Processing math: 100%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Commerce Applied Mathematics Differentiation Quiz 17 - MCQExams.com
CBSE
Class 11 Commerce Applied Mathematics
Differentiation
Quiz 17
The extrme value of
(
x
)
1
x
is
Report Question
0%
e
0%
(
1
e
)
e
0%
(
e
)
1
e
0%
1
If
y
2
=
a
x
2
+
b
x
+
c
, then
y
3
d
2
y
d
x
2
is
Report Question
0%
a constant
0%
a function of x only
0%
a function of y only
0%
a function of x and y
Explanation
y
2
=
a
x
2
+
b
x
+
c
⇒
2
y
d
y
d
x
=
d
d
x
(
a
x
2
)
+
d
d
x
(
b
x
)
+
d
d
x
(
c
)
⇒
2
y
d
y
d
x
=
2
a
x
+
b
+
0
⇒
2
d
d
x
(
y
d
y
d
x
)
=
d
d
x
(
2
a
x
+
b
)
⇒
2
(
d
y
d
x
)
2
+
2
y
d
2
y
d
x
2
=
2
a
⇒
(
d
y
d
x
)
2
+
y
d
2
y
d
x
2
=
a
⇒
y
d
2
y
d
x
2
=
a
−
(
d
y
d
x
)
2
⇒
y
d
2
y
d
x
2
=
a
−
(
2
a
x
+
b
)
2
⇒
y
3
d
2
y
d
x
2
=
y
2
(
a
−
(
2
a
x
+
b
)
2
)
=
(
a
x
2
+
b
x
+
c
)
(
a
−
4
a
2
x
2
−
b
2
−
4
a
x
b
)
is a function of
x
only
If
3
sin
(
x
y
)
+
4
cos
(
x
y
)
=
5
, then
d
y
d
x
=
Report Question
0%
3
sin
(
x
y
)
+
4
cos
(
x
y
)
3
sin
(
x
y
)
−
4
cos
(
x
y
)
0%
y
x
0%
−
y
x
0%
n
o
n
e
o
f
t
h
e
s
e
Explanation
3
d
d
x
(
sin
(
x
y
)
)
+
4
d
d
x
(
cos
(
x
y
)
)
=
d
d
x
(
5
)
⇒
3
cos
(
x
y
)
d
d
x
(
x
y
)
−
4
sin
(
x
y
)
d
d
x
(
x
y
)
=
0
⇒
(
3
cos
(
x
y
)
−
4
sin
(
x
y
)
)
d
d
x
(
x
y
)
=
0
⇒
(
3
cos
(
x
y
)
−
4
sin
(
x
y
)
)
(
x
d
y
d
x
+
y
)
=
0
⇒
3
cos
(
x
y
)
−
4
sin
(
x
y
)
=
0
and
x
d
y
d
x
+
y
=
0
⇒
3
cos
(
x
y
)
=
4
sin
(
x
y
)
and
x
d
y
d
x
=
−
y
⇒
tan
x
y
=
3
4
and
d
y
d
x
=
−
y
x
∴
d
y
d
x
=
−
y
x
f
(
x
)
=
x
2
+
x
g
′
(
1
)
+
g
′
′
(
2
)
and
g
(
x
)
=
f
(
1
)
x
2
+
x
f
′
(
x
)
+
f
′
′
(
x
)
The value of
g
(
0
)
is
Report Question
0%
0
0%
-3
0%
2
0%
None of these
Explanation
f
(
x
)
=
x
2
+
x
g
′
(
1
)
+
g
′
′
(
2
)
and
g
(
x
)
=
f
(
1
)
x
2
+
x
f
′
(
x
)
+
f
′
′
(
x
)
Here put
g
′
(
1
)
=
a
,
g
′
′
(
2
)
=
b
(
1
)
Then
f
(
x
)
=
x
2
+
a
x
+
b
,
f
(
1
)
=
1
+
a
+
b
⇒
f
′
(
x
)
=
2
x
+
a
f
′
′
(
x
)
=
2
∴
g
(
x
)
=
(
1
+
a
+
b
)
x
2
+
(
2
x
+
a
)
x
+
2
=
x
2
(
3
+
a
+
b
)
+
a
x
+
2
⇒
g
′
(
x
)
=
2
x
(
3
+
a
+
b
)
+
a
and
g
′
′
(
x
)
=
2
(
3
+
a
+
b
)
Hence,
g
′
(
1
)
=
2
(
3
+
a
+
b
)
+
a
(
2
)
g
′
′
(
2
)
=
2
(
3
+
a
+
b
)
(
3
)
From (1),(2) and (3) we have
a
=
2
(
3
+
a
+
b
)
+
a
and
b
=
2
(
3
+
a
+
b
)
⇒
3
+
a
+
b
=
0
and
b
+
2
a
+
6
=
0
Hence,
b
=
0
and
a
=
−
3
.
So,
f
(
x
)
=
x
2
−
3
x
and
g
(
x
)
=
−
3
x
+
2
g
(
x
)
=
−
3
x
+
2
⇒
g
(
0
)
=
2
Equation
x
n
−
1
=
0
,
n
>
1
,
n
∈
N
,
has roots
1
,
a
1
,
a
2
,
…
,
a
n
−
1
The value of
n
−
1
∑
r
=
1
1
2
−
a
r
is
Report Question
0%
2
n
−
1
(
n
−
2
)
+
1
2
n
−
1
0%
2
n
(
n
−
2
)
+
1
2
n
−
1
0%
2
n
−
1
(
n
−
1
)
−
1
2
n
−
1
0%
None of these
Explanation
From
(
1
)
,
log
(
x
n
−
1
)
=
log
(
x
−
1
)
+
log
(
x
−
a
1
)
+
⋯
+
log
(
x
−
a
n
−
1
)
Differentiating w.r.t.
x
, we get
n
x
n
−
1
x
n
−
1
=
1
x
−
1
+
1
x
−
a
1
+
1
x
−
a
2
+
⋯
+
1
x
−
a
n
−
1
Putting
x
=
2
in
a
b
o
v
e
e
q
u
a
t
i
o
n
,
we get
n
2
n
−
1
2
n
−
1
=
1
+
1
2
−
a
1
+
1
2
−
a
2
+
⋯
+
1
2
−
a
n
−
1
⇒
1
2
−
a
1
+
1
2
−
a
2
+
⋯
+
1
2
−
a
n
−
1
=
n
2
n
−
1
2
n
−
1
−
1
=
n
2
n
−
1
−
2
n
+
1
2
n
−
1
=
2
n
−
1
(
n
−
2
)
+
1
2
n
−
1
Equation
x
n
−
1
=
0
,
n
>
1
,
n
∈
N
,
has roots
1
,
a
1
,
a
2
,
…
,
a
n
−
1
The value of
n
−
1
∑
r
=
1
1
1
−
a
r
is
Report Question
0%
n
4
0%
n
(
n
−
1
)
2
0%
n
−
1
2
0%
None of these
0:0:1
1
2
3
4
5
6
1
2
3
4
5
6
0
Answered
1
Not Answered
5
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page