0, for all x(0,2) If ϕ(x)=f(x)+f(2x), then ϕis:
  • decreasing on (0,2)
  • decreasing on (0,1) and increasing on (1,2)
  • increasing on (0,2)
  • increasing on (0,1) and decreasing on (1,2)
If f(x)=|cosxsinx|, then f(π6) equal to?
  • 12(1+3)
  • 12(1+3)
  • 12(13)
  • 12(13)
For the curve x+y=1, dydx at (1/4,1/4) is
  • 1/2
  • 1
  • 1
  • 2
If y2=ae2x+(2/5)(cosx2sinx)  then 
ydydx+y2+sinx   is equal to 
  • -1
  • 1
  • 0
  • none of these
If x+y=sin(x+y), then dydx=
  • 12
  • 0
  • 1
  • 13
The solution of dydx=1+x+y+xy is
  • log(1y)=x+x32+C
  • log(1+y)=xx22+C
  • log(1+y)=x+x22+C
  • none of these
If  y(x):  Solution of a  D.E.

(xlogx)dydx+y=2xlogx,   (x,1)
y(e)=?x=e
  • e
  • 0
  • 2
  • 2e
If y2+16=2xy, then which of the following is not the value of y(5)?
  • 23
  • 83
  • 53
  • None of these
If xloge(logex)x2+y2=4(y>0), then dy/dx at x=e is equal to:
  • e4+e2
  • 1+2e24+e2
  • 2e124+e2
  • 1+2e4+e2
For  x>1,  if  (2x)2y=4e2x2y,  then   (1+loge2x)2dydx  is equal to :
  • loge2x
  • xloge2x+loge2x
  • xloge2x
  • xloge2xloge2x
Let y=t10+1, and x=t8+1, then d2ydx2 is 
  • 52t
  • 20t8
  • 516t6
  • 1516t6
Find f(3) if f(x)=x3+5x23x+5
  • 28
  • 54
  • 32
  • None 
If y=sin1x then dydx is equal to 
  • secy
  • cosx
  • tanx
  • 1
If y=esinx, then find dydx
  • esinxcosx
  • esinx
  • ecosx
  • esinxcosx
If (f(x))g(y)=ef(x)g(y) then dydx
  • f(x)logf(x)g(y)(1+logf(x))2
  • f(x)logf(x)g1(y)(1+logf(x))2
  • f(x)logf(x)g(y)(1logf(x))2
  • 2f(x)logf(x)g(y)(1+logf(x))2
The derivative of tan1(sinxcosxsinx+cosx), with respect to x2, where (xϵ(0,π2)) is
  • 12
  • 23
  • 1
  • 2
Differentiate the following function with respect to x.
xntanx.
  • xn1(ntanx+xsecx).
  • xn1(ntanx+xsec2x).
  • xn1(ntanx+sec2x).
  • xn1(ntanx+xsec2x).
Differentiate the following function with respect to x.
x3ex.
  • x2ex(x).
  • ex(3+x).
  • x2(3+x).
  • x2ex(3+x).
Differentiate the following function with respect to x.
(2x2+1)(3x+2).
  • 9x2+4x+3.
  • 18x28x3.
  • 9x24x3.
  • 18x2+8x+3.
Differentiate the following function with respect to x.
x332x+5x2.
  • x2x1/25x3.
  • x2x1/210x3.
  • x2x1/2+5x3.
  • x2+x1/2+10x3.
Differentiate the following function with respect to x.
x2exlogx.
  • xex(xlogx+2logx).
  • xex(1+2logx).
  • xex(1+xlogx).
  • xex(1+xlogx+2logx).
Differentiate the following function with respect to x.
3x+x3+33.
  • 3xlog3+3x2.
  • 3xlog3+3x.
  • 3xlog3+x2.
  • xlog3+3x2.
Let xk+yk=ak,(a,k>0) and 
dydx+(yx)1/3=0, then k is :
  • 13
  • 23
  • 43
  • 32
Differentiate the following function with respect to x.
sinxcosx.
  • 2cos2x.
  • cos2x2.
  • cos2x.
  • cosx.
If yx2+1=log(x2+1x), then (x2+1)dydx+xy+1=
  • 0
  • 1
  • 2
  • None of these
 Let u(x) and v(x) be differentiable functions such that u(x)v(x)=7. If u(x)v(x)=p and (u(x)v(x))=q, then p+qpq has the value equal to
  • 1
  • 0
  • 7
  • 7
f(x)=x2+xg(1)+g(2) and g(x)=f(1)x2+xf(x)+f(x)
The value of f(3) is
  • 1
  • 0
  • -1
  • -2
lf f(x)=g(x) and g(x)=f(x) for all x and f(2)=4=g(2), then f2(24)+g2(24) is
  • 32
  • 24
  • 64
  • 48
Assertion(A): Let f(x) be twice differentiable function such that f(x)=f(x) and f(x)=g(x). lf h(x)=[f(x)]2+[g(x)]2 and h(1)=8, then h(2)=8

Reason (R): Derivative of a constant function is zero.
  • Both A and R are true R is correct reason of A
  • Both A and R are true R is not correct reason of A
  • A is true but R is false
  • A is false but R is true
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers