Processing math: 100%

CBSE Questions for Class 11 Commerce Applied Mathematics Differentiation Quiz 16 - MCQExams.com

Given a function 'g' whcih has a derivative g(x) for every real 'x' and which satisfy g(0)=2 and g(x+y)=ey.g(x)+ex.g(y) for all x,y. Find g(x).
  • 2xex
  • xex
  • x+ex
  • xex
Let f be a differential function such that f(x)=f(4x) and g(x)=f(2+x) for all xR, then
  • graph of f(x) is symmetric about the line x=2
  • f(2)=0
  • graph of g(x) is symmetric about x-axis
  • g(0)=0
Length of the subtangent at (xl,yl) on xnym=am+n,m,n>0,is
  • nmxl
  • mn|xl|
  • nm|yl|
  • nm|xl|

The slope(s) of common tangent(s) to the curves y=ex and y=exsinx can be -

  • eπ2
  • eπ
  • π2
  • 1
The derivative of (tanx)x is equal to-
  • x(tanx)x1
  • (tanx)x[secx+tanx]
  • (tanx)x[xsecxcscx+logtanx]
  • (tanx)x[sec2x+xtanx]
If x=1t21+t2 and y=2at1+t2, then dydx is equal to:
  • a(1t2)2t
  • a(t21)2t
  • a(t2+1)2t
  • a(t21)t
If esin(x2+y2)=tany24+sin1x, then y(0) can be- 
  • 13π
  • 13π
  • 15π
  • 135π
The solution of differential equation ydx+(xy2)dy=0
  • eyx=sinx+c
  • y=cxlogx
  • x=y23+cy
  • cos(y2x)=a
The derivative of y=x2x w.r.t x is :
  • x2x2x(1x+lnxln2)
  • x2x(1xlnxln2)
  • x2x2x(1xlnx)
  • x2x2x(1x+lnxln2)
If x=asin1t, y=acos1t, then dydx= ________.
  • yx
  • xy
  • yx
  • xy
If x=secθcosθ and y=secnθcosnθ, then (dydx)2 is equal to
  • n2(y2+4)x2+4
  • n2(y24)x2
  • n(y24x24)
  • (nyx)24
If y=xxxx.., then y=
  • y2x(1ylogx)
  • y21ylogx
  • y2x(1ylogx)
  • y21ylogx
If x0(t2+2t+2) dt, 2x4
  • The maximum value of f(x) is 1363
  • The minimum value of f(x) is 10
  • The maximum value of f(x) is 26
  • None of these
If x1+y+y1+x=0, then dydx is equal to
  • 1(1+x)2
  • 1(1+x)2
  • 1(1x)2
  • None of these
If yyy....=loge(x+loge(x+....)), then dydx at (x=e22,y=2) is
  • log(e2)22(e21)
  • log222(e21)
  • 2loge2(e21)
  • None of these
Let y=xxx, then differentiate y w.r.t x.
  • xxx(1x+logx+(logx)2)
  • xxx(xx)(1x+logx(logx)2)
  • xxx(xx)(1x+logx+(logx)2)
  • xxx(xx)(1xlogx(logx)2)
Let y=f(x) be a differentiable curve satisfying x2f(t)dt+2=x22+2xt2f(t)dt,then π/4π/4f(x)+x9x3+x+1cos2xdx equals-
  • 0
  • 1
  • 2
  • 4
if cos4x+1cosxtanxdx=Acos4x+B; where A & B are constants, then 
  • A=1/4 & B may have any value
  • A=1/8 & B may have any value
  • A=1/2 & B=1/4
  • A=B=1/2
Consider the following statements:
S1:limx0[x]x is an indeterminate form (where [.] denotes greatest integer function).
S2:limxsin(3x)3x=0
S3:limxxsinxx+cos2x does not exist.
S4:limn(n+2)!+(n+1)!(n+3)!(nN=0
State, in order, whether S1,S2,S3,S4 are true or false
  • FTFT
  • FTTT
  • FTFF
  • TTFT
If x2+y2=a2 and k=1/a, then k is equal to ?
  • y1+y
  • |y|(1+y2)3
  • 2y1+y
  • y2(1+y2)3
If xy+yx=ab  then find that dydx 
  • yxx1+yxlogyxylogx+xyx1
  • yxx1+yxlogyxylogx+xyx1
  • yxx1+yxlogyxylogx+xyx
  • None of these
ddx(1+x2+x41+x+x2)=ax+b, then (a,b)=
  • (1,2)
  • (2,1)
  • (2,1)
  • (1,2)
If f(x+y)=f(x)f(y) x,y  R andf(0)=5,f(2)=6, then f(2) 
  • 20
  • 10
  • 30
  • 40
If xsiny=sin(y+a) and dydx=A1+x22xcosa then the value of A is
  • 2
  • cosa
  • sina
  • 2
Let g(x) be a continuous function for all x, and f(x)=f(α)+(xα).g(x)  x =ϵ R. Then;
  • f(x) is necessarily differentiable at x=α
  • f(x) is not necessarily differentiable at x=α
  • f(x) is not necessarily continuous at x=α
  • None of these
For the function, f(x)=(x1x)2, the first derivative with respect to x is 
  • 2(x1x3)
  • 2(x1x)
  • 2(x+1x2)
  • 2(x1x2)
If  y=y(x)  is an implicit function of  x  given by  ycosx+xcosy=π,  the  y(0)  is equal to
  • π
  • π
  • 0
  • 2π
If xmyn=(x+y)m+n, then xy3=y, if xymn
  • True
  • False
The value of [x]0(x[x])dxis([.]denotesgreatestintegerfunction)
  • [x]
  • 2[x]
  • [x]2
  • 3[x]
Let f(x)=f(x), where f(x) is a continous double differentiable function and g(x)=f(x). If F(x)=[f(x2)]2+[g(x2)]2 and F(5)=5,then F(10) =
  • 0
  • 5
  • 10
  • 25
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers