CBSE Questions for Class 11 Commerce Applied Mathematics Differentiation Quiz 14 - MCQExams.com

If $$y=x^{\left(x^{ x}\right)}$$, then $$\displaystyle\frac{dy}{dx}$$ is
  • $$y\left[x^{\displaystyle x}\left(\log{ex}\right)\log{x}+x^{\displaystyle x}\right]$$
  • $$y\left[x^{\displaystyle x}\left(\log{ex}\right)\log{x}+x\right]$$
  • $$y\left[x^{\displaystyle x}\left(\log{ex}\right)\log{x}+x^{\displaystyle x-1}\right]$$
  • $$y\left[x^{\displaystyle x}\left(\log_e{x}\right)\log{x}+x^{\displaystyle x-1}\right]$$
If $$y=x^{{\displaystyle(\log{x})}^{\displaystyle\log{(\log{x})}}}$$, then $$\displaystyle\frac{dy}{dx}$$ is
  • $$\displaystyle\frac{y}{x}((\ln{x^{\displaystyle x-1}})+2\ln{x}\ln{(\ln{x})})$$
  • $$\displaystyle\frac{y}{x}{(\log{x})}^{\displaystyle\log{(\log{x})}}(2\log{(\log{x})}+1)$$
  • $$\displaystyle\frac{y}{x\ln{x}}[{(ln{x})}^2+2\ln{(\ln{x})}]$$
  • $$\displaystyle\frac{y}{x}\frac{\log{y}}{\log{x}}[2\log{(\log{x})}+1]$$
The derivative of $$\displaystyle\frac{\sqrt{x}{(x+4)}^{\tfrac{3}{2}}}{{(4x-3)}^{\tfrac{4}{3}}}$$ w.r.t $$x$$ is
  • $$\displaystyle\frac{\sqrt{x}{(x+4)}^{\tfrac{3}{2}}}{{(4x-3)}^{\tfrac{4}{3}}}\left\{\frac{1}{2x}+\frac{3}{2(x+4)}-\frac{16}{3(4x-3)}\right\}$$
  • $$\displaystyle\frac{\sqrt{x}{(x+4)}^{\tfrac{4}{3}}}{{(4x-3)}^{\tfrac{3}{2}}}\left\{\frac{1}{2x}+\frac{3}{2(x+4)}-\frac{16}{3(4x-3)}\right\}$$
  • $$\displaystyle\frac{\sqrt{x}{(x+4)}^{\tfrac{5}{4}}}{{(4x-3)}^{\tfrac{3}{4}}}\left\{\frac{1}{2x}+\frac{3}{2(x+4)}-\frac{16}{3(4x-3)}\right\}$$
  • None of these
$$f_n(x)=e^{\displaystyle f_{n-1}(x)}$$ for all $$n\epsilon N$$ and $$f_0(x)=x$$, then $$\displaystyle\frac{d}{dx}\left\{f_n(x)\right\}$$ is
  • $$\displaystyle f_n(x)\frac{d}{dx}\left\{f_{n-1}(x)\right\}$$
  • $$f_n(x)f_{n-1}(x)$$
  • $$f_n(x)f_{n-1}(x)\cdots f_2(x).f_1(x)$$
  • none of these
If $$\displaystyle f(x)=\Pi_{n=1}^{100}(x-n)^{n(101-n)}$$, then find $$\frac {f(101)}{f'(101)}$$
  • $$\dfrac {1}{4950}$$
  • $$\dfrac {102}{5050}$$
  • $$\dfrac {101}{4950}$$
  • $$\dfrac {1}{5050}$$
If $$y=\sqrt{x+\sqrt{y+\sqrt{x+\sqrt{y+\dots\infty}}}}$$, then  $$\displaystyle\frac{dy}{dx}=$$
  • $$\displaystyle\frac{y^2-x}{2y^3-2xy-1}$$
  • $$\displaystyle\frac{x^2-x}{2x^3-2xy-1}$$
  • $$\displaystyle\frac{x^2-x}{2x^3-2xy^2-1}$$
  • None of these
The value of $$f^\prime(3)$$ is
  • $$8$$
  • $$10$$
  • $$12$$
  • $$18$$
If for all $$x, y$$ the function f is defined by; $$f(x)+f(y)+f(x)\cdot f(y)=1$$ and $$f(x) > 0$$.When $$f(x)$$ is differentiable $$f'(x)= $$,
  • $$-1$$
  • $$1$$
  • $$0$$
  • cannot be determined
The function $$f(x)=e^x+x$$ being differentiable and one to one, has a differentiable inverse $$f^{-1}(x)$$, then find $$\dfrac {d}{dx} (f^{-1}(x))$$ at the point $$f(log_e 2)$$.
  • $$\dfrac {1}{3}$$
  • $$1$$
  • $$3$$
  • $$0$$
The value of $$f(9)$$ is
  • $$240$$
  • $$356$$
  • $$252$$
  • $$730$$
Given, $$f(x)=-\displaystyle \frac {x^3}{3}+x^2 \sin 1.5 a-x \sin a\cdot \sin 2a-5 arc \sin (a^2-8a+17)$$, then
  • $$f(x)$$ is not defined at $$x=sin 8$$
  • $$f' (sin 8) > 0$$
  • $$f' (x)$$ is not defined at $$x=sin 8$$
  • $$f'(sin 8) < 0$$
Let f be a twice differentiable such that $$f''(x)=-f(x)$$ and $$f'(x)=g(x)$$. If $$h(x)=\left \{f(x)\right \}^2+\left \{g(x)\right \}^2$$, where $$h(5)=11$$. Find $$h(10)$$
  • $$1$$
  • $$10$$
  • $$11$$
  • $$100$$
Derivative of $${(x\cos{x})}^x$$ with respect to $$x$$ is
  • $$\displaystyle {(x\cos{x})}^x\left[(\log{x}+1)-\left\{\log{\cos{x}}+\frac{x}{\cos{x}}.(\sin{x})\right\}\right]$$
  • $$\displaystyle {(x\cos{x})}^x\left[(\log{x}+1)+\left\{\log{\cos{x}}+\frac{x}{\cos{x}}.(-\sin{x})\right\}\right]$$
  • $$\displaystyle {(x\cos{x})}^x\left[(\log{x}+1)+\left\{\log{\sin{x}}+\frac{x}{\cos{x}}.(\cos{x})\right\}\right]$$
  • None of these
Find the derivative of $$|x|+a_0x^n+a_1x^{n-1}+a_2x^{n-2}+....+a_{n-1}x+a_n$$
  • $$\frac {x}{|x|}+na_0x^{n-1}+(n-1)a_1x^{n-2}+(n-2)a_2x^{n-3}+....+a_{n-1}$$
  • $$1+na_0x^{n-1}+(n-1)a_1x^{n-2}+(n-2)a_2x^{n-3}+....+a_{n-1}$$
  • $$\frac {x}{|x|}+na_0x^{n-1}+(n-1)a_1x^{n-2}+(n-2)a_2x^{n-3}+....+a_{n}$$
  • None of these
Equation $$x^n-1=0, n > 1, n\epsilon N$$, has roots $$1, a_2, ....a_n$$.
The value of $$\displaystyle \sum_{r=2}^{n}\frac {1}{2-a_r}$$, is
  • $$\displaystyle \frac {2^{n-1}(n-2)+1}{2^n-1}$$
  • $$\displaystyle \frac {2^{n}(n-2)+1}{2^n-1}$$
  • $$\displaystyle \frac {2^{n-1}(n-1)-1}{2^n-1}$$
  • none of these
Let $$f(x) = \sqrt{x - 1} + \sqrt{x + 24 - 10\sqrt{x - 1}}, 1 \le x \le 26$$ be a real valued function, then $$f'(x)$$ for $$1 < x < 26$$ is
  • $$0$$
  • $$\displaystyle\frac{1}{\sqrt{x - 1}}$$
  • $$2\sqrt{x - 1}$$
  • $$1$$
$$f:R\rightarrow R$$ and $$f(x)=2ax+sin 2x$$, then the set of values of a for which $$f(x)$$ is one-one and onto is
  • $$a\in \left (-\dfrac {1}{2}, \dfrac {1}{2}\right )$$
  • $$a\in (-1, 1)$$
  • $$a\in R-\left (-\dfrac {1}{2}, \dfrac {1}{2}\right )$$
  • $$a\in R-(-1, 1)$$
If $$y$$ and $$z$$ are the functions of $$x$$ and if $${ y }^{ 2 }+{ z }^{ 2 }={ \lambda  }^{ 2 }$$, then $$\displaystyle y\frac { d }{ dx } \left( \frac { y }{ \lambda  }  \right) +\frac { d }{ dx } \left( \frac { { z }^{ 2 } }{ \lambda  }  \right) $$ is equal to
  • $$\displaystyle \frac { z }{ \lambda  } \frac { dz }{ dx } $$
  • $$\displaystyle \frac { z }{ \lambda  } \frac { dx }{ dz } $$
  • $$\displaystyle \frac { \lambda  }{ z } \frac { dz }{ dx } $$
  • None of these
Let $$h(x)$$ be differentiable for all $$x$$ and let $$f(x)=(kx+e^x)h(x)$$ where $$k$$ is some constant. If $$h(0)=5, h'(0)=-2$$ and $$f'(0)=18$$, then the value of $$k$$  is equal to
  • $$3$$
  • $$4$$
  • $$5$$
  • $$1$$
Let $$f$$ be a differentiable function satisfying $$f(x) + f(y) + f(z) + f(x)f(y)f(z) = 14$$ for all $$x,\space y,\space z \in R$$
Then,
  • $$f'(x) < 0$$ for all $$x \in R$$
  • $$f'(x) = 0$$ for all $$x \in R$$
  • $$f'(x) > 0$$ for all $$x \in R$$
  • none of these
Let $$f(x)=x^{2}+xg^{'}(1)+g^{"}(2)$$ and $$g(x)=f(1).x^{2}+xf^{'}(x)+f^"(x)$$ then
  • $$f^{'}(1)+f^{'}(2)=0$$
  • $$g^{'}(2)=g^{'}(1)$$
  • $$g^{''}(2)+f^{''}(3)=6$$
  • none of these
If $$\sqrt {y+x}+\sqrt {y-x}=c$$ (where $$c\neq 0$$), then $$\displaystyle \frac {dy}{dx}$$ has the value equal to
  • $$\displaystyle \frac {2x}{c^2}$$
  • $$\displaystyle \frac {x}{y+\sqrt {y^2-x^2}}$$
  • $$\displaystyle \frac {y-\sqrt {y^2-x^2}}{x}$$
  • $$\displaystyle \frac {c^2}{2y}$$
Equation $$x^n-1=0, n > 1, n\epsilon N$$, has roots $$1, a_2, ....a_n$$.
The value of $$\displaystyle \sum_{r=2}^{n}\frac {1}{1-a_r}$$, is
  • $$\displaystyle \frac {n}{4}$$
  • $$\displaystyle \frac {n(n-1)}{2}$$
  • $$\displaystyle \frac {n-1}{2}$$
  • none of these
Suppose, $$A=\displaystyle \frac {dy}{dx}$$ of $$x^2+y^2=4$$ at $$(\sqrt 2, \sqrt 2), B=\displaystyle \frac {dy}{dx}$$ of $$sin y+sin x=sin x\cdot sin y$$ at $$(\pi, \pi)$$ and $$C=\displaystyle \frac {dy}{dx}$$ of $$2e^{xy}+e^xe^y-e^x=e^{xy+1}$$ at $$(1, 1)$$, then $$(A-B-C)$$ has the value equal to .....
  • $$\displaystyle \frac { 1 }{ 2 }$$
  • $$\displaystyle \frac { 1 }{ 3 }$$
  • $$1$$
  • $$2$$
If $$f(x)=\sqrt {x+2\sqrt {2x-4}}+\sqrt {x-2\sqrt {2x-4}}$$, then the value of $$10 f'(102^+)$$ is
  • $$-1$$
  • $$0$$
  • $$1$$
  • Does not exist
Let $$f(x)$$ be a polynomial function of second degree.If $$f(1)=f(-1)$$ and  $$a,b,c$$ are in A.P $$ f'(a)$$,$$f'(b)$$,$$f'(c)$$ are in 
  • G.P.
  • H.P.
  • A.G.P
  • A.P.
For the curve represented implicitly as $$ 3^x-2^y=1$$, the value of $$\displaystyle\lim_{x\rightarrow \infty }\left ( \dfrac{dy}{dx} \right )$$ is 
  • equal to $$1$$
  • equal to $$0$$
  • equal to $$\log _2{3}$$
  • non existent
If $$\displaystyle x^2+y^2=R^2$$ $$(R>0)$$ then $$\displaystyle k= \frac{{y}''}{\sqrt{(1+y'^{2})^3}}$$ where $$k$$ in terms of $$R$$ alone is equal to
  • $$-\displaystyle \frac{1}{R^2}$$
  • $$-\displaystyle \frac{1}{R}$$
  • $$\displaystyle \frac{2}{R}$$
  • $$-\displaystyle \frac{2}{R^2}$$
If $$\displaystyle \frac { \cos ^{ 4 }{ \theta  }  }{ x } +\frac { \sin ^{ 4 }{ \theta  }  }{ y } =\frac { 1 }{ x+y } $$ then $$\displaystyle \frac { dy }{ dx } =$$
  • $$xy$$
  • $$\tan ^{ 2 }{ \theta  } $$
  • $$0$$
  • $$\left( { x }^{ 2 }+{ y }^{ 2 } \right) \sec ^{ 2 }{ \theta  } $$
Two functions $$f$$ and $$g$$ have first and second derivatives at $$x=0$$ and satisfy the relations, $$f(0)=\displaystyle \frac{2}{g(0)},$$ $$f'(0)=2g'(0)=4g(0),$$ $$g''(0)=5f''(0)=6f(0)=3$$ then
  • If $$h(x)=\displaystyle \frac{f(x)}{g(x)}$$ then $$h'(0)=\displaystyle \frac{15}{4}$$
  • If $$k(x)=f(x).g(x)\sin x$$ then $$k'(0)=2$$
  • $$\displaystyle\lim _{x\rightarrow{0}}\displaystyle \frac{g'(x)}{f'(x)}=\displaystyle \frac{1}{2}$$
  • None of these
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers