Explanation
Given that f (x)is a differentiable function of x and that f(x) . f (y) = f (x) + f (y) + f (xy) -2 and thatf (2) =5.
Then f (3) is equal to?
\displaystyle\mathrm {f'(x)}=\lim_{h \rightarrow 0}\frac{ \mathrm{f (x+h) - f(x)} }{h} \displaystyle =\lim_{h\to 0}\frac{\mathrm {f(x) f(h)- f(x)}}{h} \displaystyle = \mathrm{f(x)}\lim_{h\to 0}\frac{\mathrm {f(h)-1}}{h} \displaystyle =\mathrm{ f(x)}\lim_{h\to 0}\mathrm{ g(h)}, ( \because \mathrm{f(x)}= 1+ \mathrm{x g(x)}\; )
= \mathrm{f(x)} (\displaystyle \because \lim_{x \rightarrow 0} \mathrm{g(x)} =1) \Rightarrow \displaystyle \mathrm{ f'(x)}= \mathrm {f(x)}
If e^y+xy=e then
e^y+xy=e
On substituting x= 0, we get e^y=e
y = 1 when x = 0
On differentiating the relation (i) we get
e^y\dfrac{dy}{dx}+1.y+x.\dfrac{dy}{dx}=0
On substituting, x = 0, y = 1 we get
e^{y}\left( \dfrac{dy}{dx} \right)^{2}+e^{y}\dfrac{d^{2}y}{dx^{2}}+\dfrac{dy}{dx}+\dfrac{dy}{dx}+x\dfrac{d^{2}y}{dx^{2}}=0
On substitutingx = 0, y = 1, \dfrac{dy}{dx}=\dfrac{-1}{e} we get
=\dfrac{d^2y}{dx^2}=\dfrac{1}{e^2}\rightarrow \lambda=2
Hence, option 'A' is correct.
Please disable the adBlock and continue. Thank you.