Loading [MathJax]/jax/element/mml/optable/MathOperators.js

CBSE Questions for Class 11 Commerce Applied Mathematics Differentiation Quiz 3 - MCQExams.com

lf y=log(log(x+1+x2)) then dydx=
  • 1x+1+x2
  • xlog(x+1+x2)
  • 1log(x+1+x2)
  • 11+x2log(x+1+x2)
lf ay=loga(x2+x+1), then dydx=
  • logae.(2x+1)(x2+x+1)log(x2+x+1)
  • (2x+1)(x2+x+1)log(x2+x+1)
  • 1(x2+x+1)log(x2+x+1)
  • 1(x2+x+1)log(x2+x+1)
If x+y+yx=c, then d2ydx2 is
  • 2c
  • 2c2
  • 2c2
  • 2c
If f(x)=(ax+b)cosx+(cx+d)sinx and f(x)=xcosx, for all values of xR, then a,b,c,d are given by
  • a=b=c=d
  • 0,1,1,0
  • 1,0,1,0
  • 0,1,1,0
The set onto which the derivative of the function f(x)=x(logx1) maps the ray [1,) is ?
  • [1,)
  • (10,)
  • [0,)
  • (0,0)
lf y=log(x+1+x2)1+x2 then (1+x2)y1+xy=
  • y
  • y
  • 0
  • 1
lf f(x)=x2x+a then f(a)=
  • 4
  • 38
  • 34
  • 8
If { e }^{ y }+xy=e, then \displaystyle{ \frac { { d }^{ 2 }y }{ d{ x }^{ 2 } }  }_{ x=0 }^{  } is
  • \displaystyle \frac { 1 }{ { e }^{ 2 } }
  • {e}^{-1}
  • e
  • None of these

If x^{4}+y^{4}-a^{2}xy=0 defines {y} implicitly as function of x , then  \displaystyle \frac{dy}{dx}=
  • \displaystyle \frac{4x^{3}-a^{2}y}{4y^{3}-a^{2}x}
  • -\left(\displaystyle \frac{4x^{3}-a^{2}y}{4y^{3}-a^{2}x}\right)
  • \displaystyle \frac{4x^{3}}{4y^{3}-a^{2}x}
  • \displaystyle \frac{-4x^{3}}{4y^{3}-a^{2}x}

 lf \mathrm{y}=(\mathrm{x}^{2}+1)^{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{x}}, then \mathrm{y}^{'}(0) is equal to
  • \dfrac{1}{2}
  • e^{2}
  • 0
  • \dfrac{3}{2}
If f(x)=e ^{x} g(x),
g(0)=1,g'(0)=3, then f' (0) is
  • 0
  • 4
  • 3
  • 7

 If ax^{2}+2hxy+by^{2}+2gx+2fy +c=0 then \displaystyle \frac{dy}{dx}=
  • -(\displaystyle \frac{ax+hy+g}{hx+by+f})
  • -(\displaystyle \frac{ax+hy+g}{bx+hy+f})
  • -(\displaystyle \frac{hx+by+f}{ax+hy+g})
  • -(\displaystyle \frac{hx+by+f}{hx+ay+g})
If u=\displaystyle \tan^{-1}\left (\frac{x^{2}+y^{2}}{x+y}\right)then x\displaystyle \frac{d u}{d x}+y\frac{d u}{d y}=
  • \sin 2u
  • \dfrac {1}{2}\sin 2u
  • \dfrac {1}{3}\sin 2u
  • 2\sin 2u
If y=\sqrt{\sin{x}+y}, then \displaystyle\frac{dy}{dx} is
  • \displaystyle\frac{\cos{x}}{2y-1}
  • \displaystyle\frac{\cos{x}}{1-2y}
  • \displaystyle\frac{\cos{x}}{2y+1}
  • \displaystyle\frac{\sin{x}}{2y-1}
If \sqrt{x}+\sqrt{y}=4, then find \displaystyle\frac{dx}{dy} at y=1.
  • 3
  • 4
  • -3
  • -4
If x^3+y^3=3axy, then \displaystyle\frac{dy}{dx} is
  • \displaystyle\frac{ay-y^2}{x^2-ax}
  • \displaystyle\frac{ay-x^2}{y^2-ax}
  • \displaystyle\frac{by-x^2}{y^2-bx}
  • None of these
For the function f(x) = \displaystyle \frac{x^{100}}{100} + \frac{x^{99}}{99} + ........... + \frac{x^2}{2} + x+1, f'(1) =
  • x^{100}
  • 100
  • 101
  • None of these
If  y=x+\displaystyle\frac{1}{x+\displaystyle\frac{1}{x+\displaystyle\frac{1}{x+\cdots}}} then \displaystyle\frac{dy}{dx}=
  • \displaystyle\frac{dy}{dx}=\frac{x}{2x-y}
  • \displaystyle\frac{dy}{dx}=\frac{y}{2y-x}
  • \displaystyle\frac{dy}{dx}=\frac{2y}{2x-y}
  • None of these
  • Both Assertion and Reason are correct and Reason is the correct explanation for Assertion
  • Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion
  • Assertion is correct but Reason is incorrect
  • Assertion is incorrect but Reason is correct
If \displaystyle x^2+y^2=t-\frac{1}{t} and \displaystyle x^4+y^4=t^2+\frac{1}{t^2}, then \displaystyle x^3y\frac{dy}{dx}=
  • 0
  • 1
  • -1
  • none of these
If xy+y^2=\tan x + y, then \displaystyle\frac{dy}{dx} is equal to
  • \displaystyle\frac{\sec^{2}{x}-y}{(x+2y-1)}
  • \displaystyle\frac{\cos^{2}{x}+y}{(x+2y-1)}
  • \displaystyle\frac{\sec^{2}{x}-y}{(2x+y-1)}
  • \displaystyle\frac{\cos^{2}{x}+y}{(2x+2y-1)}
If y^x=x^y, then find \displaystyle\frac{dy}{dx}.
  • \displaystyle\frac{x(y\log{y}-y)}{y(x\log{x}-x)}
  • \displaystyle\frac{y(x\log{y}-y)}{x(y\log{x}-x)}
  • {y(x\log{y}-y)}
  • \displaystyle\frac{y(x\log{x}-y)}{x(y\log{y}-x)}
Differentiate \sqrt{\displaystyle\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}} with respect to x.
  • \displaystyle\frac{1}{2}\sqrt{\displaystyle\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}\left[\frac{1}{x-1}-\frac{1}{x-2}-\frac{1}{x-3}-\frac{1}{x-4}-\frac{1}{x-5}\right]
  • \displaystyle\frac{1}{2}\sqrt{\displaystyle\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}\left[\frac{1}{x-2}+\frac{1}{x-3}+\frac{1}{x-4}+\frac{1}{x-5}\right]
  • \displaystyle\frac{1}{2}\sqrt{\displaystyle\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}\left[\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x-3}-\frac{1}{x-4}-\frac{1}{x-5}\right]
  • None of these
If y=x^{-\tfrac12}+\log_5x+\displaystyle \frac {\sin x}{\cos x}+2^x, then find \dfrac {dy}{dx}
  • -\displaystyle \frac {1}{2}x^{-3/2}+\displaystyle \frac {1}{x\log_e5}+\sec^2x+2^x\log 2
  • \displaystyle \frac {1}{2}x^{-3/2}+\displaystyle \frac {1}{x\log_e5}+\sec^2x+2^x\log 2
  • -\displaystyle \frac {3}{2}x^{-3/2}+\displaystyle \frac {1}{x\log_e5}+\sec^2x+2^x\log 2
  • -\displaystyle \frac {1}{2}x^{-3/2}+\displaystyle \frac {1}{x\log_e5}+\cos^2x+2^x\log 2
If y=e^x \sin x, then find \displaystyle \frac {dy}{dx}
  • e^x(\sin x+\cos x)
  • e^x(\sin x-\cos x)
  • e^x \sin x
  • None of these
\displaystyle\frac{dy}{dx} for y=x^x is
  • x^x(1-\log{x})
  • x^x(1-\log{y})
  • x^x(1+\log{y})
  • x^x(1+\log{x})
If y=x^2+sin^{-1}x+log_ex, find \dfrac {dy}{dx}
  • \displaystyle \frac {dy}{dx}=2x+\displaystyle \frac {1}{\sqrt {1-x^2}}+\displaystyle \frac {1}{x}
  • \displaystyle \frac {dy}{dx}=x+\displaystyle \frac{1}{\sqrt {1-x^2}}+\displaystyle \frac {1}{x}
  • \displaystyle \frac {dy}{dx}=2x+\displaystyle \frac {1}{\sqrt {1-x^2}}-\displaystyle \frac {1}{x}
  • \frac {dy}{dx}=2x-\displaystyle \frac {1}{\sqrt {1-x^2}}+\displaystyle \frac {1}{x}
If y=\sqrt{\sin{x}+\sqrt{\sin{x}+\sqrt{\sin{x}+\cdots\:to\:\infty}}}, then \displaystyle\frac{dy}{dx} is
  • \displaystyle\frac{\cos{x}}{1+2y}
  • \displaystyle -\frac{\sin{x}}{1-2y}
  • \displaystyle\frac{\cos{x}}{1-2y}
  • \displaystyle\frac{\cos{x}}{2y-1}
If y=e^x \tan x + x\cdot \log_ex, then find \displaystyle \frac {dy}{dx}
  • \displaystyle \frac {dy}{dx}=e^x \tan x+(\log x+1)
  • \displaystyle \frac {dy}{dx}=e^x(\tan x+\sec^2x)+(\log x+x)
  • \displaystyle \frac {dy}{dx}=e^x \tan x+1
  • \displaystyle \frac {dy}{dx}=e^x(\tan x+\sec^2x)+(\log x+1)
If y={(\tan{x})}^{\displaystyle{(\tan{x})}^{\displaystyle\tan{x}}}, then find \displaystyle\frac{dy}{dx} at \displaystyle x=\frac{\pi}{4}.
  • 0
  • 1
  • -1
  • 2
0:0:3


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers