Processing math: 100%

CBSE Questions for Class 11 Commerce Applied Mathematics Differentiation Quiz 2 - MCQExams.com

If xy+x2y2=c; then the value of dydx will be
  • xy
  • yx
  • yx
  • xy
If x2+y2=4, then ydydx+x is equal to
  • 4
  • 0
  • 1
  • 1
If y is a function of x and log(x+y)2xy=0 then the value of y(0) is equal to
  • 1
  • 1
  • 2
  • 0
Find the derivative of ex+ey=ex+y
  • exy
  • exy
  • eyx
  • eyx
If y is expressed in terms of a variable x as y=f(x), then y is called
  • Explicit function
  • Implicit function
  • Linear function
  • Identity function
If y=sinx+sinx+sinx+, then (2y1)dydx is equal to
  • sinx
  • cosx
  • cosx
  • sinx
The value of ddx{x(x1)(x2)(x3)} at x=3
  • 0
  • 3
  • 6
  • 24
Differentiate
 2x3/2+2x5/2+C
  • dydx=x(3+5x)
  • dydx=x(35x)
  • dydx=x(3+5x)
  • None of these
Find dydx of the given function  yx=xy.
  • yxlogy = yx(y1)
  • 0
  • xylogx
  • xylogy = yx(y1)
The derivative of y=(1x)(2x)...(nx)atx=1 is equal to :-
  • 1
  • (1)(n1)!
  • n!1
  • (1)n1(n1)!
Find dydx of the following y=1+2x+3x2+(n1)xn2

  • x+2x2+6x3+(n1)(n2)xn3
  • 2+6x+(n1)xn2
  • 2+6x+(n1)(n2)xn3
  • None
The value of ddxx22(t1)dt
  • (x21)
  • x(x21)
  • 2x(x21) 
  • none of these
Let f(x)=x2ex then f(0)=
  • 1
  • 0
  • 2
  • 7
The equation of the tangent to the curve y=x+4x2, that is parallel to the x-axis is
  • y=0
  • y=1
  • y=2
  • y=3
lf f(x)=x1x2,g(x)=x1+x2, then ddx(fog(x))=
  • 1
  • 0
  • 1
  • 2
Let y=(sinx+sin2x+sin3x)2+(cosx+cos2x+cos3x)2 then which of  the following(s) is correct?
  • dydx when x=π2 is 2
  • Value of y when x=π5 is 3+52
  • Value of y when x=π12 is 1+2+32
  • y simplifies to (1+2cosx) in [0,π]
If ddx(1+x2+x41+x+x2)=ax+b,then(a,b)=
  • (1,2)
  • (2,1)
  • (2,1)
  • (1,2)
If sin2mx+cos2ny=a2 then dydx=
  • m.sin2mxn.sin2ny
  • m.sinmxn.sinnx
  • m.cos2mxn.cos2nx
  • n.sin2mxm.sin2nx
Find dydx of function y=ex3+12logx
  • 2.ex3x2+12x
  • ex3x2+12x
  • 3.ex3x2+12x
  • 3.ex3x2+1x
x12+1=t
differentiate w.r.t. x
  • dtdx=12x
  • dtdx=14x
  • dtdx=18x
  • dtdx=116x
Differentiate: x100+sinx1
  • 100x99cosx
  • 100x99+cosx
  • x99+cosx
  • 100x99+sinx
If f(x)=xlogx, then find f'(x).
  • 1+xlogx
  • 1+x
  • x+logx
  • 1+logx
If f(x)dxlog(sinx) =log(log(sinx)) then f(x)=
  • sinx
  • cosx
  • log(sinx)
  • cotx
if y=5x2+8x find dydx
  • 10x+8
  • 5x+8
  • 10x2+8x
  • none of these
If y=logsinx find x if y=0
  • π2
  • π
  • π3
  • π2
lf f(x)=0 has a repeated root α, then another equation having α as root, is 
  • f(2x)=0
  • f(3x)=0
  • f(x)=0
  • f(x)=0

lf [x] denotes the greatest integer contained in x, then for 4 <x<5, ddx{[x]}=
  • [x4,5]
  • [x]
  • 0
  • 1
lf y=log(x+1+x2), then y(0) is
  • 0
  • 1
  • 1
  • 2

A:ddx(sinx) at x=π2

B:ddx(tan1x) at x=1

C:ddx(ex) at x=0

D:ddx(xx) at x=e

Arrangement of the above values in the increasing order of the magnitude
  • B, C, A, D
  • D, A, B, C
  • D, B, C, A
  • A, B, C, D
lf y=log(1+x1x)1412tan1(x), then dydx=
  • x1x2
  • x21x4
  • x1+x4
  • x1x4
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers