Processing math: 30%

CBSE Questions for Class 11 Commerce Applied Mathematics Differentiation Quiz 4 - MCQExams.com

If y=logx3+3sin1x+kx2, then find dydx
  • 31x+311x2+k(2x)
  • 31x3+311x2+k(2x)
  • 31x311x2+k(2x)
  • 31x+311x2+2x
If y=53x2+(3x2)5, then dydx=
  • 2x{53x2loge5+5(3x2)4}
  • x{53x2loge5+5(3x2)4}
  • 2x{53x2loge5+(3x2)4}
  • 2x{53x2+5(3x2)4}
If y=eaxcos(bx+c), then find dydx
  • aeaxcos(bx+c)beaxsin(bx+c)
  • aeaxcos(bx+c)+beaxsin(bx+c)
  • eaeaxcos(bx+c)beaxsin(bx+c)
  • aeaxcos(bx+c)
If y=log3x+3logex+2tanx, then dydx=
  • 1xloge3+3x+2sec2x
  • 1xloge3+3x+sec2x
  • 1loge3+3x+2sec2x
  • 1xloge33x+2sec2x
If y=exloga+ealogx+ealoga, then dydx=
  • axloga+xa1
  • axloga+ax
  • axloga+axa1
  • axloga+axa
If y=11+xβα+xγα+11+xαβ+xγβ+11+xαγ+xβγ
then dydx is equal to-
  • 0
  • 1
  • (a+β+γ)Xα+β+γ1
  • None of these
If 2x+2y=2x+y, then dydx has the value equal to
  • 2y2x
  • 112x
  • 12y
  • 2x(12y)2y(2x1)
If f(x)=sinx+sin4xcosx, then f(2x2+π2) is
  • 4x{cos(2x2)sin8x2sin2x2}
  • 4x{cos(2x2)+sin8x2sin2x2}
  • {cos(2x2)sin8xsin2x2}
  • none of the above
If y=|cosx|+|sinx|, then dydx at x=2π3 is
  • 12(3+1)
  • 2(31)
  • 12(31)
  • none of these
Find the derivative of exsinx
  • exsinx(xcosxsinx)
  • exsinxxcosx
  • exsinx(xcosx+sinx)
  • exsinx(xcosx+sinx)
Find the derivative of sec1(x+1x1)+sin1(x1x+1)
  • 0
  • 1
  • 1
  • x+1x1
If y=\log_{10}x+\log_x 10+\log_xx+\log_{10} 10, then \displaystyle \frac{dy}{dx}=
  • \displaystyle \frac {1}{x \log_e 10}-\displaystyle \frac {\log_e 10}{x(\log_ex)^2}
  • \displaystyle \frac {1}{\log_e 10}-\displaystyle \frac {\log_e 10}{x(\log_ex)^2}
  • \displaystyle \frac {1}{x \log_e 10}-\displaystyle \frac {\log_e 10}{x^2(\log_ex)^2}
  • None of these
If \displaystyle y=\frac { x }{ a+\displaystyle\frac { x }{ b+\displaystyle\frac { x }{ a+\displaystyle\frac { x }{ b+.....\infty  }  }  }  } , then \cfrac{dy}{dx} =

  • \displaystyle\frac{a}{ab+2ay}
  • \displaystyle\frac{b}{ab+2by}
  • \displaystyle\frac{a}{ab+2by}
  • \displaystyle\frac{b}{ab+2ay}
If \displaystyle y=\frac { \sin { x }  }{ 1+\displaystyle \frac { \cos { x }  }{ 1+\displaystyle \frac { \sin { x }  }{ 1+\displaystyle\frac { \cos { x }  }{ 1+\displaystyle \frac { \sin { x }  }{ 1+  .....\infty}  }  }  }  } then y'(0) is

  • equal to 0
  • equal to \frac{1}{2}
  • equal to 1
  • non existent
Given : f(x)=4x^3-6x^2\cos2a+3x \sin 2a.\sin 6a+\sqrt{\ln (2a-a^2)} then 
  • f(x) is not defined at x=\displaystyle \frac{1}{2}
  • {f}'(\displaystyle \frac{1}{2})<0
  • f'(x) is not defined at x=\displaystyle \frac{1}{2}
  • {f}'(\displaystyle \frac{1}{2})>0
If y = sec^{-1}\left(\displaystyle\frac{\sqrt x + 1}{\sqrt x - 1}\right) + \sin^{-1}\left(\displaystyle\frac{\sqrt x - 1}{\sqrt x + 1}\right), then \displaystyle\frac{dy}{dx} equals
  • 1
  • 0
  • \displaystyle\frac{\sqrt x + 1}{\sqrt x - 1}
  • \displaystyle\frac{\sqrt x - 1}{\sqrt x + 1}
Which of the following could be the sketch graph of y=\displaystyle \frac{d}{dx}(x\ln x)
The solution set of {f}'(x)>{g}'(x) where f(x)=\displaystyle \frac{1}{2}(5^{2x+1}) & g(x)= 5^x+4x(\ln 5) is 
  • x>1
  • 0< x< 1
  • x \leq 0
  • x>0
The equation y^2e^{xy} =9e^{-3}.x^2 defines y as a differentiable function of x. The value of \displaystyle \frac{dy}{dx} for  x=-1 and y= 3 is 
  • -\displaystyle \frac{15}{2}
  • -\displaystyle \frac{9}{5}
  • 3
  • 15
f:R\rightarrow R and \displaystyle f(x)=\frac {x(x^4+1)(x+1)+x^4+2}{x^2+x+1}, then f(x) is
  • one-one ito
  • many-one onto
  • one-one onto
  • many-one into
Suppose the function f(x)-f(2x) has the derivative 5 at x=1 and derivative 7 at x=2.The derivative  of the function f(x)-f(4x) at x=1, has the value equal to 
  • 19
  • 9
  • 17
  • 14
If y=x^{1/x}, the value of \displaystyle \frac{dy}{dx} at x=e is
  • 1
  • 0
  • -1
  • none of these
If for all x, y the function f is defined by f(x)+f(y)+f(x).f(y)=1 and f(x)>0 then 
  • f^{'}(x) does not exist
  • f^{'}(x)=0 for all x
  • f^{'}(0)< f^{'}(1)
  • none of these
If { S }_{ n } denotes the sum of n terms of a G.P. whose common ratio is r, then \displaystyle \left( r-1 \right) \frac { d{ S }_{ n } }{ dr } is equal to
  • \left( n-1 \right) { S }_{ n }+n{ S }_{ n-1 }
  • \left( n-1 \right) { S }_{ n }-n{ S }_{ n-1 }
  • \left( n-1 \right) { S }_{ n }
  • None of these
If x^{y}=e^{x+y} then \displaystyle \frac{dy}{dx} at x=1 is equal to
  • 0
  • -2
  • 1
  • none of these
Let \displaystyle f\left( \frac { { x }_{ 1 }+{ x }_{ 2 }+...+{ x }_{ n } }{ n }  \right) =\frac { f\left( { x }_{ 1 } \right) +f\left( { x }_{ 2 } \right) +...+f\left( { x }_{ n } \right)  }{ n } where all { x }_{ i }\in R are independent to each other and n\in N. if f(x) is differentiable and f'\left( 0 \right) =a,f\left( 0 \right) =b and f'\left( x \right) is equal to
  • a
  • 0
  • b
  • None of these
If  5f(x)+3f\left ( \displaystyle \frac{1}{x} \right )=x+2 and y=xf(x) then \left (\displaystyle  \frac{dy}{dx} \right )_{x=1} is equal to ?
  • 14
  • \displaystyle \frac{7}{8}
  • 1
  • none of these
y=\sqrt{\sin x+\sqrt{\sin x +\sqrt{\sin x+-\infty }}} then \displaystyle \frac{dy}{dx} equals:(\sin x> 0)
  • \displaystyle \frac{\cos x}{2y-1}
  • \displaystyle \frac{y}{2\tan x+y\sec x}
  • \displaystyle \frac{1}{\sqrt{1+4\sin x}}
  • \displaystyle \frac{2\cos x}{\sin x+2y}
If xe^{xy}-y=\sin ^{2}x then \displaystyle \frac{dy}{dx} at x=0 is
  • 0
  • 1
  • -1
  • None of these
If x^{y}.y^{x}=16 then \frac{dy}{dx} at (2, 2) is
  • 1
  • -1
  • 0
  • none of these
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers