Loading [MathJax]/jax/element/mml/optable/MathOperators.js
MCQExams
0:0:3
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Commerce Applied Mathematics Differentiation Quiz 3 - MCQExams.com
CBSE
Class 11 Commerce Applied Mathematics
Differentiation
Quiz 3
lf
y
=
log
(
log
(
x
+
√
1
+
x
2
)
)
then
d
y
d
x
=
Report Question
0%
1
x
+
√
1
+
x
2
0%
x
log
(
x
+
√
1
+
x
2
)
0%
−
1
log
(
x
+
√
1
+
x
2
)
0%
1
√
1
+
x
2
log
(
x
+
√
1
+
x
2
)
Explanation
We have,
y
=
log
(
log
(
x
+
√
1
+
x
2
)
)
Using chain rule of differentiation,
d
y
d
x
=
1
log
(
x
+
√
1
+
x
2
)
×
1
(
x
+
√
1
+
x
2
)
×
(
1
+
2
x
2
√
1
+
x
2
)
=
1
log
(
x
+
√
1
+
x
2
)
×
1
(
x
+
√
1
+
x
2
)
×
(
√
1
+
x
2
+
x
√
1
+
x
2
)
=
1
√
1
+
x
2
log
(
x
+
√
1
+
x
2
)
Hence,
d
y
d
x
=
1
√
1
+
x
2
log
(
x
+
√
1
+
x
2
)
lf
a
y
=
log
a
(
x
2
+
x
+
1
)
, then
d
y
d
x
=
Report Question
0%
log
a
e
.
(
2
x
+
1
)
(
x
2
+
x
+
1
)
log
(
x
2
+
x
+
1
)
0%
(
2
x
+
1
)
(
x
2
+
x
+
1
)
log
(
x
2
+
x
+
1
)
0%
1
(
x
2
+
x
+
1
)
log
(
x
2
+
x
+
1
)
0%
−
1
(
x
2
+
x
+
1
)
log
(
x
2
+
x
+
1
)
Explanation
We have,
a
y
=
log
a
(
x
2
+
x
+
1
)
⇒
(
1
)
Now differentiating both sides, w.r.t
x
⇒
a
y
(
log
a
)
d
y
d
x
=
log
a
e
⋅
2
x
+
1
x
2
+
x
+
1
⇒
d
y
d
x
=
log
a
e
⋅
(
2
x
+
1
)
(
x
2
+
x
+
1
)
⋅
log
(
x
2
+
x
+
1
)
, using (1)
If
√
x
+
y
+
√
y
−
x
=
c
, then
d
2
y
d
x
2
is
Report Question
0%
2
c
0%
−
2
c
2
0%
2
c
2
0%
−
2
c
Explanation
√
x
+
y
=
c
−
√
y
−
x
On squaring we get,
2
x
−
c
2
=
−
2
c
√
y
−
x
Again squaring we get,
y
=
(
2
x
−
c
2
)
2
4
c
2
+
x
y
′
=
4
(
2
x
−
c
2
)
4
c
2
+
1
y
″
=
8
4
c
2
=
2
c
2
Option C
If
f
(
x
)
=
(
a
x
+
b
)
cos
x
+
(
c
x
+
d
)
sin
x
and
f
′
(
x
)
=
x
cos
x
, for all values of
x
∈
R
, then
a
,
b
,
c
,
d
are given by
Report Question
0%
a
=
b
=
c
=
d
0%
0
,
1
,
−
1
,
0
0%
1
,
0
,
−
1
,
0
0%
0
,
1
,
1
,
0
Explanation
Given,
f
(
x
)
=
(
a
x
+
b
)
cos
x
+
(
c
x
+
d
)
sin
x
Thus
f
′
(
x
)
=
(
a
x
+
b
)
(
−
sin
x
)
+
a
cos
x
+
c
sin
x
+
(
c
x
+
d
)
cos
x
=
(
−
a
x
−
b
+
c
)
sin
x
+
(
a
+
c
x
+
d
)
cos
x
Also given,
f
′
(
x
)
=
x
cos
x
Comparing the coefficients, we get
a
=
0
,
b
=
1
,
c
=
1
,
d
=
0
The set onto which the derivative of the function
f
(
x
)
=
x
(
log
x
−
1
)
maps the ray
[
1
,
∞
)
is ?
Report Question
0%
[
1
,
∞
)
0%
(
10
,
∞
)
0%
[
0
,
∞
)
0%
(
0
,
0
)
Explanation
Given function
f
(
x
)
=
x
(
log
x
−
1
)
differentiate w.r.t
x
we get,
f
′
(
x
)
=
x
x
+
log
x
−
1
f
′
(
x
)
=
log
x
Clearly,
log
x
is defined in the given region.
as
x
→
1
,
log
x
=
0
x
→
∞
,
log
x
=
∞
The set onto which the derivative of the function maps is [
0
,
∞
).
lf
y
=
log
(
x
+
√
1
+
x
2
)
√
1
+
x
2
then
(
1
+
x
2
)
y
1
+
x
y
=
Report Question
0%
y
0%
−
y
0%
0
0%
1
Explanation
y
√
1
+
x
2
=
log
(
x
+
√
1
+
x
2
)
Differentiate both sides:
y
1
√
1
+
x
2
+
y
x
√
1
+
x
2
=
1
+
x
√
1
+
x
2
x
+
√
1
+
x
2
⇒
y
1
√
1
+
x
2
+
y
x
√
1
+
x
2
=
1
√
1
+
x
2
⇒
y
1
(
1
+
x
2
)
+
y
x
=
1
lf
f
(
x
)
=
x
2
x
+
a
then
f
′
(
a
)
=
Report Question
0%
4
0%
3
8
0%
3
4
0%
8
Explanation
Given,
f
(
x
)
=
x
2
x
+
a
using division rule,
f
′
(
x
)
=
(
x
+
a
)
(
2
x
)
−
x
2
(
1
)
(
x
+
a
)
2
=
x
(
2
x
+
2
a
−
x
)
(
x
+
a
)
2
=
x
(
x
+
2
a
)
(
x
+
a
)
2
∴
If
{ e }^{ y }+xy=e,
then
\displaystyle{ \frac { { d }^{ 2 }y }{ d{ x }^{ 2 } } }_{ x=0 }^{ }
is
Report Question
0%
\displaystyle \frac { 1 }{ { e }^{ 2 } }
0%
{e}^{-1}
0%
e
0%
None of these
Explanation
We have
{ e }^{ y }+xy=e
Differentiating w.r.t
x
, we get
\displaystyle{ e }^{ y }\frac { dy }{ dx } +y+x\frac { dy }{ dx } =0
-----------(1)
Differentiating again w.r.t
x
, we get
\displaystyle { e }^{ y }\frac { { d }^{ 2 }y }{ d{ x }^{ 2 } } +e^y{ \left( \frac { dy }{ dx } \right) }^{ 2 }+2\frac { dy }{ dx } +x\frac { { d }^{ 2 }y }{ d{ x }^{ 2 } } =0
-------(2)
Put
x=0
in
{ e }^{ y }+xy=e
, we get
y=1
Putting
x=0,y=1
in (1) we get
\displaystyle e\frac { dy }{ dx } +1=0\Rightarrow \frac { dy }{ dx } =-\frac { 1 }{ e }
Putting
x=0,y=1,\displaystyle \frac { dy }{ dx } =-\frac { 1 }{ e }
in (2) we get
\displaystyle \frac { { d }^{ 2 }y }{ d{ x }^{ 2 } } =\frac { 1 }{ { e }^{ 2 } }
If
x^{4}+y^{4}-a^{2}xy=0
defines
{y}
implicitly as function of
x
, then
\displaystyle \frac{dy}{dx}=
Report Question
0%
\displaystyle \frac{4x^{3}-a^{2}y}{4y^{3}-a^{2}x}
0%
-\left(\displaystyle \frac{4x^{3}-a^{2}y}{4y^{3}-a^{2}x}\right)
0%
\displaystyle \frac{4x^{3}}{4y^{3}-a^{2}x}
0%
\displaystyle \frac{-4x^{3}}{4y^{3}-a^{2}x}
Explanation
Given,
x^{4}+y^{4}-a^{2}xy=0
x^4+y^4=a^2xy
Differentiate both sides w.r.t
x
we get,
4x^3+4y^3\dfrac{dy}{dx}
=a^2x\dfrac{dy}{dx}+a^2y
\therefore \dfrac{dy}{dx}=\dfrac{a^2y-4x^3}{4y^3-a^2x}
=-\left(\dfrac{4x^3-a^2y}{4y^3-a^2x} \right)
lf
\mathrm{y}=(\mathrm{x}^{2}+1)^{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{x}}
, then
\mathrm{y}^{'}(0)
is equal to
Report Question
0%
\dfrac{1}{2}
0%
e^{2}
0%
0
0%
\dfrac{3}{2}
Explanation
\mathrm {y'(x)}=\left(\mathrm{x}^{2}+1)^{\sin \mathrm{x}}(\cos \mathrm{x } log(1+\mathrm {x^{2}})+\sin \mathrm { x}\left ( \dfrac{2{\mathrm{x}}}{1+\mathrm{x^{2}}} \right ) \right)
\mathrm{y'(0)}=1(0+0)
=0
If
f(x)=e
^{x}
g(x),
g(0)=1,g'(0)=3
, then
f' (0)
is
Report Question
0%
0
0%
4
0%
3
0%
7
Explanation
{f}'(x)=e^{^{x}}g(x)+e^{^{x}}{g}'\left ( x \right )
For x=0:
f'(0)= g\left ( 0 \right )+{g}'\left ( 0\right )=4
If
ax^{2}+2hxy+by^{2}+2gx+2fy +c=0
then
\displaystyle \frac{dy}{dx}=
Report Question
0%
-(\displaystyle \frac{ax+hy+g}{hx+by+f})
0%
-(\displaystyle \frac{ax+hy+g}{bx+hy+f})
0%
-(\displaystyle \frac{hx+by+f}{ax+hy+g})
0%
-(\displaystyle \frac{hx+by+f}{hx+ay+g})
Explanation
Given:
ax^{2}+2hxy+by^{2}+2gx+2fy +c=0
\displaystyle2ax+2hy+2hx\frac{dy}{dx}+2by\frac{dy}{dx}+2g+2f\frac{dy}{dx}=0
\dfrac{-(2ax+2hy+2g)}{2hx+2by+2f}=\dfrac{dy}{dx}
If
u=\displaystyle \tan^{-1}\left (\frac{x^{2}+y^{2}}{x+y}\right)
,
then
x\displaystyle \frac{d u}{d x}+y\frac{d u}{d y}=
Report Question
0%
\sin 2u
0%
\dfrac {1}{2}\sin 2u
0%
\dfrac {1}{3}\sin 2u
0%
2\sin 2u
Explanation
Given,
u=\tan^{-1}\left(\dfrac {x^2+y^2}{x+y}\right)
\Rightarrow \tan u=\dfrac{x^{2}+y^{2}}{(x+y)}
On differentiating both the sides w.r.t.
x
and
y
respectively, we get
\sec^{2}u\dfrac{du}{dx}=\dfrac{2x(x+y)-(x^{2}+y^{2})}{(x+y)^{2}}
....(1)
and
\sec^{2}u\dfrac{du}{dy}=\dfrac{2y(x+y)-(x^{2}+y^{2})}{(x+y)^{2}}
....(2)
Multiplying
x
with equation (1) and
y
to equation (2).
Therefore,
x\sec^2u\dfrac {du}{dx}=\dfrac {x^3+2x^2y-xy^2}{(x+y)^2}
....(3)
and
y\sec^2u\dfrac {du}{dy}=\dfrac {y^3+2xy^2-x^2y}{(x+y)^2}
....(4)
Adding equations (3) and (4), we get
\sec^{2}u\left ( x\dfrac{du}{dx}+y\dfrac{du}{dy} \right )=\dfrac{x^{3}+2x^{2}y-xy^{2}+y^{3}+2xy^{2}-x^{2}y}{(x+y)^{2}}
=\dfrac {x^3+x^2y+y^3+xy^2}{(x+y)^2}
=\dfrac {(x+y)(x^2+y^2)}{(x+y)^2}
=\dfrac {x^2+y^2}{x+y}
=\tan u
Thus
x\dfrac{du}{dx}+y\dfrac{du}{dy}=\sin u \cos u
= \dfrac{1}{2} \sin 2u
If
y=\sqrt{\sin{x}+y}
, then
\displaystyle\frac{dy}{dx}
is
Report Question
0%
\displaystyle\frac{\cos{x}}{2y-1}
0%
\displaystyle\frac{\cos{x}}{1-2y}
0%
\displaystyle\frac{\cos{x}}{2y+1}
0%
\displaystyle\frac{\sin{x}}{2y-1}
Explanation
We have,
y=\sqrt{\sin{x}+y}
On squaring both the sides, we get
y^2=\sin(x)+y
Differentiating w.r.t.
x
,
\displaystyle 2y\frac{dy}{dx}=\cos{x}+\frac{dy}{dx}
2y\displaystyle \frac { dy }{ dx } -\frac { dy }{ dx } =\cos { x }
\displaystyle \frac { dy }{ dx } \left( 2y-1 \right) =\cos { x }
\displaystyle\frac{dy}{dx}=\frac{\cos{x}}{2y-1}
If
\sqrt{x}+\sqrt{y}=4
, then find
\displaystyle\frac{dx}{dy}
at
y=1
.
Report Question
0%
3
0%
4
0%
-3
0%
-4
Explanation
\sqrt{x}+\sqrt{y}=4
Differentiating both sides of the given equation w.r.t. y, we get
\displaystyle\frac{1}{2\sqrt{x}}\frac{dx}{dy}+\frac{1}{2\sqrt{y}}=0
or
\displaystyle\frac{dx}{dy}=-\frac{\sqrt{x}}{\sqrt{y}}=\frac{\sqrt{y}-4}{\sqrt{y}}
........................................Since
\sqrt{x}+\sqrt{y}=4
or
\displaystyle{\left[\frac{dx}{dy}\right]}_{\displaystyle y=1}=\frac{1-4}{1}=-3
If
x^3+y^3=3axy
, then
\displaystyle\frac{dy}{dx}
is
Report Question
0%
\displaystyle\frac{ay-y^2}{x^2-ax}
0%
\displaystyle\frac{ay-x^2}{y^2-ax}
0%
\displaystyle\frac{by-x^2}{y^2-bx}
0%
None of these
Explanation
Given that
x^3+y^3=3axy
We have to find
\displaystyle \frac { dy }{ dx }
Differentiate w r to
x
\displaystyle \frac { d }{ dx } \left( { x }^{ 3 }+{ y }^{ 3 }-3axy \right) =0
3{ x }^{ 2 }+3{ y }^{ 2 }\displaystyle \frac { dy }{ dx } -3a\left( x\displaystyle \frac { dy }{ dx } +y \right) =0
3{ x }^{ 2 }+3{ y }^{ 2 }\displaystyle \frac { dy }{ dx } -3ax\displaystyle \frac { dy }{ dx } -3ay=0
Dividing throughout by
3
\displaystyle \frac { dy }{ dx } \left( { y }^{ 2 }-ax \right) =ay-{ x }^{ 2 }
\displaystyle \frac { dy }{ dx } =\displaystyle \frac { ay-{ x }^{ 2 } }{ { y }^{ 2 }-ax }
For the function
f(x) = \displaystyle \frac{x^{100}}{100} + \frac{x^{99}}{99} + ........... + \frac{x^2}{2} + x+1
,
f'(1) =
Report Question
0%
x^{100}
0%
100
0%
101
0%
None of these
Explanation
Given:\cfrac { d }{ dx } (x^{ n })=nx^{ n-1 }\\ \therefore for\; f(x)=\cfrac { x^{ 100 } }{ 100 } +\cfrac { x^{ 99 } }{ 99 } +...............+\cfrac { x^{ 2 } }{ 2 } +1\\ f'(x)=\cfrac { 100x^{ 99 } }{ 100 } +99\cfrac { x^{ 98 } }{ 99 } +.............+\cfrac { 2x }{ 2 } +1\\ Here\; f'(1)=1+1+.........to\; 100term=\; 100\\ Hence\; f(x)=\cfrac { x^{ 100 } }{ 100 } +\cfrac { x^{ 99 } }{ 99 } +...........+\cfrac { x^{ 2 } }{ 2 } +x+1=100
If
y=x+\displaystyle\frac{1}{x+\displaystyle\frac{1}{x+\displaystyle\frac{1}{x+\cdots}}}
then
\displaystyle\frac{dy}{dx}=
Report Question
0%
\displaystyle\frac{dy}{dx}=\frac{x}{2x-y}
0%
\displaystyle\frac{dy}{dx}=\frac{y}{2y-x}
0%
\displaystyle\frac{dy}{dx}=\frac{2y}{2x-y}
0%
None of these
Explanation
We have
y=x+\displaystyle\frac{1}{x+\displaystyle\frac{1}{x+\displaystyle\frac{1}{x+\cdots}}}
=x+\displaystyle\frac{1}{y}
or
y^2=xy+1
or
2y\displaystyle\frac{dy}{dx}=y+x\frac{dy}{dx}+0
[
Differentiating both sides w.r.t.
x]
or
\displaystyle\frac{dy}{dx}(2y-x)=y
or
\displaystyle\frac{dy}{dx}=\frac{y}{2y-x}
Report Question
0%
Both Assertion and Reason are correct and Reason is the correct explanation for Assertion
0%
Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion
0%
Assertion is correct but Reason is incorrect
0%
Assertion is incorrect but Reason is correct
Explanation
Let
f(x) = (px+q) \displaystyle \left ( \cfrac{r}{x}+s \right )
We have,
\cfrac{d(uv)}{dx} = u'v + uv'
\therefore \displaystyle f'(x) = \left [ \cfrac{d}{dx}(px+q) \right ] \left ( \cfrac{r}{x} +s \right ) +(px+q) \cfrac{d}{dx} \left ( \cfrac{r}{x} +s \right)
=\displaystyle p\left ( \cfrac{r}{x} + s \right ) +(px+q)\left ( \cfrac{-r}{x^2} \right )
= \displaystyle \cfrac{pr}{x}+ps -\cfrac{pr}{x}-\cfrac{qr}{x^2}=ps - \cfrac{qr}{x^2}
Hence, assertion is incorrect but reason is correct.
If
\displaystyle x^2+y^2=t-\frac{1}{t}
and
\displaystyle x^4+y^4=t^2+\frac{1}{t^2}
, then
\displaystyle x^3y\frac{dy}{dx}=
Report Question
0%
0
0%
1
0%
-1
0%
none of these
Explanation
We have
\displaystyle x^2+y^2=t-\frac{1}{t}
..........(1)
\displaystyle x^4+y^4=t^2+\frac{1}{t^2}
................(2)
On squaring equation (1), we get
\displaystyle {(x^2+y^2)}^2=t^2+\frac{1}{t^2}-2
{ x }^{ 4 }+2{ x }^{ 2 }{ y }^{ 2 }+{ y }^{ 4 }=x^4+y^4-2
..............from (2)
\therefore 2x^2y^2=-2
x^2y^2=-1
\displaystyle y^2=-\frac{1}{x^2}
Differentiating both the sides,
\displaystyle 2y\frac{dy}{dx}=\frac{2}{x^3}
\displaystyle x^3y\frac{dy}{dx}=1
If
xy+y^2=\tan x + y
, then
\displaystyle\frac{dy}{dx}
is equal to
Report Question
0%
\displaystyle\frac{\sec^{2}{x}-y}{(x+2y-1)}
0%
\displaystyle\frac{\cos^{2}{x}+y}{(x+2y-1)}
0%
\displaystyle\frac{\sec^{2}{x}-y}{(2x+y-1)}
0%
\displaystyle\frac{\cos^{2}{x}+y}{(2x+2y-1)}
Explanation
The given relation is
xy+y^2=\tan x + y
.
Differentiating both sides with respect to
x
, we get
\displaystyle\frac{d}{dx}(xy)+\frac{d}{dx}(y^2)=\frac{d}{dx}(\tan x)+\frac{dy}{dx}
or
\displaystyle\left[y.1+x.\frac{dy}{dx}\right]+2y\frac{dy}{dx}=\sec^{2}{x}+\frac{dy}{dx}
or
\displaystyle(x+2y-1)\frac{dy}{dx}=\sec^{2}{x}-y
\displaystyle\therefore\frac{dy}{dx}=\frac{\sec^{2}{x}-y}{(x+2y-1)}
If
y^x=x^y
, then find
\displaystyle\frac{dy}{dx}
.
Report Question
0%
\displaystyle\frac{x(y\log{y}-y)}{y(x\log{x}-x)}
0%
\displaystyle\frac{y(x\log{y}-y)}{x(y\log{x}-x)}
0%
{y(x\log{y}-y)}
0%
\displaystyle\frac{y(x\log{x}-y)}{x(y\log{y}-x)}
Explanation
y^x=x^y
Taking log on both sides
\Rightarrow
\log{y^x}=\log{x^y}
\Rightarrow
x\log{y}=y\log{x}
\Rightarrow
\displaystyle x\frac{1}{y}\frac{dy}{dx}+\log{y}\times 1=\frac{y}{x}+\log{x}\frac{dy}{dx}
\Rightarrow
\displaystyle\left(\frac{x}{y}-\log{x}\right)\frac{dy}{dx}=\frac{y}{x}-\log{y}
\Rightarrow
\displaystyle\frac{dy}{dx}=\frac{\displaystyle\frac{y}{x}-\log{y}}{\displaystyle\frac{x}{y}-\log{x}}=\frac{y(y-x\log{y})}{x(x-y\log{x})}=\frac{y(x\log{y}-y)}{x(y\log{x}-x)}
Differentiate
\sqrt{\displaystyle\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}
with respect to
x
.
Report Question
0%
\displaystyle\frac{1}{2}\sqrt{\displaystyle\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}\left[\frac{1}{x-1}-\frac{1}{x-2}-\frac{1}{x-3}-\frac{1}{x-4}-\frac{1}{x-5}\right]
0%
\displaystyle\frac{1}{2}\sqrt{\displaystyle\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}\left[\frac{1}{x-2}+\frac{1}{x-3}+\frac{1}{x-4}+\frac{1}{x-5}\right]
0%
\displaystyle\frac{1}{2}\sqrt{\displaystyle\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}\left[\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x-3}-\frac{1}{x-4}-\frac{1}{x-5}\right]
0%
None of these
Explanation
Let
y=\sqrt{\displaystyle\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}
Taking logarithm on both sides, we get
\log{y}=log{\sqrt{\displaystyle\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}}
\displaystyle =\frac{1}{2}[\log{(x-1)}+\log{(x-2)}-\log{(x-3)}-\log{(x-4)}-\log{(x-5)}]
....................(Since
\log { \displaystyle \frac { a }{ b } =\log { a } } -\log { b }
and
\log { ab=\log { a } +\log { b } }
)
Differentiating both sides w.r.t.
x
, we get
\displaystyle\frac{1}{y}\frac{dy}{dx}=\frac { 1 }{ 2 } \left( \frac { 1 }{ x-1 } \frac { d }{ dx } \left( x-1 \right) +\frac { 1 }{ x-2 } \frac { d }{ dx } \left( x-2 \right) -\frac { 1 }{ x-3 } \frac { d }{ dx } \left( x-3 \right) -\frac { 1 }{ x-4 } \frac { d }{ dx } \left( x-4 \right) -\frac { 1 }{ x-5 } \frac { d }{ dx } \left( x-5 \right) \right)
\displaystyle\therefore\frac{dy}{dx}=\frac{1}{2}\sqrt{\displaystyle\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}\left[\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x-3}-\frac{1}{x-4}-\frac{1}{x-5}\right]
If
y=x^{-\tfrac12}+\log_5x+\displaystyle \frac {\sin x}{\cos x}+2^x
, then find
\dfrac {dy}{dx}
Report Question
0%
-\displaystyle \frac {1}{2}x^{-3/2}+\displaystyle \frac {1}{x\log_e5}+\sec^2x+2^x\log 2
0%
\displaystyle \frac {1}{2}x^{-3/2}+\displaystyle \frac {1}{x\log_e5}+\sec^2x+2^x\log 2
0%
-\displaystyle \frac {3}{2}x^{-3/2}+\displaystyle \frac {1}{x\log_e5}+\sec^2x+2^x\log 2
0%
-\displaystyle \frac {1}{2}x^{-3/2}+\displaystyle \frac {1}{x\log_e5}+\cos^2x+2^x\log 2
Explanation
Here, we have function
y=x^{-1/2}+\log _5x+\tan x+2^x
On differentiating w.r.t x, we get
\dfrac {dy}{dx}=\dfrac {d}{dx}(x)^{-1/2}+\dfrac {d}{dx}(\log _5x)+\dfrac {d}{dx} \tan x+\dfrac {d}{dx}(2^x)
=-\dfrac {1}{2}(x)^{-1/2-1}+\dfrac {1}{x \log _e5}+\sec ^2x+2^x \log 2
=-\dfrac {1}{2}x^{-3/2}+\dfrac {1}{x\log _e5}+\sec ^2x+2^x\log 2
If
y=e^x \sin x
, then find
\displaystyle \frac {dy}{dx}
Report Question
0%
e^x(\sin x+\cos x)
0%
e^x(\sin x-\cos x)
0%
e^x \sin x
0%
None of these
Explanation
Given that
y={ e }^{ x }.\sin { x }
On differentiating, we get
\displaystyle \frac { dy }{ dx } =\sin { x } \frac { d }{ dx } { e }^{ x }+{ e }^{ x }\frac { d }{ dx } \sin { x }
\displaystyle \frac { dy }{ dx } =\sin { x } { e }^{ x }+{ e }^{ x }\cos { x }
\therefore \displaystyle \frac { dy }{ dx } ={ e }^{ x }\left( \sin { x } +\cos { x } \right)
\displaystyle\frac{dy}{dx}
for
y=x^x
is
Report Question
0%
x^x(1-\log{x})
0%
x^x(1-\log{y})
0%
x^x(1+\log{y})
0%
x^x(1+\log{x})
Explanation
y=x^x
Taking
\log
on both the sides
\log { y } =\log { \left( { x }^{ x } \right) }
\log { y } =x\log { x }
Differentiate w.r to
x
\displaystyle \frac { 1 }{ y } \frac { dy }{ dx } =x\frac { d }{ dx } \left( \log { x } \right) +\left( \log { x } \right) \frac { d }{ dx } \left( x \right)
\displaystyle \frac { dy }{ dx } =y\left[ \frac { x }{ x } +\log { x } \right]
\displaystyle \frac { dy }{ dx } ={ x }^{ x }\left[ 1+\log { x } \right]
If
y=x^2+sin^{-1}x+log_ex
, find
\dfrac {dy}{dx}
Report Question
0%
\displaystyle \frac {dy}{dx}=2x+\displaystyle \frac {1}{\sqrt {1-x^2}}+\displaystyle \frac {1}{x}
0%
\displaystyle \frac {dy}{dx}=x+\displaystyle \frac{1}{\sqrt {1-x^2}}+\displaystyle \frac {1}{x}
0%
\displaystyle \frac {dy}{dx}=2x+\displaystyle \frac {1}{\sqrt {1-x^2}}-\displaystyle \frac {1}{x}
0%
\frac {dy}{dx}=2x-\displaystyle \frac {1}{\sqrt {1-x^2}}+\displaystyle \frac {1}{x}
Explanation
y=x^2+sin^{-1}+log_ex
On differentiating, we get
\dfrac {dy}{dx}=\dfrac {d}{dx}(x^2)+\dfrac {d}{dx}sin^{-1}x)+\dfrac {d}{dx}(log_ex)
or
\dfrac {dy}{dx}=2(x)^{2-1}+\dfrac {1}{\sqrt {1-x^2}}+\dfrac {d}{dx}(log_ex)
\dfrac {dy}{dx}=2x+\dfrac {1}{\sqrt {1-x^2}}+\dfrac {1}{x}
If
y=\sqrt{\sin{x}+\sqrt{\sin{x}+\sqrt{\sin{x}+\cdots\:to\:\infty}}}
, then
\displaystyle\frac{dy}{dx}
is
Report Question
0%
\displaystyle\frac{\cos{x}}{1+2y}
0%
\displaystyle -\frac{\sin{x}}{1-2y}
0%
\displaystyle\frac{\cos{x}}{1-2y}
0%
\displaystyle\frac{\cos{x}}{2y-1}
Explanation
We have
y=\sqrt{\sin{x}+\sqrt{\sin{x}+\sqrt{\sin{x}+\cdots\:to\:\infty}}}
The given series may be written as
y=\sqrt{\sin{x}+y}
Squaring both the sides, we get
y^2=\sin{x}+y
Differentiating both sides w.r.t.
x
\displaystyle 2y\frac{dy}{dx}=\cos{x}+\frac{dy}{dx}
2y\displaystyle \frac { dy }{ dx } -\frac { dy }{ dx } =\cos { x }
\displaystyle\frac{dy}{dx}(2y-1)=\cos{x}
\displaystyle\frac{dy}{dx}=\frac{\cos{x}}{2y-1}
If
y=e^x \tan x + x\cdot \log_ex
, then find
\displaystyle \frac {dy}{dx}
Report Question
0%
\displaystyle \frac {dy}{dx}=e^x \tan x+(\log x+1)
0%
\displaystyle \frac {dy}{dx}=e^x(\tan x+\sec^2x)+(\log x+x)
0%
\displaystyle \frac {dy}{dx}=e^x \tan x+1
0%
\displaystyle \frac {dy}{dx}=e^x(\tan x+\sec^2x)+(\log x+1)
Explanation
y=e^x \tan x+x\cdot \log_ex
On differentiating, we get
\displaystyle \frac {dy}{dx}=\frac {d}{dx}(e^x \tan x)+\frac {d}{dx}(x \log x)
=\tan { x } \displaystyle \frac { d }{ dx } { e }^{ x }+{ e }^{ x }\frac { d }{ dx } \left( \tan { x } \right) +x\frac { d }{ dx } \left( \log { x } \right) +\log { x } \frac { d }{ dx } x
=e^x\cdot \tan x+e^x\cdot \sec^2x+1\cdot \log x+x\cdot \displaystyle \frac {1}{x}
Hence,
\displaystyle \frac {dy}{dx}=e^x(\tan x+\sec^2x)+(\log x+1)
If
y={(\tan{x})}^{\displaystyle{(\tan{x})}^{\displaystyle\tan{x}}}
, then find
\displaystyle\frac{dy}{dx}
at
\displaystyle x=\frac{\pi}{4}
.
Report Question
0%
0
0%
1
0%
-1
0%
2
Explanation
Taking
\log
on both sides, we get
\log{y}={(\tan{x})}^{\displaystyle\tan{x}}\log{\tan{x}}
Again taking
\log
on both the sides
\log{\log{y}}=[\tan{x}\log{\tan{x}}]+\log{\log{\tan{x}}}
Differentiating w.r.t.
x
, we get
\displaystyle\frac{1}{y\log{y}}\frac{dy}{dx}=\log { \tan { x } \frac { d }{ dx } \left( \tan { x } \right) +\tan { x } \frac { d }{ dx } \left( \log { \tan { x } } \right) +\frac { d }{ dx } \left( \log { \log { \tan { x } } } \right) }
\displaystyle \frac{dy}{dx}=\log { \tan { x } .\sec ^{ 2 }{ x } +\tan { x } .\frac { \sec ^{ 2 }{ x } }{ \tan { x } } +\frac { \sec ^{ 2 }{ x } }{ \tan { x } .\log { \tan { x } } } }
\displaystyle \frac { dy }{ dx } =y\log { y.\sec ^{ 2 }{ x } \left[ \log { \tan { x } +1+\frac { 1 }{ \tan { x } .\log { \tan { x } } } } \right] }
At
\displaystyle x=\frac{\pi}{4}
,
y=1
and
\log{y}=0
So, putting this values in the equation of
\displaystyle \frac { dy }{ dx }
, we get
\displaystyle\therefore{\left(\frac{dy}{dx}\right)}_{\displaystyle x=\frac{\pi}{4}}=0
0:0:3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page