Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Questions for Class 11 Commerce Applied Mathematics Differentiation Quiz 3 - MCQExams.com

lf y=log(log(x+1+x2)) then dydx=
  • 1x+1+x2
  • xlog(x+1+x2)
  • 1log(x+1+x2)
  • 11+x2log(x+1+x2)
lf ay=loga(x2+x+1), then dydx=
  • logae.(2x+1)(x2+x+1)log(x2+x+1)
  • (2x+1)(x2+x+1)log(x2+x+1)
  • 1(x2+x+1)log(x2+x+1)
  • 1(x2+x+1)log(x2+x+1)
If x+y+yx=c, then d2ydx2 is
  • 2c
  • 2c2
  • 2c2
  • 2c
If f(x)=(ax+b)cosx+(cx+d)sinx and f(x)=xcosx, for all values of xR, then a,b,c,d are given by
  • a=b=c=d
  • 0,1,1,0
  • 1,0,1,0
  • 0,1,1,0
The set onto which the derivative of the function f(x)=x(logx1) maps the ray [1,) is ?
  • [1,)
  • (10,)
  • [0,)
  • (0,0)
lf y=log(x+1+x2)1+x2 then (1+x2)y1+xy=
  • y
  • y
  • 0
  • 1
lf f(x)=x2x+a then f(a)=
  • 4
  • 38
  • 34
  • 8
If ey+xy=e, then d2ydx2x=0 is
  • 1e2
  • e1
  • e
  • None of these

If x4+y4a2xy=0 defines y implicitly as function of x , then dydx=
  • 4x3a2y4y3a2x
  • (4x3a2y4y3a2x)
  • 4x34y3a2x
  • 4x34y3a2x

 lf y=(x2+1)sinx, then y(0) is equal to
  • 12
  • e2
  • 0
  • 32
If f(x)=e x g(x),
g(0)=1,g(0)=3, thenf(0) is
  • 0
  • 4
  • 3
  • 7

 If ax2+2hxy+by2+2gx+2fy+c=0 then dydx=
  • (ax+hy+ghx+by+f)
  • (ax+hy+gbx+hy+f)
  • (hx+by+fax+hy+g)
  • (hx+by+fhx+ay+g)
If u=tan1(x2+y2x+y)then xdudx+ydudy=
  • sin2u
  • 12sin2u
  • 13sin2u
  • 2sin2u
If y=sinx+y, then dydx is
  • cosx2y1
  • cosx12y
  • cosx2y+1
  • sinx2y1
If x+y=4, then find dxdy at y=1.
  • 3
  • 4
  • 3
  • 4
If x3+y3=3axy, then dydx is
  • ayy2x2ax
  • ayx2y2ax
  • byx2y2bx
  • None of these
For the function f(x)=x100100+x9999+...........+x22+x+1, f(1)=
  • x100
  • 100
  • 101
  • None of these
If y=x+1x+1x+1x+ then dydx=
  • dydx=x2xy
  • dydx=y2yx
  • dydx=2y2xy
  • None of these
  • Both Assertion and Reason are correct and Reason is the correct explanation for Assertion
  • Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion
  • Assertion is correct but Reason is incorrect
  • Assertion is incorrect but Reason is correct
If x2+y2=t1t and x4+y4=t2+1t2, then x3ydydx=
  • 0
  • 1
  • 1
  • none of these
If xy+y2=tanx+y, then dydx is equal to
  • sec2xy(x+2y1)
  • cos2x+y(x+2y1)
  • sec2xy(2x+y1)
  • cos2x+y(2x+2y1)
If yx=xy, then find dydx.
  • x(ylogyy)y(xlogxx)
  • y(xlogyy)x(ylogxx)
  • y(xlogyy)
  • y(xlogxy)x(ylogyx)
Differentiate (x1)(x2)(x3)(x4)(x5) with respect to x.
  • 12(x1)(x2)(x3)(x4)(x5)[1x11x21x31x41x5]
  • 12(x1)(x2)(x3)(x4)(x5)[1x2+1x3+1x4+1x5]
  • 12(x1)(x2)(x3)(x4)(x5)[1x1+1x21x31x41x5]
  • None of these
If y=x12+log5x+sinxcosx+2x, then find dydx
  • 12x3/2+1xloge5+sec2x+2xlog2
  • 12x3/2+1xloge5+sec2x+2xlog2
  • 32x3/2+1xloge5+sec2x+2xlog2
  • 12x3/2+1xloge5+cos2x+2xlog2
If y=exsinx, then find dydx
  • ex(sinx+cosx)
  • ex(sinxcosx)
  • exsinx
  • None of these
dydx for y=xx is
  • xx(1logx)
  • xx(1logy)
  • xx(1+logy)
  • xx(1+logx)
If y=x2+sin1x+logex, find dydx
  • dydx=2x+11x2+1x
  • dydx=x+11x2+1x
  • dydx=2x+11x21x
  • dydx=2x11x2+1x
If y=sinx+sinx+sinx+to, then dydx is
  • cosx1+2y
  • sinx12y
  • cosx12y
  • cosx2y1
If y=extanx+xlogex, then find dydx
  • dydx=extanx+(logx+1)
  • dydx=ex(tanx+sec2x)+(logx+x)
  • dydx=extanx+1
  • dydx=ex(tanx+sec2x)+(logx+1)
If y=(tanx)(tanx)tanx, then find dydx at x=π4.
  • 0
  • 1
  • 1
  • 2
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers