MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Commerce Applied Mathematics Differentiation Quiz 14 - MCQExams.com
CBSE
Class 11 Commerce Applied Mathematics
Differentiation
Quiz 14
If $$y=x^{\left(x^{ x}\right)}$$, then $$\displaystyle\frac{dy}{dx}$$ is
Report Question
0%
$$y\left[x^{\displaystyle x}\left(\log{ex}\right)\log{x}+x^{\displaystyle x}\right]$$
0%
$$y\left[x^{\displaystyle x}\left(\log{ex}\right)\log{x}+x\right]$$
0%
$$y\left[x^{\displaystyle x}\left(\log{ex}\right)\log{x}+x^{\displaystyle x-1}\right]$$
0%
$$y\left[x^{\displaystyle x}\left(\log_e{x}\right)\log{x}+x^{\displaystyle x-1}\right]$$
Explanation
$$y={ x }^{ \left( { x }^{ x } \right) }$$
Take log on both sides
$$\log y=\log { { x }^{ \left( { x }^{ x } \right) } } $$
$$\log { y } ={ x }^{ x }\log { x } $$ .... $$(i)$$
Let $${ x }^{ x }=z$$
$$\therefore x\log { x } =\log { z } $$
Differentiate both sides with respect to $$x$$
$$\cfrac { 1 }{ z } \cfrac { dz }{ dx } =\log { x } +\cfrac { x }{ x } $$
$$\cfrac { dz }{ dx } =z\left[ 1+\log { x } \right] $$
$$\cfrac { dz }{ dx } ={ x }^{ x }\left[ \log { e } +\log { x } \right] $$
$$\cfrac { dz }{ dx } ={ x }^{ x }\log { ex } $$
Equation $$(i)\Longrightarrow \log { y } =z\log { x } $$
Differentiate both sides with respect to $$x$$
$$\cfrac { 1 }{ y } \cfrac { dy }{ dx } =\log { x\cdot \cfrac { dz }{ dx } } +\cfrac { z }{ x } $$
$$\therefore \cfrac { dy }{ dx } =y\left[ { x }^{ x }\left( \log { ex } \right) \log { x+{ x }^{ x-1 } } \right] $$
If $$y=x^{{\displaystyle(\log{x})}^{\displaystyle\log{(\log{x})}}}$$, then $$\displaystyle\frac{dy}{dx}$$ is
Report Question
0%
$$\displaystyle\frac{y}{x}((\ln{x^{\displaystyle x-1}})+2\ln{x}\ln{(\ln{x})})$$
0%
$$\displaystyle\frac{y}{x}{(\log{x})}^{\displaystyle\log{(\log{x})}}(2\log{(\log{x})}+1)$$
0%
$$\displaystyle\frac{y}{x\ln{x}}[{(ln{x})}^2+2\ln{(\ln{x})}]$$
0%
$$\displaystyle\frac{y}{x}\frac{\log{y}}{\log{x}}[2\log{(\log{x})}+1]$$
Explanation
$$y=x^{{\displaystyle(\log{x})}^{\displaystyle\log{(\log{x})}}}$$
Taking log of both sides, we get
$$\therefore\log{y}=(\log{x}){(\log{x})}^{\displaystyle\log{(\log{x})}}$$ ... (1)
Taking log of both sides, we get
$$\log{(\log{y})}=\log{(\log{x})}+\log{(\log{x})}\log{(\log{x})}$$
Differentiating w.r.t. $$x$$, we get
$$\displaystyle\frac{1}{\log{y}}.\frac{1}{y}\frac{dy}{dx}=\frac{1}{x\log{x}}+\frac{2\log{(\log{x})}}{\log{x}}\frac{1}{x}$$
$$=\displaystyle\frac{2\log{(\log{x})}+1}{x\log{x}}$$
or $$\displaystyle\frac{dy}{dx}=\frac{y}{x}.\frac{\log{y}}{\log{x}}[2\log{(\log{x})}+1]$$
Substituting the value of $$y$$ from (1), we get
$$\displaystyle\frac{dy}{dx}=\frac{y}{x}{(\log{x})}^{\displaystyle\log{(\log{x})}}(2\log{(\log{x})}+1)$$
The derivative of $$\displaystyle\frac{\sqrt{x}{(x+4)}^{\tfrac{3}{2}}}{{(4x-3)}^{\tfrac{4}{3}}}$$ w.r.t $$x$$ is
Report Question
0%
$$\displaystyle\frac{\sqrt{x}{(x+4)}^{\tfrac{3}{2}}}{{(4x-3)}^{\tfrac{4}{3}}}\left\{\frac{1}{2x}+\frac{3}{2(x+4)}-\frac{16}{3(4x-3)}\right\}$$
0%
$$\displaystyle\frac{\sqrt{x}{(x+4)}^{\tfrac{4}{3}}}{{(4x-3)}^{\tfrac{3}{2}}}\left\{\frac{1}{2x}+\frac{3}{2(x+4)}-\frac{16}{3(4x-3)}\right\}$$
0%
$$\displaystyle\frac{\sqrt{x}{(x+4)}^{\tfrac{5}{4}}}{{(4x-3)}^{\tfrac{3}{4}}}\left\{\frac{1}{2x}+\frac{3}{2(x+4)}-\frac{16}{3(4x-3)}\right\}$$
0%
None of these
Explanation
Let $$y=\displaystyle\frac{\sqrt{x}{(x+4)}^{\tfrac{3}{2}}}{{(4x-3)}^{\tfrac{4}{3}}}$$
Taking $$\log$$ of both sides, we get
$$\displaystyle\log{y}=\frac{1}{2}\log{x}+\frac{3}{2}\log{(x+4)}-\frac{4}{3}\log{(4x-3)}$$
Differentiating both sides w.r.t. $$x$$, we get
$$\displaystyle\frac{1}{y}\frac{dy}{dx}=\frac{1}{2x}+\frac{3}{2}\frac{1}{x+4}-\frac{4}{3}\times\frac{1}{4x-3}\times4$$
$$\Rightarrow \displaystyle\frac{dy}{dx}=y\left\{\frac{1}{2x}+\frac{3}{2(x+4)}-\frac{16}{3(4x-3)}\right\}$$
$$=\displaystyle\frac{\sqrt{x}{(x+4)}^{\tfrac{3}{2}}}{{(4x-3)}^{\tfrac{4}{3}}}\left\{\frac{1}{2x}+\frac{3}{2(x+4)}-\frac{16}{3(4x-3)}\right\}$$
$$f_n(x)=e^{\displaystyle f_{n-1}(x)}$$ for all $$n\epsilon N$$ and $$f_0(x)=x$$, then $$\displaystyle\frac{d}{dx}\left\{f_n(x)\right\}$$ is
Report Question
0%
$$\displaystyle f_n(x)\frac{d}{dx}\left\{f_{n-1}(x)\right\}$$
0%
$$f_n(x)f_{n-1}(x)$$
0%
$$f_n(x)f_{n-1}(x)\cdots f_2(x).f_1(x)$$
0%
none of these
Explanation
$$\displaystyle\frac{d}{dx}\left\{f_n(x)\right\}=\frac{d}{dx}\left\{e^{\displaystyle f_{n-1}(x)}\right\}$$
$$\Rightarrow e^{\displaystyle f_{n-1}(x)}\frac{d}{dx}\left\{f_{n-1}(x)\right\}=f_n(x)\frac{d}{dx}\left\{f_{n-1}(x)\right\}$$
$$\Rightarrow f_n(x).\frac{d}{dx}\left\{e^{\displaystyle f_{n-2}(x)}\right\}=f_n(x).e^{\displaystyle f_{n-2}(x)}\frac{d}{dx}\left\{f_{n-2}(x)\right\}$$
$$\Rightarrow f_n(x)f_{n-1}(x)\frac{d}{dx}\left\{f_{n-2}(x)\right\}$$
$$\cdots$$
$$\Rightarrow f_n(x)f_{n-1}(x)\cdots f_2(x)\frac{d}{dx}\left\{f_1(x)\right\}$$
$$\Rightarrow f_n(x)f_{n-1}(x)\cdots f_2(x)\frac{d}{dx}\left\{e^{\displaystyle f_0(x)}\right\}$$
$$\Rightarrow f_n(x)f_{n-1}(x)\cdots f_2(x)e^{\displaystyle f_0(x)}\frac{d}{dx}\left\{f_0(x)\right\}$$
Use $$e^{\displaystyle f_0(x)}=f_1(x)$$ and $$f_0(x)=x$$
Hence,
$$\displaystyle\frac{d}{dx}\left\{f_n(x)\right\} = f_n(x)f_{n-1}(x) ... f_2(x)f_1(x) $$
Hence, option C is correct.
If $$\displaystyle f(x)=\Pi_{n=1}^{100}(x-n)^{n(101-n)}$$, then find $$\frac {f(101)}{f'(101)}$$
Report Question
0%
$$\dfrac {1}{4950}$$
0%
$$\dfrac {102}{5050}$$
0%
$$\dfrac {101}{4950}$$
0%
$$\dfrac {1}{5050}$$
Explanation
Given, $$\displaystyle f(x)=\Pi_{n=1}^{100}(x-n)^{n(101-n)}$$
$$\Rightarrow log f(x)= \left \{n(101-n)\left \{\Pi_{n=1}^{100}log(x-n)\right \}\right \}$$
$$\left \{Here, \Pi \text {changes to} \sum \text {when taken log}\right \}$$
$$\displaystyle \Rightarrow log f(x)=\sum_{n=1}^{100} n(101-n) log (x-n)$$
Differentiating both the sides, we get
$$\displaystyle \frac {f'(x)}{f(x)}=\sum_{n=1}^{100}n(101-n)\cdot \frac {1}{x-n}$$
$$\displaystyle \therefore \frac {f'(101)}{f(101)}= \sum_{n=1}^{100}\frac {n(101-n)}{(101-n)}=\sum_{n=1}^{100}n=5050$$
$$\Rightarrow \dfrac {f(101)}{f'(101}=\dfrac {1}{5050}$$
If $$y=\sqrt{x+\sqrt{y+\sqrt{x+\sqrt{y+\dots\infty}}}}$$, then $$\displaystyle\frac{dy}{dx}=$$
Report Question
0%
$$\displaystyle\frac{y^2-x}{2y^3-2xy-1}$$
0%
$$\displaystyle\frac{x^2-x}{2x^3-2xy-1}$$
0%
$$\displaystyle\frac{x^2-x}{2x^3-2xy^2-1}$$
0%
None of these
Explanation
$$y=\sqrt{x+\sqrt{y+\sqrt{x+\sqrt{y+\dots\infty}}}}$$
$$=\sqrt{x+\sqrt{y+y}}$$
or $$y^2=x+\sqrt{2y}$$
Differentiating w.r.t. $$x$$, we get
or $$\displaystyle 2y\frac{dy}{dx}=1+\frac{1}{\sqrt{2y}}\times\frac{dy}{dx}$$
or $$\displaystyle\frac{dy}{dx}\left[2y-\frac{1}{\sqrt{2y}}\right]=1$$
or $$\displaystyle\frac{dy}{dx}=\frac{\sqrt{2y}}{2y\sqrt{2y}-1}$$
$$\displaystyle =\frac{y^2-x}{2y^3-2xy-1}$$
The value of $$f^\prime(3)$$ is
Report Question
0%
$$8$$
0%
$$10$$
0%
$$12$$
0%
$$18$$
Explanation
$$\lim_{x\rightarrow 0}\frac{f(x)}{x}=\frac{f(x+y)-f(y)-x^{2}y-xy^{2}}{x}$$
Applying L'Hospital's Rule,
$$=\lim_{x\rightarrow 0}\frac{f(x)}{x}=\frac{f'(x+y)-2xy-y^{2}}{1}=1(given)$$
$$=\frac{f'(y)-y^{2}}{1}=1(given)$$
Let $$y=3,$$
$$f'(y)-y^{2}=1$$
$$f'(3)-3^{2}=1$$
$$f'(3)=10$$
If for all $$x, y$$ the function f is defined by; $$f(x)+f(y)+f(x)\cdot f(y)=1$$ and $$f(x) > 0$$.When $$f(x)$$ is differentiable $$f'(x)= $$,
Report Question
0%
$$-1$$
0%
$$1$$
0%
$$0$$
0%
cannot be determined
Explanation
Here, $$f(x)+f(y)+f(x)\cdot f(y)=1$$ .....(i)
Substitute $$x=y=0$$, we get
$$2f(0)+\left \{f(0)\right \}^2=1\Rightarrow \left \{f(0)\right \}^2+2f(0)-1=0$$
$$f(0)=\frac {-2\pm \sqrt {4+4}}{2}=-1-\sqrt 2$$ and $$-1+\sqrt 2$$
As $$f(0) > 0\Rightarrow f(0)=\sqrt 2-1$$ [neglecting $$f(0)=-1-\sqrt 2$$ as f(0) is positive]
Again, putting $$y=x$$ is Eq, (i), $$2f(x)+\left \{f(x)\right \}^2=1$$
On differentiating w.r.t. x, $$2f'(x)+2f(x)f'(x)=0$$
$$2f'(x)\left \{1+f(x)\right \}=0\Rightarrow f'(x)=0$$ because $$f(x) > 0$$
Thus, $$f'(x)=0$$ when $$f(x) > 0$$
The function $$f(x)=e^x+x$$ being differentiable and one to one, has a differentiable inverse $$f^{-1}(x)$$, then find $$\dfrac {d}{dx} (f^{-1}(x))$$ at the point $$f(log_e 2)$$.
Report Question
0%
$$\dfrac {1}{3}$$
0%
$$1$$
0%
$$3$$
0%
$$0$$
Explanation
Let $$y=e^x+x$$
on differentiating w.r.t y,
$$1=(e^x+1)\dfrac {dx}{dy}\Rightarrow \dfrac {dx}{dy}=\dfrac {1}{1+e^x}$$
$$\therefore \left (\dfrac {dx}{dy}\right )_{x=log_e2}=\dfrac {1}{1+e^{log 2}}=\dfrac {1}{3}$$
or $$\left [\dfrac {d}{dx}(f^{-1}(x))\right ]_{x=log 2}=\dfrac {1}{3}$$
The value of $$f(9)$$ is
Report Question
0%
$$240$$
0%
$$356$$
0%
$$252$$
0%
$$730$$
Explanation
$$f(0)=0$$
So, $$\displaystyle\lim _{x\rightarrow 0}{\frac{f(x)}{x}}=f^\prime(0)=1$$ (Using L'Hospital's rule)
$$f(x+y)=f(x)+f(y)+x^2y+xy^2$$
Differentiating w.r.t. $$x$$, keeping $$y$$ constant, we get
$$f^\prime(x+y)=f^\prime(x)+2xy+x^2$$
Substitute $$x=0$$. Then
$$f^\prime(y)=y^2+1$$ or $$f^\prime(x)=x^2+1$$
$$\displaystyle\therefore f(x)=\frac{x^3}{3}+x+c$$
$$f(0)=0=c$$
$$\displaystyle\therefore f(x)=\frac{x^3}{3}+x$$
$$f^\prime(3)=10$$
and $$f(9)=243+9=252$$
Given, $$f(x)=-\displaystyle \frac {x^3}{3}+x^2 \sin 1.5 a-x \sin a\cdot \sin 2a-5 arc \sin (a^2-8a+17)$$, then
Report Question
0%
$$f(x)$$ is not defined at $$x=sin 8$$
0%
$$f' (sin 8) > 0$$
0%
$$f' (x)$$ is not defined at $$x=sin 8$$
0%
$$f'(sin 8) < 0$$
Explanation
$$f(x)=-\displaystyle \frac {x^3}{3}+x^2 \sin 1.5 a-x \sin a\cdot \sin 2a-5 arc \sin (a^2-8a+17)$$
$$f(x)=\displaystyle \frac { -{ x }^{ 3 } }{ 3 } +{ x }^{ 2 }\sin { 6 } -x\sin { 4\sin { 8 } -5\sin ^{ -1 }{ \left( { \left( a-4 \right) }^{ 2 }+1 \right) } } $$
$$f'(x)=-{ x }^{ 2 }+2x\sin { 6-\sin { 4.\sin { 8 } } }$$ .......( $$a=4 $$ considering the domain of inverse sine function)
$$f'\left( \sin { \quad 8 } \right) =-\sin ^{ 2 }{ 8 } +2\sin { 6 } \sin { 8 } -\sin { 4 } \sin { 8 } $$
$$=\sin { 8\left( -\sin { 8+2\sin { 6-\sin { 4 } } } \right) } $$
$$=-\sin { 8 } \left( \sin { 8 } +\sin { 4-2\sin { 6 } } \right) $$
$$=-\sin { 8\left( 2\sin { 6\cos { 2-2\sin { 6 } } } \right) } $$
$$=2\sin { 8 } \sin { 6\left( 1-\cos { 2 } \right) } $$
Now,
$$sin 8 > 0 $$ (Since,$$ 2\pi < 8 < 3\pi $$ )
$$ sin 6 < 0 $$ (Since, $$\pi < 6 < 2\pi$$)
$$(1-\cos 2) > 0$$
Hence, $$f'(\sin { 8 } )<0$$
Let f be a twice differentiable such that $$f''(x)=-f(x)$$ and $$f'(x)=g(x)$$. If $$h(x)=\left \{f(x)\right \}^2+\left \{g(x)\right \}^2$$, where $$h(5)=11$$. Find $$h(10)$$
Report Question
0%
$$1$$
0%
$$10$$
0%
$$11$$
0%
$$100$$
Explanation
$$h'(x) = 2f(x) \times f'(x) + 2 g(x) g'(x)$$
$$g(x) = f'(x)$$
$$g'(x) = f^{\prime \prime} (x) = -f(x)$$
$$h'(x) = 2 f(x) f'(x) - 2 g(x) f(x)$$
$$h'(x) = 2 f(x) g(x) - 2 g(x) f(x)$$
$$= 0$$
$$\therefore h'(x)= 0$$
$$\Rightarrow \dfrac{d}{dx} h(x) = 0$$
$$\Rightarrow \displaystyle \int d \ h(x) = \int 0 \times dx$$
$$\Rightarrow h(x) = 0 + c$$
$$\Rightarrow h(x) = c$$
now, $$h(5) = 11$$
$$\therefore h(10) = h(5) = 11$$
Derivative of $${(x\cos{x})}^x$$ with respect to $$x$$ is
Report Question
0%
$$\displaystyle {(x\cos{x})}^x\left[(\log{x}+1)-\left\{\log{\cos{x}}+\frac{x}{\cos{x}}.(\sin{x})\right\}\right]$$
0%
$$\displaystyle {(x\cos{x})}^x\left[(\log{x}+1)+\left\{\log{\cos{x}}+\frac{x}{\cos{x}}.(-\sin{x})\right\}\right]$$
0%
$$\displaystyle {(x\cos{x})}^x\left[(\log{x}+1)+\left\{\log{\sin{x}}+\frac{x}{\cos{x}}.(\cos{x})\right\}\right]$$
0%
None of these
Explanation
Let $$y={(x\cos{x})}^x$$.
Taking logarithm on both sides, we get
$$\log{y}=\log{{(x\cos{x})}^x}$$
$$=x\log{(x\cos{x})}$$
$$=x\log{x}+x\log{\cos{x}}$$
Differentiating both sides with respect to $$x$$, we get
$$\displaystyle\frac{1}{y}\frac{dy}{dx}=\frac{d}{dx}(x\log{x})+\frac{d}{dx}(x\log{\cos{x}})$$
$$\displaystyle \frac { dy }{ dx } =y\left[ \left( 1+\log { x } \right) +\left( \log { \cos { x\quad +\displaystyle \frac { x }{ \cos { x } } \displaystyle \frac { d }{ dx } \left( \cos { x } \right) } } \right) \right] $$
$$\therefore \displaystyle\frac{dy}{dx}={(x\cos{x})}^x\left[(\log{x}+1)+\left\{\log{\cos{x}}+\frac{x}{\cos{x}}.(-\sin{x})\right\}\right]$$
Find the derivative of $$|x|+a_0x^n+a_1x^{n-1}+a_2x^{n-2}+....+a_{n-1}x+a_n$$
Report Question
0%
$$\frac {x}{|x|}+na_0x^{n-1}+(n-1)a_1x^{n-2}+(n-2)a_2x^{n-3}+....+a_{n-1}$$
0%
$$1+na_0x^{n-1}+(n-1)a_1x^{n-2}+(n-2)a_2x^{n-3}+....+a_{n-1}$$
0%
$$\frac {x}{|x|}+na_0x^{n-1}+(n-1)a_1x^{n-2}+(n-2)a_2x^{n-3}+....+a_{n}$$
0%
None of these
Explanation
We can write $$|x|$$ as $$\sqrt{x^{2}}$$
so, $$\frac{\mathrm{d} (\sqrt{x^{2}})}{\mathrm{d} x}=\frac{2x}{2\sqrt{x^{2}}}=\frac{x}{|x|}$$
and, $$\frac{\mathrm{d} (a_{0}x^{n})}{\mathrm{d} x}=na_{0}x^{n-1}$$
Similarly, $$\frac{\mathrm{d} (a_{n-1}x)}{\mathrm{d} x}=a_{n-1}$$ and $$\frac{\mathrm{d} (a_{n})}{\mathrm{d} x}=0$$
Hence, option A is the correct option.
Equation $$x^n-1=0, n > 1, n\epsilon N$$, has roots $$1, a_2, ....a_n$$.
The value of $$\displaystyle \sum_{r=2}^{n}\frac {1}{2-a_r}$$, is
Report Question
0%
$$\displaystyle \frac {2^{n-1}(n-2)+1}{2^n-1}$$
0%
$$\displaystyle \frac {2^{n}(n-2)+1}{2^n-1}$$
0%
$$\displaystyle \frac {2^{n-1}(n-1)-1}{2^n-1}$$
0%
none of these
Explanation
Equation $$x^n-1=0, n > 1, n\epsilon N$$, has roots $$1, a_2, \dots a_n$$.
We have to find the value of $$\displaystyle \sum_{r=2}^{n}\frac {1}{2-a_r}$$
$${ x }^{ n }-1=\left( x-1 \right) \left( x-a_{ 2 } \right)\dots\left( x-{ a }_{ n } \right)\rightarrow$${i}
Taking log on both the sides
$$\log { \left( { x }^{ n }-1 \right) =\log { \left( x-1 \right)} +\log { \left( x-{ a }_{ 2 } \right) +\dots+ } \log { \left( x-{ a }_{ n } \right) } } $$
Differentiating both the sides, we get
$$\displaystyle \frac { n{ x }^{ n-1 } }{ { x }^{ n }-1 } =\displaystyle \frac { 1 }{ x-1 } +\displaystyle \frac { 1 }{ x-{ a }_{ 2 } } +\dots+\displaystyle \frac { 1 }{ x-{ a }_{ n } } \rightarrow$${ii}
Putting $$x=2$$ in eqn {ii}
$$\displaystyle \frac { n{ 2 }^{ n-1 } }{ { 2 }^{ n }-1 } =1+\displaystyle \frac { 1 }{ 2-{ a }_{ 2 } } +\dots+\displaystyle \frac { 1 }{ 2-{ a }_{ n } } $$
$$\displaystyle \frac { 1 }{ 2-{ a }_{ 2 } } +\dots+\displaystyle \frac { 1 }{ 2-{ a }_{ n } } =\displaystyle \frac { n{ 2 }^{ n-1 } }{ { 2 }^{ n }-1 } -1=\displaystyle \frac { n{ 2 }^{ n-1 }-{ 2 }^{ n }+1 }{ { 2 }^{ n }-1 } $$
$$\displaystyle \frac { 1 }{ 2-{ a }_{ 2 } } +\dots+\displaystyle \frac { 1 }{ 2-{ a }_{ n } } =\displaystyle \frac { { 2 }^{ n-1 }\left( n-2 \right) +1 }{ { 2 }^{ n }-1 } $$
Let $$f(x) = \sqrt{x - 1} + \sqrt{x + 24 - 10\sqrt{x - 1}}, 1 \le x \le 26$$ be a real valued function, then $$f'(x)$$ for $$1 < x < 26$$ is
Report Question
0%
$$0$$
0%
$$\displaystyle\frac{1}{\sqrt{x - 1}}$$
0%
$$2\sqrt{x - 1}$$
0%
$$1$$
Explanation
We have,
$$f(x) = \sqrt{x - 1} + \sqrt{x + 24 - 10\sqrt{x - 1}}, 1 < x < 26$$
Rearrange the terms so as to get $${ \left( a-b \right) }^{ 2 }=a^2-2ab+b^2$$
$$f(x) = \sqrt{x - 1} + \sqrt{(x - 1) + 25 - 10\sqrt{x - 1}}$$
$$\therefore f(x) = \sqrt{x - 1} + \sqrt{(\sqrt {x - 1} - 5)^2}$$
$$f(x) = \sqrt{x - 1} + \left|\sqrt{x - 1} - 5\right|$$
$$
\therefore f(x) = \sqrt{x - 1} - \left(\sqrt{x - 1} - 5\right) \quad\quad
[\because\sqrt{x - 1} - 5 < 0 \mbox{ for } 1 < x < 26]$$
Now, differentiating w.r. to $$x$$, we get
$$\therefore f'(x) = 0$$ for all $$x \in (1, 26)$$
$$f:R\rightarrow R$$ and $$f(x)=2ax+sin 2x$$, then the set of values of a for which $$f(x)$$ is one-one and onto is
Report Question
0%
$$a\in \left (-\dfrac {1}{2}, \dfrac {1}{2}\right )$$
0%
$$a\in (-1, 1)$$
0%
$$a\in R-\left (-\dfrac {1}{2}, \dfrac {1}{2}\right )$$
0%
$$a\in R-(-1, 1)$$
Explanation
$$f(x)=2ax+\sin 2x$$
Now
$$f'(x)=2a+2\cos 2x$$
$$=2(a+\cos 2x)$$
Now $$1\leq \cos 2x\leq -1$$
Hence if $$a\in R-(-1,1)$$, then we won't get any critical point. Else we get critical points.
Hence $$f'(x)$$ does not change signs if $$a\in R-(-1,1)$$.
Therefore $$f(x)$$ is a one one function in $$R-(-1,1)$$.
If $$y$$ and $$z$$ are the functions of $$x$$ and if $${ y }^{ 2 }+{ z }^{ 2 }={ \lambda }^{ 2 }$$, then $$\displaystyle y\frac { d }{ dx } \left( \frac { y }{ \lambda } \right) +\frac { d }{ dx } \left( \frac { { z }^{ 2 } }{ \lambda } \right) $$ is equal to
Report Question
0%
$$\displaystyle \frac { z }{ \lambda } \frac { dz }{ dx } $$
0%
$$\displaystyle \frac { z }{ \lambda } \frac { dx }{ dz } $$
0%
$$\displaystyle \frac { \lambda }{ z } \frac { dz }{ dx } $$
0%
None of these
Explanation
We have, $$\lambda =\sqrt { { y }^{ 2 }+{ z }^{ 2 } } $$
Now, $$\displaystyle y\dfrac { d }{ dx } \left( \dfrac { y }{ \lambda } \right) +\dfrac { d }{ dx } \left( \dfrac { { z }^{ 2 } }{ \lambda } \right) $$
$$\displaystyle =y\dfrac { d }{ dx } \left( \dfrac { y }{ \sqrt { { y }^{ 2 }+{ z }^{ 2 } } } \right) +\dfrac { d }{ dx } \left( \dfrac { { z }^{ 2 } }{ \sqrt { { y }^{ 2 }+{ z }^{ 2 } } } \right) $$
$$\displaystyle =y\left[ \dfrac { \sqrt { { y }^{ 2 }+{ z }^{ 2 } } \dfrac { d }{ dx } -\dfrac { y\left( y\dfrac { dy }{ dx } +z\dfrac { dz }{ dx } \right) }{ \sqrt { { y }^{ 2 }+{ z }^{ 2 } } } }{ { y }^{ 2 }+{ z }^{ 2 } } \right] +\left[ \dfrac { \left( \sqrt { { y }^{ 2 }+{ z }^{ 2 } } \right) 2z\dfrac { dz }{ dx } -\dfrac { { z }^{ 2 }\left( y\dfrac { dy }{ dx } +z\dfrac { dz }{ dx } \right) }{ \sqrt { { y }^{ 2 }+{ z }^{ 2 } } } }{ { y }^{ 2 }+{ z }^{ 2 } } \right] $$
$$\displaystyle =\dfrac { 1 }{ { \left( { y }^{ 2 }+{ z }^{ 2 } \right) }^{ \dfrac { 3 }{ 2 } } }\times$$
$$\displaystyle \left[ y\dfrac { dy }{ dx } \left( { y }^{ 2 }+{ z }^{ 2 } \right) -{ y }^{ 2 }\left( y\dfrac { dy }{ dx } +z\dfrac { dz }{ dx } \right) +2z\dfrac { dz }{ dx } \left( { y }^{ 2 }+{ z }^{ 2 } \right) -{ z }^{ 2 }\left( y\dfrac { dy }{ dx } +z\dfrac { dz }{ dx } \right) \right] $$
$$\displaystyle =\dfrac { 1 }{ { \left( { y }^{ 2 }+{ z }^{ 2 } \right) }^{ \dfrac { 3 }{ 2 } } } \left[ z\left( { y }^{ 2 }+{ z }^{ 2 } \right) \dfrac { dz }{ dx } \right] $$
$$\displaystyle =\dfrac { z }{ \sqrt { { y }^{ 2 }+{ z }^{ 2 } } } \dfrac { dz }{ dx } =\dfrac { z }{ \lambda } \dfrac { dz }{ dx } .$$
Let $$h(x)$$ be differentiable for all $$x$$ and let $$f(x)=(kx+e^x)h(x)$$ where $$k$$ is some constant. If $$h(0)=5, h'(0)=-2$$ and $$f'(0)=18$$, then the value of $$k$$ is equal to
Report Question
0%
$$3$$
0%
$$4$$
0%
$$5$$
0%
$$1$$
Explanation
$$f(x)=\left( kx+{ e }^{ x } \right) .h(x)$$
$$h(0)=5,h'(0)=-2,f'(0)=18$$
$$f'(x)=\displaystyle \dfrac { d }{ dx } \left[ \left( kx+{ e }^{ x } \right) h(x) \right] $$
$$\Rightarrow f'(x)=\left( kx+{ e }^{ x } \right) \displaystyle \frac { d }{ dx } h(x)+h(x)\frac { d }{ dx } \left( kx+{ e }^{ x } \right) $$
$$\Rightarrow f'(x)=\left( kx+{ e }^{ x } \right) h'(x)+h(x)\left( k+{ e }^{ x } \right) $$
put $$x=0$$, we get
$$f'(0)=\left( 0+1 \right) h'(0)+h(0)\left( k+{ e }^{ 0 } \right) $$
$$f'(0)=h'(0)+h(0)\left( k+1 \right) $$
$$18=-2+5\left( k+1 \right) $$
$$20=5\left( k+1 \right) $$
$$4=k+1$$
$$k=3$$
Let $$f$$ be a differentiable function satisfying $$f(x) + f(y) + f(z) + f(x)f(y)f(z) = 14$$ for all $$x,\space y,\space z \in R$$
Then,
Report Question
0%
$$f'(x) < 0$$ for all $$x \in R$$
0%
$$f'(x) = 0$$ for all $$x \in R$$
0%
$$f'(x) > 0$$ for all $$x \in R$$
0%
none of these
Explanation
We have,
$$f(x) + f(y) + f(z) + f(x)f(y)f(z) = 14$$ for all $$x,\space y,\space z \in R \quad\quad ...(i)$$
Putting $$x = y = z = 0$$, we get,
$$3f(0) + \left\{f(0)\right\}^3 = 14$$
$$\left\{f(0)\right\}^3 + 3f(0) - 14 = 0$$
$$f(0) = 2.$$
Now, putting $$y = z = x$$ in $$(i)$$, we get
$$3f'(x) + 3\left\{f(x)\right\}^2f'(x) = 0 \quad$$ for all $$x \in R$$
$$\left\{\left\{f(x)\right\}^2 + 1\right\}f'(x) = 0 \quad$$ for all $$x \in R$$
$$ f'(x) = 0 \quad$$ for all $$x \in R$$
Let $$f(x)=x^{2}+xg^{'}(1)+g^{"}(2)$$ and $$g(x)=f(1).x^{2}+xf^{'}(x)+f^"(x)$$ then
Report Question
0%
$$f^{'}(1)+f^{'}(2)=0$$
0%
$$g^{'}(2)=g^{'}(1)$$
0%
$$g^{''}(2)+f^{''}(3)=6$$
0%
none of these
Explanation
Let $$g'\left( 1 \right) =a$$ and $$g'\left( 2 \right) =b$$ --------(1)
Then
$$f\left( x \right) ={ x }^{ 2 }+ax+b,f\left( 1 \right) =1+a+b\\ f'\left( x \right) =2x+a,f''\left( x \right) =2\\ \therefore g\left( x \right) =\left( 1+a+b \right) { x }^{ 2 }+\left( 2x+a \right) x+2\\ ={ x }^{ 2 }\left( 3+a+b \right) +ax+2\\ \Rightarrow g'\left( x \right) =2x\left( 3+a+b \right) +a$$
Hence
$$g'\left( 1 \right) =2\left( 3+a+b \right) +a$$ --------(2)
$$g'\left( 2 \right) =4\left( 3+a+b \right) +a$$ --------(3)
From (1),(2) and (3)
$$a=2\left( 3+a+b \right) +a$$ and $$b=2\left( 3+a+b \right) $$
$$\Rightarrow 3+a+b=0$$ and $$b+2a+6=0$$
$$\therefore f\left( x \right) ={ x }^{ 2 }-3x$$ and $$g\left( x \right) =-3x+2$$
$$\therefore f'\left( 1 \right) +f'\left( 2 \right) =0\\ \\ g''\left( 2 \right) +f''\left( 3 \right) =6$$
If $$\sqrt {y+x}+\sqrt {y-x}=c$$ (where $$c\neq 0$$), then $$\displaystyle \frac {dy}{dx}$$ has the value equal to
Report Question
0%
$$\displaystyle \frac {2x}{c^2}$$
0%
$$\displaystyle \frac {x}{y+\sqrt {y^2-x^2}}$$
0%
$$\displaystyle \frac {y-\sqrt {y^2-x^2}}{x}$$
0%
$$\displaystyle \frac {c^2}{2y}$$
Explanation
$$\sqrt {y+x}+\sqrt {y-x}=c$$
Squaring both sides, we get
$${ \left( \sqrt { y+x } +\sqrt { y-x } \right) }^{ 2 }={ c }^{ 2 }$$
$$2y+2\sqrt { { y }^{ 2 }-{ x }^{ 2 } } ={ c }^{ 2 }$$
$$y+\sqrt { { y }^{ 2 }-{ x }^{ 2 } } =\displaystyle \frac { { c }^{ 2 } }{ 2 } $$...........(1)
Differentiating bothe the sides, we get
$$\displaystyle \frac { dy }{ dx } +\displaystyle \frac { 1 }{ 2\sqrt { { y }^{ 2 }-{ x }^{ 2 } } } \left( 2y\displaystyle \frac { dy }{ dx } -2x \right) =0$$
$$\displaystyle \frac { dy }{ dx } +\displaystyle \frac { y }{ \sqrt { { y }^{ 2 }-{ x }^{ 2 } } } \displaystyle \frac { dy }{ dx } -\displaystyle \frac { x }{ \sqrt { { y }^{ 2 }-{ x }^{ 2 } } } =0$$
$$\displaystyle \frac { dy }{ dx } \left( 1+\displaystyle \frac { y }{ \sqrt { { y }^{ 2 }-{ x }^{ 2 } } } \right) =\displaystyle \frac { x }{ \sqrt { { y }^{ 2 }-{ x }^{ 2 } } } $$
$$\displaystyle \frac { dy }{ dx } =\displaystyle \frac { x }{ y+\sqrt { { y }^{ 2 }-{ x }^{ 2 } } } $$..................Option (b)
On rationalizing we get,
$$\displaystyle \frac { dy }{ dx } =\displaystyle \frac { x\left( y-\sqrt { { y }^{ 2 }-{ x }^{ 2 } } \right) }{ { x }^{ 2 } } $$
$$=\displaystyle \frac { y-\sqrt { { y }^{ 2 }-{ x }^{ 2 } } }{ x } $$........Option (c)
Putting $$y+\sqrt { { y }^{ 2 }-{ x }^{ 2 } } ={ c }^{ 2 }$$. we get
$$\displaystyle \frac { dy }{ dx } =\displaystyle \frac { x }{ \displaystyle \frac { { c }^{ 2 } }{ 2 } } =\displaystyle \frac { 2x }{ { c }^{ 2 } } $$......... Option (a)
Equation $$x^n-1=0, n > 1, n\epsilon N$$, has roots $$1, a_2, ....a_n$$.
The value of $$\displaystyle \sum_{r=2}^{n}\frac {1}{1-a_r}$$, is
Report Question
0%
$$\displaystyle \frac {n}{4}$$
0%
$$\displaystyle \frac {n(n-1)}{2}$$
0%
$$\displaystyle \frac {n-1}{2}$$
0%
none of these
Explanation
Equation $$x^n-1=0, n > 1, n\epsilon N$$, has roots $$1, a_1, a_2, \dots a_n$$
We have to find value of $$\displaystyle \sum_{r=2}^{n}\frac {1}{1-a_r}$$
$${ x }^{ n }-1=\left( x-1 \right) \left( x-a_{ 2 } \right)\dots\left( x-{ a }_{ n } \right)\rightarrow$${i}
Taking log on both the sides
$$\log { \left( { x }^{ n }-1 \right) =\log { \left( x-1 \right) + } \log { \left( x-{ a }_{ 2 } \right) +\dots+ }
\log { \left( x-{ a }_{ n } \right) } } $$
Differentiating both the sides, we get
$$\displaystyle \frac { n{ x }^{ n-1 } }{ { x }^{ n }-1 } =\displaystyle \frac { 1 }{ x-1 } +\displaystyle \frac { 1 }{ x-{ a }_{ 2 } } +\cdots+\displaystyle \frac { 1 }{ x-{ a }_{ n } }\rightarrow$${ii}
$$\displaystyle \frac { n{ x }^{ n-1 } }{ { x }^{ n }-1 } -\displaystyle \frac { 1 }{ x-1 } =\displaystyle \frac { 1 }{ x-{ a }_{ 2 } } +\dots\displaystyle \frac { 1 }{ x-{ a }_{ n } } $$
$$\because (x^n-1)=(x-1)(1+x+x^2+x^3+x^4+\dots+x^{n-1})$$
$$\therefore \displaystyle \frac { n{ x }^{ n-1 }-1\left( 1+x+{ x }^{ 2 }+\dots+{ x }^{ n-1 } \right) }{ { x }^{ n}-1 } =\displaystyle \frac { 1 }{ x-{ a }_{ 2 } } +\dots\displaystyle \frac { 1 }{ x-{ a }_{ n } } $$
$$\displaystyle\lim _{ x\rightarrow 1 }{ \left( \displaystyle \frac { n{ x }^{ n-1 }-1\left( 1+x+{ x }^{ 2 }+\dots+{ x }^{ n-1 } \right) }{ { x }^{ n}-1 } \right) } =\lim _{ x\rightarrow 1 }{ \left(\displaystyle \frac { 1 }{ x-{ a }_{ 2 } } +\dots\displaystyle \frac { 1 }{ x-{ a }_{ n } } \right) } $$
Applying L'Hospital's rule on L.H.S
$$\displaystyle\lim _{ x\rightarrow 1 }{\displaystyle \frac { n\left( n-1 \right) { x }^{ n-2 }-\left\{ 1+2x+\cdots+\left( n-1 \right) { x }^{ n-2 } \right\} }{ n{ x }^{ n-1 } } =\displaystyle \frac { 1 }{ 1-{ a }_{ 2 } } +\dots\displaystyle \frac { 1 }{ 1-{ a }_{ n } } }$$
$$\Rightarrow \displaystyle \frac { n\left( n-1 \right) -\left[ 1+2+\dots+\left( n-1 \right) \right] }{ n } =\displaystyle \frac { 1 }{ 1-{ a }_{ 2 } } +\dots\displaystyle \frac { 1 }{ 1-{ a }_{ n } } $$
$$\therefore\displaystyle \frac { 1 }{ 1-{ a }_{ 2 } } +\dots\displaystyle \frac { 1 }{ 1-{ a }_{ n } } =\displaystyle \frac { n-1 }{ 2 } $$
Suppose, $$A=\displaystyle \frac {dy}{dx}$$ of $$x^2+y^2=4$$ at $$(\sqrt 2, \sqrt 2), B=\displaystyle \frac {dy}{dx}$$ of $$sin y+sin x=sin x\cdot sin y$$ at $$(\pi, \pi)$$ and $$C=\displaystyle \frac {dy}{dx}$$ of $$2e^{xy}+e^xe^y-e^x=e^{xy+1}$$ at $$(1, 1)$$, then $$(A-B-C)$$ has the value equal to .....
Report Question
0%
$$\displaystyle \frac { 1 }{ 2 }$$
0%
$$\displaystyle \frac { 1 }{ 3 }$$
0%
$$1$$
0%
$$2$$
Explanation
$$A: \displaystyle \frac {d}{dx} (x^2+y^2=4)$$ at $$(\sqrt 2, \sqrt 2))$$
$$2x+2y\displaystyle \frac { dy }{ dx } =0$$
$$\displaystyle \frac { dy }{ dx } =-\displaystyle \frac { x }{ y } =-\displaystyle \frac { \sqrt { 2 } }{ \sqrt { 2 } } =-1$$
$$ B: \displaystyle \frac {d}{dx}(\sin y+\sin x=\sin x\cdot \sin y)$$ at $$(\pi, \pi)$$
$$\cos { y\displaystyle \frac { dy }{ dx } } +\cos { x } =\sin { x } \cos { y\displaystyle \frac { dy }{ dx } +\sin { y } \cos { x } } $$
$$\displaystyle \frac { dy }{ dx } \left( \cos { y } -\sin { x } \cos { y } \right) =\sin { y\cos { x-\cos { x } } } $$
$$\displaystyle \frac { dy }{ dx } =\displaystyle \frac { \cos { x\left( \sin { y-1 } \right) } }{ \cos { y\left( 1-\sin { x } \right) } } $$
$$B=\displaystyle \frac { -1\left( 0-1 \right) }{ -1\left( 1-0 \right) } =-1$$
$$C: \displaystyle \frac {d}{dx}(2e^{xy}+e^xe^y-e^x=e^{xy+1})$$ at $$(1, 1)$$
$$\left[ 2{ e }^{ xy }\left( x\displaystyle \frac { dy }{ dx } +y \right) \right] +{ e }^{ x }{ e }^{ y }\displaystyle \frac { dy }{ dx } +{ e }^{ y }{ e }^{ x }-{ e }^{ x }={ e }^{ xy+1 }\left( x\displaystyle \frac { dy }{ dx } +y \right) $$
$$\displaystyle \frac { dy }{ dx } =\displaystyle \frac { y{ e }^{ xy+1 }-2y{ e }^{ xy }-{ e }^{ x+y }+{ e }^{ x } }{ 2x{ e }^{ xy }+{ e }^{ x+y }-x{ e }^{ xy+1 } } $$.......... since $${ e }^{ x }{ e }^{ y }={ e }^{ x+y }$$
$$C=\displaystyle \frac { { e }^{ 2 }-2{ e }^{ 1 }-{ e }^{ 2 }+{ e }^{ 1 } }{ 2{ e }^{ 1 }+{ e }^{ 2 }-{ e }^{ 2 } } $$
$$=\displaystyle \frac { -{ e }^{ 1 } }{ 2{ e }^{ 1 } } =-\displaystyle \frac { 1 }{ 2 } $$
Therefore $$A-B-C=\displaystyle \frac { 1 }{ 2 }$$
If $$f(x)=\sqrt {x+2\sqrt {2x-4}}+\sqrt {x-2\sqrt {2x-4}}$$, then the value of $$10 f'(102^+)$$ is
Report Question
0%
$$-1$$
0%
$$0$$
0%
$$1$$
0%
Does not exist
Explanation
$$f(x)=\sqrt {x+2\sqrt {2x-4}}+\sqrt {x-2\sqrt {2x-4}}$$
$$f(x)=\sqrt { { \left( \sqrt { x-2 } +\sqrt { 2 } \right) }^{ 2 } } +\sqrt { { \left( \sqrt { x-2 } -\sqrt { 2 } \right) }^{ 2 } } $$
$$f(x)=\left| \sqrt { x-2 } +\sqrt { 2 } \right| +\left| \sqrt { x-2 } -\sqrt { 2 } \right| \\ $$
For $$\sqrt { x-2 }$$ to exist, $$x\ge 2$$
Also $$\sqrt { x-1 } +\sqrt { 2 } >0$$.............(always true)
But $$\sqrt { x-1 } -\sqrt { 2 } \ge 0\quad $$ only if $$x\ge 4$$
$$<0$$ only if $$x<4$$
Now $$f(x)$$ becomes
$$f(x)=\sqrt { x-2 } +\sqrt { 2 } -\sqrt { x-2 } +\sqrt { 2 } $$ for $$2\le x<4$$
$$f(x)=\sqrt { x-2 } +\sqrt { 2 } +\sqrt { x-2 } -\sqrt { 2 } $$ for $$ x\ge 4$$
$$f(x)=2\sqrt { 2, } $$ for $$2\le x<4$$
$$f(x)=2\sqrt { x-2 } $$ for $$4\le x<\infty $$
f is continous $$\left[ 2,4 \right] \cup \left[ 4,\infty \right] $$
$$f'(x)=0$$ for $$2\le x<4$$
$$f'(x)=\displaystyle \frac { 1 }{ \sqrt { x-2 } } $$ for $$\le x<\infty $$
$$f'({ 102 }^{ + })=\displaystyle \frac { 1 }{ \sqrt { 102-2 } } =\displaystyle \frac { 1 }{ 10 } \\ 10f'({ 102 }^{ + })=1$$
Let $$f(x)$$ be a polynomial function of second degree.If $$f(1)=f(-1)$$ and $$a,b,c$$ are in A.P $$ f'(a)$$,$$f'(b)$$,$$f'(c)$$ are in
Report Question
0%
G.P.
0%
H.P.
0%
A.G.P
0%
A.P.
Explanation
Let $$f\left( x \right) ={ px }^{ 2 }+qx+r$$
Differentiatin g w.r. to $$x$$, we get
$$f^{ ' }\left( x \right) =2px+q$$
Now,
$$f\left( -1 \right) =f\left( 1 \right) $$
$$\therefore p-q+r=p+q+r$$
$$\therefore q=0$$
$$\therefore f^{ ' }\left( x \right) =2px$$
$$f^{ ' }\left( a \right) =2pa.f^{ ' }\left( b \right) =2pb,f^{ ' }\left( c \right) =2pc$$
Since $$a,b,c $$ are in $$A.P.$$, therefore
$$2b=a+c$$
$$4pb=2pa+2pc$$
$$2f^{ ' }\left( b \right) =f^{ ' }\left( a \right) +f^{ ' }\left( c \right) $$
$$\therefore f^{ ' }\left( a \right) ,f^{ ' }\left( b \right) ,f^{ ' }\left( c \right) $$ are in A.P
For the curve represented implicitly as $$ 3^x-2^y=1$$, the value of $$\displaystyle\lim_{x\rightarrow \infty }\left ( \dfrac{dy}{dx} \right )$$ is
Report Question
0%
equal to $$1$$
0%
equal to $$0$$
0%
equal to $$\log _2{3}$$
0%
non existent
Explanation
$$\displaystyle y=\frac{log(3^{x}-1)}{log2}$$
$$\displaystyle y'=\frac{3^{x}log3}{(3^{x}-1)log2}$$
At $$x\rightarrow \infty, \displaystyle\frac{3^{x}}{3^{x}-1} \rightarrow 1$$
So, $$\displaystyle y'=\frac{log3}{log2} $$
Hence, option C is the correct option.
If $$\displaystyle x^2+y^2=R^2$$ $$(R>0)$$ then $$\displaystyle k= \frac{{y}''}{\sqrt{(1+y'^{2})^3}}$$ where $$k$$ in terms of $$R$$ alone is equal to
Report Question
0%
$$-\displaystyle \frac{1}{R^2}$$
0%
$$-\displaystyle \frac{1}{R}$$
0%
$$\displaystyle \frac{2}{R}$$
0%
$$-\displaystyle \frac{2}{R^2}$$
Explanation
$$\displaystyle x^{2}+y^{2}=R^{2}$$
$$\displaystyle x=-yy' => y'=\frac{-x}{y}$$
$$\displaystyle y''=\frac{-y+xy'}{y^{2}}=\frac{-y^{2}-x^{2}}{y^{3}}=-\frac{R^{2}}{y^{3}}$$
$$\displaystyle k=\frac{y''}{\sqrt{(1+y'^{2})^{3}}}=\frac{-\frac{R^{2}}{y^{3}}}{\sqrt{(1+\frac{x^{2}}{y^{2}})^{3}}}$$
$$\displaystyle =\frac{-\frac{R^{2}}{y^{3}}}{\sqrt{(\frac{R^{2}}{y^{2}})^{3}}}$$
$$\displaystyle =-\frac{R^{2}}{R^{3}}=\frac{-1}{R}$$
If $$\displaystyle \frac { \cos ^{ 4 }{ \theta } }{ x } +\frac { \sin ^{ 4 }{ \theta } }{ y } =\frac { 1 }{ x+y } $$ then $$\displaystyle \frac { dy }{ dx } =$$
Report Question
0%
$$xy$$
0%
$$\tan ^{ 2 }{ \theta } $$
0%
$$0$$
0%
$$\left( { x }^{ 2 }+{ y }^{ 2 } \right) \sec ^{ 2 }{ \theta } $$
Explanation
Given $$\displaystyle \dfrac { \cos ^{ 4 }{ \theta } }{ x } +\dfrac { \sin ^{ 4 }{ \theta } }{ y } =\dfrac { 1 }{ x+y } $$
$$\displaystyle \Rightarrow \left( x+y \right) \left( \dfrac { \cos ^{ 4 }{ \theta } }{ x } +\dfrac { \sin ^{ 4 }{ \theta } }{ y } \right) ={ \left( \cos ^{ 2 }{ \theta } +\sin ^{ 2 }{ \theta } \right) }^{ 2 }$$ $$ { \left( \because \cos ^{ 2 }{ \theta } +\sin ^{ 2 }{ \theta } =1 \right) }$$
$$\displaystyle \therefore \dfrac { y }{ x } \cos ^{ 4 }{ \theta } +\dfrac { x }{ y } \sin ^{ 4 }{ \theta } -2\sin ^{ 2 }{ \theta } \cos ^{ 2 }{ \theta } =0$$
$$\displaystyle \Rightarrow { \left( \sqrt { \dfrac { y }{ x } } \cos ^{ 2 }{ \theta } -\sqrt { \dfrac { x }{ y } } \sin ^{ 2 }{ \theta } \right) }^{ 2 }=0$$
$$\displaystyle \therefore \tan ^{ 2 }{ \theta } =\dfrac { y }{ x } \Rightarrow y=x\tan ^{ 2 }{ \theta } $$
$$\displaystyle \Rightarrow \dfrac { dy }{ dx } =\tan ^{ 2 }{ \theta } $$
Two functions $$f$$ and $$g$$ have first and second derivatives at $$x=0$$ and satisfy the relations, $$f(0)=\displaystyle \frac{2}{g(0)},$$ $$f'(0)=2g'(0)=4g(0),$$ $$g''(0)=5f''(0)=6f(0)=3$$ then
Report Question
0%
If $$h(x)=\displaystyle \frac{f(x)}{g(x)}$$ then $$h'(0)=\displaystyle \frac{15}{4}$$
0%
If $$k(x)=f(x).g(x)\sin x$$ then $$k'(0)=2$$
0%
$$\displaystyle\lim _{x\rightarrow{0}}\displaystyle \frac{g'(x)}{f'(x)}=\displaystyle \frac{1}{2}$$
0%
None of these
Explanation
$$6f(0) = 3; g(0) = \dfrac{2}{f(0)}, f'(0) = 4g(0), 2g'(0) = 4g(0)$$
$$\Rightarrow \displaystyle f(0)=\frac{1}{2}, g(0)=4, f'(0)=16, g'(0)=8$$
$$\displaystyle h(x)=\frac{f(x)}{g(x)}$$
$$\displaystyle h'(x)=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^{2}}$$
So, $$\displaystyle h'(0)=\frac{4.16-\dfrac{1}{2}.8}{4.4}=\frac{64-4}{16}=\frac{15}{4}$$
$$\displaystyle k(x)=f(x).g(x)\sin x$$
$$\displaystyle k'(x)=f(x).g(x)cosx+sinx(f(x)g'(x)+g(x)f'(x))$$
$$\displaystyle k'(0)=\frac{1}{2}.4.1+0=2$$
$$\displaystyle \lim_{x\rightarrow 0}=\frac{g'(x)}{f'(x)}=\frac{8}{16}=\frac{1}{2}$$
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
0
Not Answered
0
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page