CBSE Questions for Class 11 Commerce Applied Mathematics Differentiation Quiz 4 - MCQExams.com

If $$y=logx^3+3 sin^{-1}x+kx^2$$, then find $$\displaystyle \frac {dy}{dx}$$
  • $$3\cdot \displaystyle \frac {1}{x}+3\cdot \frac {1}{\sqrt {1-x^2}}+k(2x)$$
  • $$3\cdot \displaystyle \frac {1}{x^3}+3\cdot \frac {1}{\sqrt {1-x^2}}+k(2x)$$
  • $$3\cdot \displaystyle \frac {1}{x}-3\cdot \frac {1}{\sqrt {1-x^2}}+k(2x)$$
  • $$3\cdot \displaystyle \frac {1}{x}+3\cdot \frac {1}{\sqrt {1-x^2}}+2x$$
If $$\displaystyle y=5^{3-x^2}+(3-x^2)^5$$, then $$\displaystyle \frac{dy}{dx}=$$
  • $$-2x\left \{5^{3-x^2}\cdot \log_e5+5(3-x^2)^4\right \}$$
  • $$-x\left \{5^{3-x^2}\cdot \log_e5+5(3-x^2)^4\right \}$$
  • $$-2x\left \{5^{3-x^2}\cdot \log_e5+(3-x^2)^4\right \}$$
  • $$-2x\left \{5^{3-x^2}+5(3-x^2)^4\right \}$$
If $$y=e^{ax}\cdot \cos (bx+c)$$, then find $$\displaystyle \frac {dy}{dx}$$
  • $$ae^{ax} \cos(bx+c)-be^{ax} \sin (bx+c)$$
  • $$ae^{ax} \cos(bx+c)+be^{ax} \sin (bx+c)$$
  • $$eae^{ax} \cos(bx+c)-be^{ax} \sin (bx+c)$$
  • $$ae^{ax} \cos(bx+c)$$
If $$y=\log_{3}x+3 \log_{e} x+2 \tan x$$, then $$\displaystyle \frac{dy}{dx}=$$
  • $$\displaystyle \frac {1}{x \log_e 3}+\displaystyle \frac {3}{x}+2 \sec^2 x$$
  • $$\displaystyle \frac {1}{x \log_e 3}+\displaystyle \frac {3}{x}+ \sec^2 x$$
  • $$\displaystyle \frac {1}{\log_e 3}+\displaystyle \frac {3}{x}+2 \sec^2 x$$
  • $$\displaystyle \frac {1}{x \log_e 3}-\displaystyle \frac {3}{x}+2 \sec^2 x$$
If $$\displaystyle y=e^{x \log a}+e^{a \log x}+e^{a \log a}$$, then $$\displaystyle \frac{dy}{dx}=$$
  • $$a^x \log a+x^{a-1}$$
  • $$a^x \log a+ax$$
  • $$a^x \log a+ax^{a-1}$$
  • $$a^x \log a+ax^{a}$$
If $$\displaystyle y=\frac{1}{1+x^{\beta -\alpha}+x^{\gamma -\alpha}}+\frac{1}{1+x^{\alpha-\beta}+x^{\gamma -\beta }}+\frac{1}{1+x^{\alpha -\gamma }+x^{\beta-\gamma }}$$
then $$\displaystyle \frac{dy}{dx}$$ is equal to-
  • $$0$$
  • $$1$$
  • $$\displaystyle

    (a+\beta +\gamma )X^{\alpha +\beta +\gamma -1}$$
  • None of these
If $$2^x+2^y=2^{x+y}$$, then $$\displaystyle \frac {dy}{dx}$$ has the value equal to
  • $$\displaystyle -\frac {2^y}{2^x}$$
  • $$\displaystyle \frac {1}{1-2^x}$$
  • $$\displaystyle 1-2^y$$
  • $$\displaystyle \frac {2^x(1-2^y)}{2^y(2^x-1)}$$
If $$f'(x)=\sin x+\sin 4x\cdot \cos x$$, then $$f'\left (2x^2+\displaystyle \frac {\pi}{2}\right )$$ is
  • $$4x\left \{\cos(2x^2)-sin 8x^2\cdot \sin 2x^2\right \}$$
  • $$4x\left \{\cos(2x^2)+\sin 8x^2\cdot \sin 2x^2\right \}$$
  • $$\left \{\cos (2x^2)-\sin 8x\cdot \sin 2x^2\right \}$$
  • none of the above
If $$y=|\cos x|+|\sin x|$$, then $$\displaystyle \dfrac {dy}{dx}$$ at $$x=\dfrac {2\pi}{3}$$ is
  • $$\displaystyle \dfrac {1}{2}(\sqrt 3+1)$$
  • $$2(\sqrt 3-1)$$
  • $$\displaystyle \dfrac {1}{2}(\sqrt 3-1)$$
  • none of these
Find the derivative of $$e^{x \sin x}$$
  • $$\displaystyle e^{x \sin x} (x \cos x-\sin x)$$
  • $$\displaystyle e^{x \sin x} x \cos x$$
  • $$\displaystyle e^{x \sin x} (-x \cos x+\sin x)$$
  • $$\displaystyle e^{x \sin x} (x \cos x+\sin x)$$
Find the derivative of $$\sec^{-1}\left (\displaystyle \frac {x+1}{x-1}\right )+\sin^{-1}\left (\displaystyle \frac {x-1}{x+1}\right )$$
  • $$0$$
  • $$1$$
  • $$-1$$
  • $$\displaystyle \frac{x+1}{x-1}$$
If $$y=\log_{10}x+\log_x 10+\log_xx+\log_{10} 10$$, then $$\displaystyle \frac{dy}{dx}=$$
  • $$\displaystyle \frac {1}{x \log_e 10}-\displaystyle \frac {\log_e 10}{x(\log_ex)^2}$$
  • $$\displaystyle \frac {1}{\log_e 10}-\displaystyle \frac {\log_e 10}{x(\log_ex)^2}$$
  • $$\displaystyle \frac {1}{x \log_e 10}-\displaystyle \frac {\log_e 10}{x^2(\log_ex)^2}$$
  • None of these
If $$\displaystyle y=\frac { x }{ a+\displaystyle\frac { x }{ b+\displaystyle\frac { x }{ a+\displaystyle\frac { x }{ b+.....\infty  }  }  }  } $$, then $$\cfrac{dy}{dx} =$$

  • $$\displaystyle\frac{a}{ab+2ay}$$
  • $$\displaystyle\frac{b}{ab+2by}$$
  • $$\displaystyle\frac{a}{ab+2by}$$
  • $$\displaystyle\frac{b}{ab+2ay}$$
If $$\displaystyle y=\frac { \sin { x }  }{ 1+\displaystyle \frac { \cos { x }  }{ 1+\displaystyle \frac { \sin { x }  }{ 1+\displaystyle\frac { \cos { x }  }{ 1+\displaystyle \frac { \sin { x }  }{ 1+  .....\infty}  }  }  }  } $$, then $$y'(0)$$ is

  • equal to $$0$$
  • equal to $$\frac{1}{2}$$
  • equal to $$1$$
  • non existent
Given : $$f(x)=4x^3-6x^2\cos2a+3x \sin 2a.\sin 6a+\sqrt{\ln (2a-a^2)}$$ then 
  • $$f(x)$$ is not defined at $$x=\displaystyle \frac{1}{2}$$
  • $${f}'(\displaystyle \frac{1}{2})<0$$
  • $$f'(x)$$ is not defined at $$x=\displaystyle \frac{1}{2}$$
  • $${f}'(\displaystyle \frac{1}{2})>0$$
If $$y = sec^{-1}\left(\displaystyle\frac{\sqrt x + 1}{\sqrt x - 1}\right) + \sin^{-1}\left(\displaystyle\frac{\sqrt x - 1}{\sqrt x + 1}\right)$$, then $$\displaystyle\frac{dy}{dx}$$ equals
  • $$1$$
  • $$0$$
  • $$\displaystyle\frac{\sqrt x + 1}{\sqrt x - 1}$$
  • $$\displaystyle\frac{\sqrt x - 1}{\sqrt x + 1}$$
Which of the following could be the sketch graph of $$y=\displaystyle \frac{d}{dx}(x\ln x)$$
The solution set of $${f}'(x)>{g}'(x)$$ where $$f(x)=\displaystyle \frac{1}{2}(5^{2x+1})$$ & $$g(x)= 5^x+4x(\ln 5)$$ is 
  • $$x>1$$
  • $$0< x< 1$$
  • $$x \leq 0$$
  • $$x>0$$
The equation $$y^2e^{xy} =9e^{-3}.x^2$$ defines $$y$$ as a differentiable function of x. The value of $$\displaystyle \frac{dy}{dx}$$ for  $$x=-1$$ and $$y= 3$$ is 
  • $$-\displaystyle \frac{15}{2}$$
  • $$-\displaystyle \frac{9}{5}$$
  • $$3$$
  • $$15$$
$$f:R\rightarrow R$$ and $$\displaystyle f(x)=\frac {x(x^4+1)(x+1)+x^4+2}{x^2+x+1}$$, then $$f(x)$$ is
  • one-one ito
  • many-one onto
  • one-one onto
  • many-one into
Suppose the function $$f(x)-f(2x)$$ has the derivative $$5$$ at $$x=1$$ and derivative $$7$$ at $$x=2$$.The derivative  of the function $$f(x)-f(4x)$$ at $$x=1$$, has the value equal to 
  • $$19$$
  • $$9$$
  • $$17$$
  • $$14$$
If $$y=x^{1/x}$$, the value of $$\displaystyle \frac{dy}{dx}$$ at $$x=e$$ is
  • 1
  • 0
  • -1
  • none of these
If for all $$x, y$$ the function $$f$$ is defined by $$f(x)+f(y)+f(x).f(y)=1$$ and $$f(x)>0$$ then 
  • $$f^{'}(x)$$ does not exist
  • $$f^{'}(x)=0$$ for all $$x$$
  • $$f^{'}(0)< f^{'}(1)$$
  • none of these
If $${ S }_{ n }$$ denotes the sum of $$n$$ terms of a G.P. whose common ratio is $$r$$, then $$\displaystyle \left( r-1 \right) \frac { d{ S }_{ n } }{ dr } $$ is equal to
  • $$\left( n-1 \right) { S }_{ n }+n{ S }_{ n-1 }$$
  • $$\left( n-1 \right) { S }_{ n }-n{ S }_{ n-1 }$$
  • $$\left( n-1 \right) { S }_{ n }$$
  • None of these
If $$x^{y}=e^{x+y}$$ then $$\displaystyle \frac{dy}{dx}$$ at $$x=1$$ is equal to
  • $$0$$
  • $$-2$$
  • $$1$$
  • none of these
Let $$\displaystyle f\left( \frac { { x }_{ 1 }+{ x }_{ 2 }+...+{ x }_{ n } }{ n }  \right) =\frac { f\left( { x }_{ 1 } \right) +f\left( { x }_{ 2 } \right) +...+f\left( { x }_{ n } \right)  }{ n } $$ where all $${ x }_{ i }\in R$$ are independent to each other and $$n\in N$$. if $$f(x)$$ is differentiable and $$f'\left( 0 \right) =a,f\left( 0 \right) =b$$ and $$f'\left( x \right) $$ is equal to
  • $$a$$
  • $$0$$
  • $$b$$
  • None of these
If  $$5f(x)+3f\left ( \displaystyle \frac{1}{x} \right )=x+2$$ and $$y=xf(x)$$ then $$\left (\displaystyle  \frac{dy}{dx} \right )_{x=1}$$ is equal to ?
  • $$14$$
  • $$\displaystyle \frac{7}{8}$$
  • $$1$$
  • none of these
$$y=\sqrt{\sin x+\sqrt{\sin x +\sqrt{\sin x+-\infty }}}$$ then $$\displaystyle \frac{dy}{dx}$$ equals:$$(\sin x> 0)$$
  • $$\displaystyle \frac{\cos x}{2y-1}$$
  • $$\displaystyle \frac{y}{2\tan x+y\sec x}$$
  • $$\displaystyle \frac{1}{\sqrt{1+4\sin x}}$$
  • $$\displaystyle \frac{2\cos x}{\sin x+2y}$$
If $$xe^{xy}-y=\sin ^{2}x$$ then $$\displaystyle \frac{dy}{dx}$$ at $$x=0$$ is
  • $$0$$
  • $$1$$
  • $$-1$$
  • None of these
If $$x^{y}.y^{x}=16$$ then $$\frac{dy}{dx}$$ at (2, 2) is
  • $$1$$
  • $$-1$$
  • $$0$$
  • none of these
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers