CBSE Questions for Class 11 Commerce Applied Mathematics Differentiation Quiz 15 - MCQExams.com

Let $$h(x)$$ be differentiable for all $$x$$ and let $$f(x)=(kx+e^x) h(x)$$ where $$k$$ is some constant If $$h(0)=5$$,$$h'(0)=-2$$ and $$f'(0)=18$$ then the value of $$k$$ is equal to
  • $$5$$
  • $$4$$
  • $$3$$
  • $$2$$
If $$\sin(xy)+\cos(xy)=0$$ then $$\displaystyle \frac{dy}{dx}=$$
  • $$\displaystyle \frac{y}{x}$$
  • $$-\displaystyle \frac{y}{x}$$
  • $$-\displaystyle \frac{x}{y}$$
  • $$\displaystyle \frac{x}{y}$$
Given  $$f(x)=-\displaystyle \frac{x^3}{3}+x^2\sin 1.5a-x\sin a.\sin 2a-5 \arcsin (a^2-8a+17)$$ then :
  • $$f(x)$$ is not defined at $$x=\sin 8$$
  • $${f}'(\sin 8)>0$$
  • $$f'(x)$$ is not defined at $$x=\sin 8$$
  • $${f}'(\sin 8)<0$$
The equation $${ \left( x-n \right)  }^{ m }+{ \left( x-{ n }^{ 2 } \right)  }^{ m }+{ \left( x-{ n }^{ 3 } \right)  }^{ m }+...+{ \left( x-{ n }^{ m } \right)  }^{ m }=0$$ $$(m$$ is odd positive integer$$),$$ has
  • all real roots
  • one real and $$\left( n-1 \right) $$ imaginary roots
  • one real and $$\left( m-1 \right) $$ imaginary roots
  • No real roots
Suppose $$A=\displaystyle \frac{dy}{dx}$$ when $$x^2+y^2=4$$ at $$(\sqrt{2},\sqrt{2})$$,$$ B=\displaystyle \frac{dy}{dx}$$ when $$\sin y+ \sin x=\sin x-\sin y$$ at $$(\pi,\pi)$$ and $$C=\displaystyle  \frac{dy}{dx}$$ when $$2e^{xy}+e^x e^y-e^x-e^y=e^{xy+1}$$ at $$(1,1)$$, then $$(A+B+C)$$ has the value equal to 
  • $$-1$$
  • $$e$$
  • $$-3$$
  • $$0$$
If $$\displaystyle y=x^{\ln x^{\ln \left ( \ln x \right )}}$$, then $$\displaystyle \frac{dy}{dx}$$ is equal to:
  • $$\displaystyle \frac{y}{x}\left ( \ln x^{\ln x-1}+2\ln x\ln (\ln x) \right )$$
  • $$\displaystyle \frac{y}{x}\ln x^{\ln \left ( \ln x \right )}(2\ln (\ln x)+1)$$
  • $$\displaystyle \frac{y}{x\ln x}\ln x^{2}+2\ln (\ln x)$$
  • $$\displaystyle \frac{y\ln x}{x\ln x}(2\ln (\ln x)+1)$$
If for a continuous function $$f,f(0)=f(1)=0,f'(1)=2$$ and $$g\left( x \right)=f\left( { e }^{ x } \right) { e }^{ f\left( x \right) }$$, then $$g'(0)$$ is equal to 
  • $$1$$
  • $$2$$
  • $$0$$
  • None of these
Let $$f(x)$$ be a polynomial function of degree $$2$$ and $$f(x)>0$$ for all $$x\in R$$. If $$g(x)=f(x)+f^{'}(x)+f^{"}(x)$$, then for any $$x$$
  • $$g(x)<0$$
  • $$g(x)>0$$
  • $$g(x)=0$$
  • $$g(x)\geq 0$$
If $$\displaystyle f(x-y), f(x).f(y)$$ and $$f(x+y)$$ are in AP for all $$x, y$$ and $$f(0)\neq 0$$, then
  • $$f(2)=f(-2)$$
  • $$f(3)+f(-3)=0$$
  • $$f^{'}(2)+f^{'}(-2)=0$$
  • $$f^{'}(3)=f^{'}(-3)$$
Consider the functions defined implicitly by the equation $$\displaystyle y^{3}-3y+x=0$$ on various intervals in the real line. If $$\displaystyle x\epsilon \left ( -\infty , -2 \right )\cup \left ( 2, \infty  \right ),$$ the equation implicitly defines a unique real valued differentiable function $$\displaystyle y= f\left ( x \right ).$$ If $$\displaystyle x\epsilon \left ( -2 , -2 \right )$$ the equation implicitly defines a unique real valued differentiable function $$\displaystyle y= g\left ( x \right )$$ satisfying $$\displaystyle g= g\left ( 0\right )= 0.$$
If $$\displaystyle f\left ( -10\sqrt{2} \right )= 2\sqrt{2}$$ then $$\displaystyle f''\left ( -10\sqrt{2} \right )= $$
  • $$\displaystyle \frac{4\sqrt{2}}{7^{3}\cdot 3^{2}}$$
  • $$\displaystyle -\frac{4\sqrt{2}}{7^{3}\cdot 3^{2}}$$
  • $$\displaystyle \frac{4\sqrt{2}}{7^{3}\cdot 3^{3}}$$
  • $$\displaystyle \frac{4\sqrt{2}}{7^{}\cdot 3^{}}$$
If the prime sign (') represents differentiation w.r.t. $$x$$ and $$f^{'}=\sin x+\sin 4x.\cos x$$, then $$f^{'}\left ( 2x^{2}+\cfrac{\pi }{2} \right )$$ at $$x=\sqrt{\dfrac{\pi }{2}}$$ is equal to
  • $$0$$
  • $$-1$$
  • $$-2\sqrt{2\pi }$$
  • none of these
If $$f(x)=x.\left | x \right |$$, then its derivative is:
  • $$2x$$
  • $$-2x$$
  • $$2|x|$$
  • $${2}{x} sgn x$$
If $$\sqrt{y+x}+\sqrt{y-x}=c$$ (where $$c\neq 0$$), then $$\displaystyle \frac{dy}{dx}$$ has the value equal to
  • $$\displaystyle \frac{2x}{c^{2}}$$
  • $$\displaystyle \frac{x}{y+\sqrt{y^{2}-x^{2}}}$$
  • $$\displaystyle \frac{y-\sqrt{y^{2}-x^{2}}}{x}$$
  • $$\displaystyle \frac{c^{2}}{2y}$$
If $$y=\left | \cos x \right |+\left | \sin x \right |$$ then $$\frac{dy}{dx}$$ at $$x=\frac{2\pi }{3}$$ is
  • $$\frac{1-\sqrt{3}}{2}$$
  • $$0$$
  • $$\frac{1}{2}\left ( \sqrt{3}-1 \right )$$
  • none of these
$$\displaystyle y=\left ( 1+\frac{1}{x} \right )^{x}+x^{1+\frac{1}{x}}.$$
Differentiate
  • $$\displaystyle \left ( 1+\frac{1}{x} \right )^{x}\left [ \log \left ( 1+\frac{1}{x} \right )-\frac{1}{x+1} \right ]+x^{1+1/x}\left [ \frac{x+1-\log x}{x^{2}} \right ].$$
  • $$\displaystyle \left ( -1+\frac{1}{x} \right )^{x}\left [ \log \left ( 1+\frac{1}{x} \right )-\frac{1}{x+1} \right ]+x^{1+1/x}\left [ \frac{x+1+\log x}{x^{2}} \right ].$$
  • $$\displaystyle \left ( 1+\frac{1}{x} \right )^{x}\left [ \log \left ( 1+\frac{1}{x} \right )-\frac{1}{x+1} \right ]+x^{1-1/x}\left [ \frac{x+1-\log x}{x^{2}} \right ].$$
  • $$\displaystyle \left ( -1+\frac{1}{x} \right )^{x}\left [ \log \left ( 1+\frac{1}{x} \right )-\frac{1}{x+1} \right ]+x^{1-1/x}\left [ \frac{x+1+\log x}{x^{2}} \right ].$$
If $$ \displaystyle f\left ( a \right )=a^{2},\phi \left ( a \right )=b^{2} $$ and $$ \displaystyle {f}'\left ( a \right )=3{\phi }'\left ( a \right ) $$ then $$ \displaystyle \lim_{x\rightarrow 0}\frac{\sqrt{f\left ( x \right )}-a}{\sqrt{\phi \left ( x \right )}-b} $$ is
  • $$ \displaystyle b^{2}/a^{2} $$
  • $$ \displaystyle b/a $$
  • $$ \displaystyle 2b/a $$
  • None of these
Using the ahove approximation, the value $$ \displaystyle \sqrt{104} $$ is
  • $$10.18$$
  • $$10.49$$
  • $$10.2$$
  • $$10.28$$
If $$\displaystyle y=\sum _{ r=1 }^{ x }{ \tan ^{ -1 }{ \frac { 1 }{ 1+r+{ r }^{ 2 } }  }  } $$ then $$\displaystyle \frac { dy }{ dx } $$ is equal to
  • $$\displaystyle \frac { 1 }{ 1+{ x }^{ 2 } } $$
  • $$\displaystyle \frac { 1 }{ 1+{ \left( 1+x \right)  }^{ 2 } } $$
  • $$0$$
  • None of these
Using the above approximation, the value of $$ \displaystyle \cos 40^{\circ} $$ is
  • $$ \displaystyle \frac{1}{\sqrt{2}}-\frac{\pi }{\sqrt{2}36} $$
  • $$ \displaystyle \frac{1}{\sqrt{2}}+\frac{\pi }{36\sqrt{2}} $$
  • $$0.747$$
  • $$0.7267$$
If $$ \displaystyle y=x^{2}\cos x $$ then $$ \displaystyle y_{8}\left ( 0 \right ) $$ is
  • $$72$$
  • $$56$$
  • $$0$$
  • $$-56$$
Let $$f(x) = \begin{cases} \overset{x}{\underset{0}{\int}} \{1 + |1 - t|\}dt & if \,x > 2\\ 5x - 7 & if \,x \le 2\end{cases}$$ then
  • $$ \displaystyle f $$ is not continuous at $$ \displaystyle x=2 $$
  • $$ \displaystyle f $$ is continuous but not differentiable at $$ \displaystyle x=2 $$
  • $$ \displaystyle f $$ is differentiable everywhere
  • $$ \displaystyle {f}'\left ( 2+ \right ) $$ doesn't exist
Let $$y$$ be an implicit function of  $$x$$ defined by $$x^{2x}-2x^{x}\cot y-1=0$$. Then $${y}'\left ( 1 \right )$$ equals:
  • $$1$$
  • $$\log 2$$
  • $$-\log 2$$
  • $$-1$$
If $$f\left( x \right) = {\left| x \right|^{\left| {\sin x} \right|}}$$, then $${f'}\left( { - \dfrac{\pi }{4}} \right)$$ is equals
  • $${\left( {\dfrac{\pi }{4}} \right)^{1/\sqrt 2 }}\left( { - \dfrac{{\sqrt 2 }}{2}{\text{ln}}\dfrac{4}{\pi } - \dfrac{{2\sqrt 2 }}{\pi }} \right)$$
  • $${\left( {\dfrac{\pi }{4}} \right)^{1/\sqrt 2 }}\left( {\dfrac{{\sqrt 2 }}{2}{\text{ln}}\dfrac{4}{\pi } + \dfrac{{2\sqrt 2 }}{\pi }} \right)$$
  • $${\left( {\dfrac{\pi }{4}} \right)^{1/\sqrt 2 }}\left( {\dfrac{{\sqrt 2 }}{2}{\text{ln}}\dfrac{\pi }{4} + \dfrac{{2\sqrt 2 }}{\pi }} \right)$$
  • None of these.
$$\phi (x)=f\left( x \right) g\left( x \right) \quad and\quad f^{ ' }\left( x \right) g^{ ' }\left( x \right) =k,\dfrac { 2k }{ f\left( x \right) g\left( x \right)  } =$$
  • $$\frac { \phi "(x) }{ \phi (x) } -\frac { f"(x) }{ f(x) } -\frac { g"(x) }{ g(x) } $$
  • $$\frac { \phi "(x) }{ \phi (x) } +\frac { f"(x) }{ f(x) } +\frac { g"(x) }{ g(x) } $$
  • $$\frac { \phi "(x) }{ \phi (x) } +\frac { f"(x) }{ f(x) } -\frac { g"(x) }{ g(x) } $$
  • $$\frac { \phi "(x) }{ \phi (x) } -\frac { f"(x) }{ f(x) } +\frac { g"(x) }{ g(x) } $$
If $$ \displaystyle y=x^{4}e^{2x} $$ then $$ \displaystyle y_{10}\left ( 0 \right ) $$ is equal to
  • $$ \displaystyle 2^{10} $$
  • $$ \displaystyle 315 \times 2^{10} $$
  • $$ \displaystyle 195 \times 2^{10} $$
  • $$ \displaystyle 315 \times 2^{8} $$
A metal sphere with radius of $$10\ cm$$ is to be covered with a $$0.02\ cm$$ coating of silver approximately silver required is (in $$cm^3$$)
  • $$ \displaystyle 2\pi $$
  • $$ \displaystyle 10\pi $$
  • $$ \displaystyle 6\pi $$
  • $$ \displaystyle 8\pi $$
Let f and g be differentiable function such that $${f}'\left ( x \right )=2g\left ( x \right )$$ and $${g}'\left ( x \right )=-f\left ( x \right )$$, and let $$T\left ( x \right )=\left ( f\left ( x \right ) \right )^{2}-\left ( g\left ( x \right ) \right )^{2}$$. Then $${T}'\left ( x \right )$$ is equal to
  • $$T(x)$$
  • $$0$$
  • $$2f(x)g(x)$$
  • $$6f(x)g(x)$$
If $$y\left ( n \right )=e^{x}e^{x^{2}}...e^{x^{n}}, 0< x< 1$$. Then $$\displaystyle \lim_{n\rightarrow \infty }\frac{dy\left ( n \right )}{dx}$$ at $$x=\dfrac12$$ is
  • $$e$$
  • $$4e$$
  • $$2e$$
  • $$3e$$
If $$\displaystyle \int f(x) dx = \frac {3}{55}  \sqrt[3]{\tan^5 x} (5  \tan^2 x + 11) + C$$ then $$f(x)$$ is equal to
  • $$\displaystyle \sqrt[3] {\sin^2 x  \cos^{-14} x}$$
  • $$\displaystyle \sqrt[3] {\tan^2 x(1 + \tan^2 x)^6}$$
  • $$\displaystyle \sqrt[3] {\cos^2  x  \sin^{-14} x}$$
  • $$\displaystyle \frac {7}{3} \sqrt[3] {\sin^2  x \cos^{-14} x}$$
Consider the function: $$ f(-\infty,\infty)\rightarrow (-\infty,\infty)$$ defined by $$\displaystyle f(x)=\frac{x^{2}-ax+1}{x^{2}+ax+1},0<a<2$$

Which of the following is true?
  • $$f(x)$$ is decreasing on $$(-1,1)$$ and has a local minimum at $$ x=1$$
  • $$f(x)$$ is increasing on $$(-1,1)$$ and has a local maximum at $$ x=1$$
  • $$f(x)$$ is increasing on $$(-1,1)$$ and has neither a local maximum nor a local minimum at $$ x=-1$$
  • $$f(x)$$ is decreasing on $$(-1,1)$$ and has neither a local maximum nor a local minimum at $$ x=1$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers