Explanation
The slope(s) of common tangent(s) to the curves \displaystyle y={ e }^{ -x } and \displaystyle y={ e }^{ -x }\sin { x } can be -
\displaystyle y={ e }^{ -x }\ \ \&\ y={ e }^{ -x }\sin { x }
\displaystyle { y }^{ ' }=-{ e }^{ -x }...(i)\quad \& \quad { y }^{ ' }=-{ e }^{ -x }\left( \sin { x } -\cos { x } \right) ...(ii)
equating (i) and (ii)
\Rightarrow \displaystyle { e }^{ -x }\left( 1-\sin { x } +\cos { x } \right) =0
\displaystyle { e }^{ -x }\neq 0\quad \Rightarrow \quad 1-\sin { x } +\cos { x } =0
\displaystyle \Rightarrow \quad 2\cos ^{ 2 }{ \frac { x }{ 2 } } \quad =\quad 2\sin { \frac { x }{ 2 } } \cos { \frac { x }{ 2 } }
\displaystyle \Rightarrow \quad 2\cos { \frac { x }{ 2 } } \left( \sin { \frac { x }{ 2 } -\cos { \frac { x }{ 2 } } } \right) =0 \Rightarrow x=\frac { \pi }{ 2 } ,\pi
Slope can be \displaystyle -{ e }^{ -\tfrac{\pi}2 } and \displaystyle -{ e }^{ -\pi }
Please disable the adBlock and continue. Thank you.