Explanation
Let y=y1+y2 ⇒dydx=dy1dx+dy2dx Now y1=(1+1x)x⇒logy1=xlog(1+1x)
Differentiating both side w.r.t x
⇒1y1dy1dx=log(1+1x)+x.11+1x.(−1x2)
⇒dy1dx=y1[log(1+1x)−11+x] And y2=x1+1x⇒logy2=(1+1x)logx
Differentiating both sides,
⇒1y2dy2dx=(1+1x)1x+(logx)(−1x2)
⇒dy2dx=y2[(1+x)−logxx2] ∴dydx=(1+1x)[log(1+1x)−11+x]+x1+1x[(1+x)−logxx2]
Let f(x)={∫x0{1+|1−t|}dtx>25x−7x≤2}
Let y=∫x0{1+|1−t|}dt as x>2
y=∫10(1+1−t)dt+∫x1tdt
y=2−12+(x2−1)2
y=1+x22
f(x)={1+x22,x>25x−7,x≤2}
f(2+)=1+42=3
f(2−)=10−7=3
Differentiating with respect to x we get
f1(x)={x;x>25;x≤2}
We can see that it is not differentiable at x=2 but continuous at x=2
y(n)=ex+x2+...+xn=ex(1−xn)1−x So dy(n)dx=ex(1−xn)1−x×ddx(x(1−xn)1−x) limn→∞dy(n)dx=limnex1−x−xn+11−xddx[limn→∞x1−x−xn+11−x] =ex1−xddx(x1−x) =ex1−x1(1−x)2 limn→∞dy(n)dx|x=12=4e
Please disable the adBlock and continue. Thank you.