Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Questions for Class 11 Commerce Applied Mathematics Differentiation Quiz 15 - MCQExams.com

Let h(x) be differentiable for all x and let f(x)=(kx+ex)h(x) where k is some constant If h(0)=5,h(0)=2 and f(0)=18 then the value of k is equal to
  • 5
  • 4
  • 3
  • 2
If sin(xy)+cos(xy)=0 then dydx=
  • yx
  • yx
  • xy
  • xy
Given  f(x)=x33+x2sin1.5axsina.sin2a5arcsin(a28a+17) then :
  • f(x) is not defined at x=sin8
  • f(sin8)>0
  • f(x) is not defined at x=sin8
  • f(sin8)<0
The equation (xn)m+(xn2)m+(xn3)m+...+(xnm)m=0 (m is odd positive integer), has
  • all real roots
  • one real and (n1) imaginary roots
  • one real and (m1) imaginary roots
  • No real roots
Suppose A=dydx when x2+y2=4 at (2,2),B=dydx when siny+sinx=sinxsiny at (π,π) and C=dydx when 2exy+exeyexey=exy+1 at (1,1), then (A+B+C) has the value equal to 
  • 1
  • e
  • 3
  • 0
If y=xlnxln(lnx), then dydx is equal to:
  • yx(lnxlnx1+2lnxln(lnx))
  • yxlnxln(lnx)(2ln(lnx)+1)
  • yxlnxlnx2+2ln(lnx)
  • ylnxxlnx(2ln(lnx)+1)
If for a continuous function f,f(0)=f(1)=0,f(1)=2 and g(x)=f(ex)ef(x), then g(0) is equal to 
  • 1
  • 2
  • 0
  • None of these
Let f(x) be a polynomial function of degree 2 and f(x)>0 for all xR. If g(x)=f(x)+f(x)+f"(x), then for any x
  • g(x)<0
  • g(x)>0
  • g(x)=0
  • g(x)0
If f(xy),f(x).f(y) and f(x+y) are in AP for all x,y and f(0)0, then
  • f(2)=f(2)
  • f(3)+f(3)=0
  • f(2)+f(2)=0
  • f(3)=f(3)
Consider the functions defined implicitly by the equation y33y+x=0 on various intervals in the real line. If xϵ(,2)(2,), the equation implicitly defines a unique real valued differentiable function y=f(x). If xϵ(2,2) the equation implicitly defines a unique real valued differentiable function y=g(x) satisfying g=g(0)=0.
If f(102)=22 then f(102)=
  • 427332
  • 427332
  • 427333
  • 4273
If the prime sign (') represents differentiation w.r.t. x and f=sinx+sin4x.cosx, then f(2x2+π2) at x=π2 is equal to
  • 0
  • 1
  • 22π
  • none of these
If f(x)=x.|x|, then its derivative is:
  • 2x
  • 2x
  • 2|x|
  • 2xsgnx
If y+x+yx=c (where c0), then dydx has the value equal to
  • 2xc2
  • xy+y2x2
  • yy2x2x
  • c22y
If y=|cosx|+|sinx| then dydx at x=2π3 is
  • 132
  • 0
  • 12(31)
  • none of these
y=(1+1x)x+x1+1x.
Differentiate
  • (1+1x)x[log(1+1x)1x+1]+x1+1/x[x+1logxx2].
  • (1+1x)x[log(1+1x)1x+1]+x1+1/x[x+1+logxx2].
  • (1+1x)x[log(1+1x)1x+1]+x11/x[x+1logxx2].
  • (1+1x)x[log(1+1x)1x+1]+x11/x[x+1+logxx2].
If f(a)=a2,ϕ(a)=b2 and f(a)=3ϕ(a) then limx0f(x)aϕ(x)b is
  • b2/a2
  • b/a
  • 2b/a
  • None of these
Using the ahove approximation, the value 104 is
  • 10.18
  • 10.49
  • 10.2
  • 10.28
If y=xr=1tan111+r+r2 then dydx is equal to
  • 11+x2
  • 11+(1+x)2
  • 0
  • None of these
Using the above approximation, the value of cos40 is
  • 12π236
  • 12+π362
  • 0.747
  • 0.7267
If y=x2cosx then y8(0) is
  • 72
  • 56
  • 0
  • 56
Let f(x)={x0{1+|1t|}dtifx>25x7ifx2 then
  • f is not continuous at x=2
  • f is continuous but not differentiable at x=2
  • f is differentiable everywhere
  • f(2+) doesn't exist
Let y be an implicit function of  x defined by x2x2xxcoty1=0. Then y(1) equals:
  • 1
  • log2
  • log2
  • 1
If f(x)=|x||sinx|, then f(π4) is equals
  • (π4)1/2(22ln4π22π)
  • (π4)1/2(22ln4π+22π)
  • (π4)1/2(22lnπ4+22π)
  • None of these.
ϕ(x)=f(x)g(x)andf(x)g(x)=k,2kf(x)g(x)=
  • ϕ"(x)ϕ(x)f"(x)f(x)g"(x)g(x)
  • ϕ"(x)ϕ(x)+f"(x)f(x)+g"(x)g(x)
  • ϕ"(x)ϕ(x)+f"(x)f(x)g"(x)g(x)
  • ϕ"(x)ϕ(x)f"(x)f(x)+g"(x)g(x)
If y=x4e2x then y10(0) is equal to
  • 210
  • 315×210
  • 195×210
  • 315×28
A metal sphere with radius of 10 cm is to be covered with a 0.02 cm coating of silver approximately silver required is (in cm3)
  • 2π
  • 10π
  • 6π
  • 8π
Let f and g be differentiable function such that f(x)=2g(x) and g(x)=f(x), and let T(x)=(f(x))2(g(x))2. Then T(x) is equal to
  • T(x)
  • 0
  • 2f(x)g(x)
  • 6f(x)g(x)
If y(n)=exex2...exn,0<x<1. Then limndy(n)dx at x=12 is
  • e
  • 4e
  • 2e
  • 3e
If f(x)dx=3553tan5x(5tan2x+11)+C then f(x) is equal to
  • 3sin2xcos14x
  • 3tan2x(1+tan2x)6
  • 3cos2xsin14x
  • 733sin2xcos14x
Consider the function: f(,)(,) defined by f(x)=x2ax+1x2+ax+1,0<a<2

Which of the following is true?
  • f(x) is decreasing on (1,1) and has a local minimum at x=1
  • f(x) is increasing on (1,1) and has a local maximum at x=1
  • f(x) is increasing on (1,1) and has neither a local maximum nor a local minimum at x=1
  • f(x) is decreasing on (1,1) and has neither a local maximum nor a local minimum at x=1
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers