Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

CBSE Questions for Class 11 Commerce Applied Mathematics Differentiation Quiz 13 - MCQExams.com

Statement I: lf f(θ)=cosθ1.cosθ2.cosθn, then the value of tanθ1+tanθ2++tanθn=f(θ)f(θ)
Statement II: Differential coefficient of the function f(g(x)) w.r.t function g(x) is f(g(x)).

Which of the above statements is/are correct?
  • Statement I only
  • Statement II only
  • Both I and II
  • Neither I nor II
Assertion (A) If sin(x+y)=loge(x+y), then dydx=1

Reason (R): The derivative of an odd function is always an even function
  • Both A and R are true R is the correct reason of A
  • Both A and R are true R is not the correct reason of A
  • A is true but R is false
  • A is false but R is true
If y=cos2xcos3x, then yn is equal to
Where, yn denotes the nth derivative of y.
  • 6ncos(2x+nπ2)cos(3x+nπ2)
  • 12[5ncos(nπ2+5x)+cos(nπ2+x)]
  • 12[5nsin(5x+nπ2)+sin(x+π2)]
  • 0
f(x)=|x1|+|x3| then f(2)=
  • 2
  • 2
  • 0
  • 1
Statement I: If x=ey+ey+ey+, then dydx=x1x

Statement II: If y=|cosx|+|sinx|, then the value of dydx at x=2π3 is (312)

Which of the above statement(s) is/are correct?
  • Statement I only
  • Statement II only
  • Both I and II
  • Neither I nor II
 lf y011+9u2du=u, then d2ydu2 is
  • 1+9y2
  • 11+9y2
  • 9y
  • 9y2
g(x+y)=g(x)+g(y)+3xy(x+y)x,yϵR and g(0)=4.For which of the following values of x is g(x) not defined?
  • [2,0]
  • [2,]
  • [1,1]
  • none of these
Let f(x) be a polynomial of degree two which is positive for all xR. lf g(x)=f(x)+f(x)+f, then for any real x
  • g(x)<0
  • g(x)>0
  • g(x)=0
  • g(x)\geq 0
The n^{th} derivative of h(x)=e^{3x+5}x^{2} at x=0 is
  • e^{5}3^{n-2}n(n-1)
  • e^{5}3^{n+2}n(n-1)
  • e^{5}3^{n}n(n-1)
  • e^{5}3^{n-2}n(n+1)

Given that f (x)
is a differentiable function of x and that f(x) . f (y) =  f (x) + f (y) + f (xy) -2 and that
f (2) =5.

Then f (3) is equal to?

  • 6
  • 24
  • 15
  • 19
lf \displaystyle \mathrm{f}(\mathrm{x})=log\left(\frac{1+\mathrm{x}}{1-\mathrm{x}}\right) and \displaystyle \mathrm{g}(\mathrm{x})=\frac{3\mathrm{x}+\mathrm{x}^{3}}{1+3\mathrm{x}^{2}} then \displaystyle \frac{\mathrm{d}}{\mathrm{d}\mathrm{x}}(\mathrm{f}(\mathrm{g}(\mathrm{x}))) equals
  • - f^{'}(x)
  • -f(x)
  • 3(f(x))^{2}
  • 3f^{'}(x)
Let \mathrm{f}(\mathrm{x}) be a function satisfying f(x+y)=\mathrm{f}(\mathrm{x})\mathrm{f}(\mathrm{y}) for all x,y \in \mathrm{R} and \mathrm{f}(\mathrm{x})=1+\mathrm{x}\mathrm{g}(\mathrm{x}), where \displaystyle\lim_{x\rightarrow 0}\mathrm{g}(\mathrm{x})=1, then \mathrm{f}'(\mathrm{x}) is equal to
  • x\mathrm {g(x)}
  • \mathrm{g'(x)}
  • \mathrm{f(x)}
  • 0
Suppose for a differentiable function f,\>f(0)=0,\>f(1)=1,\>f'(0)=4=f'(1).
If g(x)= f(e^{x})e^{f(x)}, then g'(0) is equal to
  • 4
  • 8
  • 2
  • 0
Assertion (A): lf f(x)=\cos^{2}x+\cos^{2}\left(x+\dfrac{\pi}3\right)- \cos x \cos \left(x+\dfrac{\pi}3\right) then f'(x)=0

Reason(R): Derivative of constant function is zero
  • Both A & R are true, R is correct explanation for A
  • Both A & R are true,R is not correct explanation for A
  • A is true but R is false
  • A is false but R is true
lf y^2=p(x) , a polynomial of degree 3, then \displaystyle 2\frac{d}{dx}\left(y^3\dfrac{d^2y}{dx^2}\right), is equal to
  • p'''(x)+p'(x)
  • p''(x)+p'''(x)
  • p(x)p'''(x)
  • constant
lf \mathrm{f}(\mathrm{x}) is a quadratic expression which is positive for all real vaues of \mathrm{x} and \mathrm{g}(\mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{f}'(\mathrm{x})+\mathrm{f}''(\mathrm{x}) then for any real value of \mathrm{x}
  • \mathrm{g}(\mathrm{x})<0
  • \mathrm{g}(\mathrm{x})>0
  • \mathrm{g}(\mathrm{x})=0
  • \mathrm{g}(\mathrm{x})\underline{>}0
Let f be a twice differentiable function such that f''\left( x \right) =-f\left( x \right) and f'(x)=g(x)..
If h'\left( x \right) ={ \left[ f\left( x \right) \right]  }^{ 2 }+{ \left[ g\left( x \right) \right]  }^{ 2 },h\left( 1 \right) =6 and h(0)=4 then h(4) is equal to?
  • 16
  • 12
  • 13
  • None of these
If y=x^{\displaystyle x^{\displaystyle x^{\displaystyle \dots^{\displaystyle\infty}}}}, find \displaystyle\frac{dy}{dx}.
  • \displaystyle\frac{y^2}{x(1-y\log{x})}
  • \displaystyle\frac{y}{x(1-\log{x})}
  • \displaystyle\frac{y^2}{x(y-\log{x})}
  • None of these
If { e }^{ y }+xy=e then at x=0,\displaystyle \frac{d^2y}{dx^2}=e^{-\lambda,} then numerical quantity -\lambda should be equal to
  • 2
  • 3
  • 4
  • 5
Derivative of ({\log{x}})^{\displaystyle\cos{x}} with respect to x is
  • \displaystyle({\log{x}})^{\displaystyle\cos{x}}\left[\frac{\cos{x}}{x\log{x}}-\sin{x}\log{(\log{x})}\right]
  • \displaystyle({\log{x}})^{\displaystyle\cos{x}}\left[\frac{\cos{x}}{x\log{x}}-\cos{x}\log{(\log{x})}\right]
  • \displaystyle({\log{x}})^{\displaystyle\sin{x}}\left[\frac{\sin{x}}{x\log{x}}-\cos{x}\log{(\log{x})}\right]
  • None of these
Let \mathrm{f}: (-1,1 )\rightarrow \mathrm{R} be a differentiable function with \mathrm{f}(\mathrm{0})=-1 and \mathrm{f}'(\mathrm{0})=1. Let \mathrm{g}(\mathrm{x})=[\mathrm{f}(2\mathrm{f}(\mathrm{x})+2)]^{2}. Then \mathrm{g}'(\mathrm{0})=
  • -4
  • 0
  • -2
  • 4
If x^m y^n=(x+y)^{m+n}, then \displaystyle\frac{dy}{dx} is
  • \displaystyle -\frac{y}{x}
  • \displaystyle\frac{y}{x}
  • \displaystyle\frac{x}{y}
  • None of these
If y is a function of x and ln (x + y) - 2xy = 0, then the value of y'(0) is equal to


  • 1
  • 2
  • 3
  • 4
If f(x)={|x|}^{|\sin{x}|}, then \displaystyle f^\prime\left(-\frac{\pi}{4}\right)=
  • \displaystyle {\left(\frac{\pi}{5}\right)}^{\tfrac{1}{\sqrt{2}}}\left(\frac{\sqrt{2}}{2}\log{\frac{5}{\pi}}-\frac{2\sqrt{2}}{\pi}\right)
  • \displaystyle {\left(\frac{\pi}{4}\right)}^{\tfrac{1}{\sqrt{2}}}\left(\frac{\sqrt{2}}{2}\log{\frac{4}{\pi}}-\frac{2\sqrt{2}}{\pi}\right)
  • \displaystyle {\left(\frac{\pi}{3}\right)}^{\tfrac{1}{\sqrt{2}}}\left(\frac{\sqrt{2}}{2}\log{\frac{3}{\pi}}-\frac{3\sqrt{3}}{\pi}\right)
  • None of these
Let y=\sqrt{x+\sqrt{x+\sqrt{x+\cdots\infty}}}, then \displaystyle\frac{dy}{dx} is equal to
  • \displaystyle\frac{1}{2y-1}
  • \displaystyle\frac{x}{x+2y}
  • \displaystyle\frac{1}{\sqrt{1+4x}}
  • \displaystyle\frac{y}{2x+y}
 Let \mathrm{f}(\mathrm{x})=\mathrm{x}+\tan^{-1}\mathrm{x}, \displaystyle \mathrm{g}(\mathrm{x})=\frac{\mathrm{x}}{1+\mathrm{x}^{2}}(\mathrm{x}>0) Then
  • \mathrm{f}(\mathrm{x})<\mathrm{g}(\mathrm{x}), \mathrm{x}>0
  • \mathrm{f}(\mathrm{x})>\mathrm{g}(\mathrm{x}), \mathrm{x}>0
  • \mathrm{f}(\mathrm{x})<\mathrm{g}(\mathrm{x}) in [1, \infty)
  • None of these
If x<1,  then \displaystyle\frac{1}{1+x}+\frac{2x}{1+x^2}+\frac{4x^3}{1+x^4}+\cdots\infty=
  • \displaystyle -\frac{1}{1+x}
  • \displaystyle\frac{1}{1-x}
  • \displaystyle -\frac{1}{1-x}
  • \displaystyle\frac{1}{1+x}
g(x+y)=g(x)+g(y)+3xy(x+y)\:\forall\:x,\:y\epsilon R and g^\prime(0)=-4.The value of g^\prime(1) is
  • 0
  • 1
  • -1
  • none of these
If y=e^{\displaystyle\sqrt{x}}+e^{\displaystyle -\sqrt{x}}, then \displaystyle\frac{dy}{dx} is equal to
  • \displaystyle\frac{e^{\displaystyle\sqrt{x}}-e^{\displaystyle -\sqrt{x}}}{2\sqrt{x}}
  • \displaystyle\frac{e^{\displaystyle\sqrt{x}}-e^{\displaystyle -\sqrt{x}}}{2x}
  • \displaystyle\frac{1}{2\sqrt{x}}\sqrt{y^2-4}
  • \displaystyle\frac{1}{2\sqrt{x}}\sqrt{y^2+4}
g(x+y)=g(x)+g(y)+3xy(x+y)\:\forall\:x,\:y\epsilon R and g^\prime(0)=-4.The number of real roots of the equation g(x)=0 is
  • 2
  • 0
  • 1
  • 3
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers