Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

CBSE Questions for Class 11 Commerce Applied Mathematics Differentiation Quiz 16 - MCQExams.com

Given a function 'g' whcih has a derivative g(x) for every real 'x' and which satisfy g(0)=2 and g(x+y)=ey.g(x)+ex.g(y) for all x,y. Find g(x).
  • 2xex
  • xex
  • x+ex
  • xex
Let f be a differential function such that f(x)=f(4x) and g(x)=f(2+x) for all xR, then
  • graph of f(x) is symmetric about the line x=2
  • f(2)=0
  • graph of g(x) is symmetric about x-axis
  • g(0)=0
Length of the subtangent at (xl,yl) on xnym=am+n,m,n>0,is
  • nmxl
  • mn|xl|
  • nm|yl|
  • nm|xl|

The slope(s) of common tangent(s) to the curves y=ex and y=exsinx can be -

  • eπ2
  • eπ
  • π2
  • 1
The derivative of (tanx)x is equal to-
  • x(tanx)x1
  • (tanx)x[secx+tanx]
  • (tanx)x[xsecxcscx+logtanx]
  • (tanx)x[sec2x+xtanx]
If x=1t21+t2 and y=2at1+t2, then dydx is equal to:
  • a(1t2)2t
  • a(t21)2t
  • a(t2+1)2t
  • a(t21)t
If esin(x2+y2)=tany24+sin1x, then y(0) can be- 
  • 13π
  • 13π
  • 15π
  • 135π
The solution of differential equation ydx+(xy2)dy=0
  • eyx=sinx+c
  • y=cxlogx
  • x=y23+cy
  • cos(y2x)=a
The derivative of y=x2x w.r.t x is :
  • x2x2x(1x+lnxln2)
  • x2x(1xlnxln2)
  • x2x2x(1xlnx)
  • x2x2x(1x+lnxln2)
If x=asin1t, y=acos1t, then dydx= ________.
  • yx
  • xy
  • yx
  • xy
If x=secθcosθ and y=secnθcosnθ, then (dydx)2 is equal to
  • n2(y2+4)x2+4
  • n2(y24)x2
  • n(y24x24)
  • (nyx)24
If y=xxxx.., then y=
  • y2x(1ylogx)
  • y21ylogx
  • y2x(1ylogx)
  • y21ylogx
If x0(t2+2t+2) dt, 2x4
  • The maximum value of f(x) is 1363
  • The minimum value of f(x) is 10
  • The maximum value of f(x) is 26
  • None of these
If x1+y+y1+x=0, then dydx is equal to
  • 1(1+x)2
  • 1(1+x)2
  • 1(1x)2
  • None of these
If yyy....=loge(x+loge(x+....)), then dydx at (x=e22,y=2) is
  • log(e2)22(e21)
  • log222(e21)
  • 2loge2(e21)
  • None of these
Let y=xxx, then differentiate y w.r.t x.
  • xxx(1x+logx+(logx)2)
  • xxx(xx)(1x+logx(logx)2)
  • xxx(xx)(1x+logx+(logx)2)
  • xxx(xx)(1xlogx(logx)2)
Let y=f(x) be a differentiable curve satisfying x2f(t)dt+2=x22+2xt2f(t)dt,then π/4π/4f(x)+x9x3+x+1cos2xdx equals-
  • 0
  • 1
  • 2
  • 4
if cos4x+1cosxtanxdx=Acos4x+B; where A & B are constants, then 
  • A=1/4 & B may have any value
  • A=1/8 & B may have any value
  • A=1/2 & B=1/4
  • A=B=1/2
Consider the following statements:
S1:lim is an indeterminate form (where [.] denotes greatest integer function).
S_2: \lim_\limits{x\to\infty}\dfrac{sin(3^x)}{3^x}=0
S_3: \lim_\limits{x \to \infty}\sqrt{\dfrac{x- sinx}{x+cos^2x}} does not exist.
S_4:  \lim_\limits{n\to \infty}\dfrac{(n+2)!+(n+1)!}{(n+3)! }(n \in N=0
State, in order, whether S_1, S_2, S_3, S_4 are true or false
  • FTFT
  • FTTT
  • FTFF
  • TTFT
If x^{2} + y^{2} = a^{2} and k=1/a, then k is equal to ?
  • \dfrac { y\prime \prime }{ \sqrt { 1+y\prime } }
  • \dfrac { \left| y\prime \prime \right| }{ \sqrt { { \left( 1+{ y\prime }^{ 2 } \right) }^{ 3 } } }
  • \dfrac {2 y\prime \prime }{ \sqrt { 1+y\prime } }
  • \dfrac { y\prime \prime }{ 2\sqrt { { \left( 1+{ y\prime }^{ 2 } \right) }^{ 3 } } }
If x ^ { y } + y ^ { x } = a ^ { b }  then find that \dfrac { d y } { d x } 
  • -\dfrac{yx^{x-1}+y^x\log y}{x^y\log x+xy^{x-1}}
  • \dfrac{yx^{x-1}+y^x\log y}{x^y\log x+xy^{x-1}}
  • -\dfrac{yx^{x-1}+y^x\log y}{x^y\log x+xy^{x}}
  • None of these
\frac{d}{{dx}}\left( {\frac{{1 + {x^2} + {x^4}}}{{1 + x + {x^2}}}} \right) = ax + b, then \left( {a,b} \right) =
  • \left( { - 1,2} \right)
  • \left( { - 2,1} \right)
  • \left( {2, - 1} \right)
  • \left( {1,2} \right)
If f(x+y)=f(x)f(y)\forall\ x,y\ \in\ R andf'(0)=5,f(2)=6, then f'(2) 
  • 20
  • 10
  • 30
  • 40
If x \sin y=\sin (y+a) and \dfrac{dy}{dx}=\dfrac{A}{1+x^{2}-2 x \cos a} then the value of A is
  • 2
  • \cos a
  • -\sin a
  • -2
Let g(x) be a continuous function for all x, and f(x)=f(\alpha)+(x-\alpha).g(x)\ \forall \ x\ =\epsilon \ R. Then;
  • f(x) is necessarily differentiable at x=\alpha
  • f(x) is not necessarily differentiable at x=\alpha
  • f(x) is not necessarily continuous at x=\alpha
  • None\ of\ these
For the function, f(x) = (x - \frac{1}{x})^2, the first derivative with respect to x is 
  • 2 (x - \frac{1}{x^3})
  • 2 (x - \frac{1}{x})
  • 2 (x + \frac{1}{x^2})
  • 2 (x - \frac{1}{x^2})
If  y = y ( x )  is an implicit function of  x  given by  y \cos x + x \cos y = \pi,  the  y ^ { \prime \prime } ( 0 )  is equal to
  • \pi
  • - \pi
  • 0
  • 2 \pi
If x^{m}y^{n}=(x+y)^{m+n}, then xy^{3}=y, if \dfrac {x}{y} \neq \dfrac {m}{n}
  • True
  • False
The value of \int _{ 0 }^{ \left[ x \right]  }{ \left( x-\left[ x \right]  \right) dx\quad is\left( \left[ . \right] denotes\quad greatest\quad integer\quad function \right)  }
  • \left[ x \right]
  • 2\left[ x \right]
  • \dfrac { \left[ x \right] }{ 2 }
  • 3\left[ x \right]
Let f ' (x)= -f(x), where f(x) is a continous double differentiable function and g(x)=f '(x). If F(x)=\left[ f\left( \dfrac { x }{ 2 }  \right)  \right] ^{ 2 }+\left[ g\left( \dfrac { x }{ 2 }  \right)  \right] ^{ 2 } and F(5)=5,then F(10) =
  • 0
  • 5
  • 10
  • 25
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers