Processing math: 100%

CBSE Questions for Class 11 Commerce Applied Mathematics Differentiation Quiz 4 - MCQExams.com

If y=logx3+3sin1x+kx2, then find dydx
  • 31x+311x2+k(2x)
  • 31x3+311x2+k(2x)
  • 31x311x2+k(2x)
  • 31x+311x2+2x
If y=53x2+(3x2)5, then dydx=
  • 2x{53x2loge5+5(3x2)4}
  • x{53x2loge5+5(3x2)4}
  • 2x{53x2loge5+(3x2)4}
  • 2x{53x2+5(3x2)4}
If y=eaxcos(bx+c), then find dydx
  • aeaxcos(bx+c)beaxsin(bx+c)
  • aeaxcos(bx+c)+beaxsin(bx+c)
  • eaeaxcos(bx+c)beaxsin(bx+c)
  • aeaxcos(bx+c)
If y=log3x+3logex+2tanx, then dydx=
  • 1xloge3+3x+2sec2x
  • 1xloge3+3x+sec2x
  • 1loge3+3x+2sec2x
  • 1xloge33x+2sec2x
If y=exloga+ealogx+ealoga, then dydx=
  • axloga+xa1
  • axloga+ax
  • axloga+axa1
  • axloga+axa
If y=11+xβα+xγα+11+xαβ+xγβ+11+xαγ+xβγ
then dydx is equal to-
  • 0
  • 1
  • (a+β+γ)Xα+β+γ1
  • None of these
If 2x+2y=2x+y, then dydx has the value equal to
  • 2y2x
  • 112x
  • 12y
  • 2x(12y)2y(2x1)
If f(x)=sinx+sin4xcosx, then f(2x2+π2) is
  • 4x{cos(2x2)sin8x2sin2x2}
  • 4x{cos(2x2)+sin8x2sin2x2}
  • {cos(2x2)sin8xsin2x2}
  • none of the above
If y=|cosx|+|sinx|, then dydx at x=2π3 is
  • 12(3+1)
  • 2(31)
  • 12(31)
  • none of these
Find the derivative of exsinx
  • exsinx(xcosxsinx)
  • exsinxxcosx
  • exsinx(xcosx+sinx)
  • exsinx(xcosx+sinx)
Find the derivative of sec1(x+1x1)+sin1(x1x+1)
  • 0
  • 1
  • 1
  • x+1x1
If y=log10x+logx10+logxx+log1010, then dydx=
  • 1xloge10loge10x(logex)2
  • 1loge10loge10x(logex)2
  • 1xloge10loge10x2(logex)2
  • None of these
If y=xa+xb+xa+xb+....., then dydx=

  • aab+2ay
  • bab+2by
  • aab+2by
  • bab+2ay
If y=sinx1+cosx1+sinx1+cosx1+sinx1+.....then y(0) is

  • equal to 0
  • equal to 12
  • equal to 1
  • non existent
Given : f(x)=4x36x2cos2a+3xsin2a.sin6a+ln(2aa2) then 
  • f(x) is not defined at x=12
  • f(12)<0
  • f(x) is not defined at x=12
  • f(12)>0
If y=sec1(x+1x1)+sin1(x1x+1), then dydx equals
  • 1
  • 0
  • x+1x1
  • x1x+1
Which of the following could be the sketch graph of y=ddx(xlnx)
The solution set of f(x)>g(x) where f(x)=12(52x+1) & g(x)=5x+4x(ln5) is 
  • x>1
  • 0<x<1
  • x0
  • x>0
The equation y2exy=9e3.x2 defines y as a differentiable function of x. The value of dydx for  x=1 and y=3 is 
  • 152
  • 95
  • 3
  • 15
f:RR and f(x)=x(x4+1)(x+1)+x4+2x2+x+1, then f(x) is
  • one-one ito
  • many-one onto
  • one-one onto
  • many-one into
Suppose the function f(x)f(2x) has the derivative 5 at x=1 and derivative 7 at x=2.The derivative  of the function f(x)f(4x) at x=1, has the value equal to 
  • 19
  • 9
  • 17
  • 14
If y=x1/x, the value of dydx at x=e is
  • 1
  • 0
  • -1
  • none of these
If for all x,y the function f is defined by f(x)+f(y)+f(x).f(y)=1 and f(x)>0 then 
  • f(x) does not exist
  • f(x)=0 for all x
  • f(0)<f(1)
  • none of these
If Sn denotes the sum of n terms of a G.P. whose common ratio is r, then (r1)dSndr is equal to
  • (n1)Sn+nSn1
  • (n1)SnnSn1
  • (n1)Sn
  • None of these
If xy=ex+y then dydx at x=1 is equal to
  • 0
  • 2
  • 1
  • none of these
Let f(x1+x2+...+xnn)=f(x1)+f(x2)+...+f(xn)n where all xiR are independent to each other and nN. if f(x) is differentiable and f(0)=a,f(0)=b and f(x) is equal to
  • a
  • 0
  • b
  • None of these
If  5f(x)+3f(1x)=x+2 and y=xf(x) then (dydx)x=1 is equal to ?
  • 14
  • 78
  • 1
  • none of these
y=sinx+sinx+sinx+ then dydx equals:(sinx>0)
  • cosx2y1
  • y2tanx+ysecx
  • 11+4sinx
  • 2cosxsinx+2y
If xexyy=sin2x then dydx at x=0 is
  • 0
  • 1
  • 1
  • None of these
If xy.yx=16 then dydx at (2, 2) is
  • 1
  • 1
  • 0
  • none of these
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers