Explanation
We have,
\sqrt{x}+\sqrt{y}=1
On differentiating this with respect to x and we get,
\dfrac{1}{2\sqrt{x}}+\dfrac{1}{2\sqrt{y}}\dfrac{dy}{dx}=0
\Rightarrow \dfrac{dy}{dx}=-\dfrac{\sqrt{x}}{\sqrt{y}}
At the point \left( \dfrac{1}{4},\dfrac{1}{4} \right)
So,
\dfrac{dy}{dx}=-\dfrac{\sqrt{\dfrac{1}{4}}}{\sqrt{\dfrac{1}{4}}}
\dfrac{dy}{dx}=-1
Hence, this is the answer.
Please disable the adBlock and continue. Thank you.