Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

CBSE Questions for Class 11 Commerce Applied Mathematics Differentiation Quiz 5 - MCQExams.com

If P(x) is a polynomial such that P(x2+1)={P(x2)}2+1 and P(0)=0 then P(0) is equal to
  • 1
  • 0
  • 1
  • none of these
If   yx=xsiny, find dydx.
  • yx[xlogysinyylogxcosyx]
  • yx[xlogy+sinyylogxcosy+x]
  • yx[xlogysinyylogxcosyx]
  • yx[xlogysinyylogxcosy+x]
y=(cotx)sinx+(tanx)cosx.Find dy/dx 
  • sinx(cotx)sinx1(cosec2x)+(cotx)sinx(logcotx)cosx+cosx(tanx)cosx1sec2x+(tanx)cosx(logtanx)(sinx)
  • sinx(cotx)sinx1(cosec2x)+cosx(tanx)cosx1sec2x
  • sinx(cotx)sinx1(sec2x)+(cotx)sinx(logcotx)cosx+cosx(tanx)cosx+1cosec2x+(tanx)cosx(logtanx)(sinx)
  • None of these
If x2+y2=1 then (where y=dydx,y=d2ydx2) 
  • yy2y2+1=0
  • yy+y2+1=0
  • yyy21=0
  • yy+2y2+1=0
ddx(loge(1+x1x)1/412tan1x.)
  • x21x4.
  • x31x4.
  • x41x4.
  • x21x4.
If x=ey+ey+ey+..., x>0, then dydx=
  • 1xx
  • 1x
  • x1+x
  • 1+xx
If f is a real-valued differentiable function satisfying |f(x)f(y)|(xy)2 for all x,yϵR and f(0)=0 then f(1) equals
  • 0
  • 1
  • 1
  • 2
\displaystyle \frac{d}{dx}(\tan ^{-1}\frac{\sin x+\cos x}{\cos x-\sin x})
  • -1
  • -2
  • 1
  • 2
\displaystyle \frac{d}{dx}\tan ^{-1}\left(\frac{a \cos x-b\sin x}{b\cos x+a\sin x}\right)
  • -1
  • -2
  • 1
  • 2
If \displaystyle  f\left( x \right) =\sqrt { 1+\sqrt { x }  } , x > 0, then \displaystyle f\left ( x \right )\cdot f'\left ( x \right ) is equal to
  • \displaystyle \frac{1}{2\sqrt{x}}
  • \displaystyle \frac{1}{2}
  • \displaystyle \frac{1}{4\sqrt{x}}
  • \displaystyle \frac{2\sqrt{x}+1}{4\sqrt{x}}
\displaystyle \dfrac{d}{dx}\tan ^{-1}\left(\dfrac{\cos x}{1+\sin x}\right)
  • -\displaystyle \dfrac{1}{2}
  • -\displaystyle \dfrac{1}{4}
  • -\displaystyle \dfrac{1}{8}
  • \displaystyle \dfrac{1}{2}
Differentiate \displaystyle x^{\sin^{-1}x} w.r.t. \displaystyle \sin ^{-1}x.
  • \displaystyle x^{\sin ^{-1}x}\left [ \log x+\sin ^{-1}x.\frac{\sqrt{\left ( 1-x^{2} \right )}}{x} \right ]
  • -\displaystyle x^{\sin ^{-1}x}\left [ \log x+\sin ^{-1}x\frac{\sqrt{\left ( 1-x^{2} \right )}}{x} \right ]
  • \displaystyle x^{\sin ^{-1}x}\left [ \log x+\sin ^{-1}x\frac{\sqrt{\left ( 1+x^{2} \right )}}{x} \right ]
  • -\displaystyle x^{\sin ^{-1}x}\left [ \log x+\sin ^{-1}x\frac{\sqrt{\left ( 1+x^{2} \right )}}{x} \right ]
If y = \displaystyle (\tan x)^{\log x}, then \cfrac{dy}{dx} =
  • (\tan x)^{\log x} \left[\cfrac{\log \tan x}{x}+\cfrac{\log x}{\tan x}(\sec^2x) \right]
  • \frac { 1 }{ x } { tanx }^{ logx }log(tanx)+\frac { 1 }{ tanx } \sec ^{ 2 }{ x } logx
  • \frac { 1 }{ x } { tanx }^{ logx }log(tanx)+\frac { 1 }{ tanx } \sec ^{ 2 }{ x }
  • none of these
Differentiate \displaystyle \tan x^{n}+\tan ^{n}x-\tan ^{-1}\frac{a+x^{n}}{1-ax^{n}}.
  • \left ( \sec^{2}x^{n} \right ).nx^{n-1}+n\tan^{n-1}x.\sec^{2}x-\left [\dfrac{ 1}{\left ( 1-x^{2n} \right ) }\right ]nx^{n-1}
  • \left ( \sec^{2}x^{n} \right ).nx^{n-1}+n\tan^{n-1}x.\sec^{2}x-\left [ \dfrac{1}{\left ( 1+x^{2n} \right )} \right ]nx^{n}
  • \left ( \sec^{2}x^{n} \right ).nx^{n-1}+n\tan^{n}x.\sec^{2}x-\left [\dfrac{ 1}{\left ( 1+x^{2n} \right )} \right ]nx^{n-1}
  • \left ( \sec^{2}x^{n} \right ).nx^{n-1}+n\tan^{n-1}x.\sec^{2}x-\left [ \dfrac{1}{\left ( 1+x^{2n} \right )} \right ]nx^{n-1}
If \displaystyle y=x^{n} log x+x(log x)^{n}, find  dy/dx.
  • x^{n-1}(1+n log x)+(log x)^{n-1}[n+log x]
  • x^{n}(1+n log x)+(log x)^{n}[n+log x]
  • x^{n-1}(1+(n-1) log x)+(log x)^{n-1}[n-1+log x]
  • none of these
If  \displaystyle x\sqrt{(1+y)}+y\sqrt{(1+x)}=0, then \displaystyle \frac{dy}{dx}=
  • \displaystyle \frac{1}{(1+x)^{2}}
  • \displaystyle -\frac{1}{(1+x)^{2}}
  • \displaystyle -\frac{1}{(1-x)^{2}}
  • \displaystyle \frac{1}{(1-x)^{2}}
If x^{m}.y^{n}=\left ( x+y \right )^{m+n}, then \dfrac{dy}{dx}=
  • \displaystyle \frac{y}{x}
  • \displaystyle \frac{-y}{x}
  • \dfrac {my}{x}
  • \dfrac {ny}{x}
Differentiate the following: \displaystyle \cot ^{-1}\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{\left ( 1+\sin x \right )}-\sqrt{\left ( 1-\sin x \right )}}
  • \displaystyle \frac{1}{2}.
  • \displaystyle \frac{-1}{2}.
  • \displaystyle \frac{1}{4}.
  • \displaystyle \frac{-1}{4}.
Find the differential equation of the family of curves whose equations are \displaystyle \frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}+\lambda }=1, where \displaystyle \lambda is parameter.
  • \displaystyle -\frac{xy}{a^{2}{y}'}=\frac{a^{2}-x^2}{a^{2}}
  • \displaystyle -\frac{xy}{a^{2}{y}'}=\frac{a^{2}+x^2}{a^{2}}
  • \displaystyle -\frac{xy}{a^{2}{y}'}=\frac{a^{4}-x^2}{a^{2}}
  • \displaystyle -\frac{xy}{a^{2}{y}'}=\frac{a^{4}+x^2}{a^{2}}
Let \displaystyle f\left ( x \right ) be defined by \displaystyle f\left ( x \right )=\left\{\begin{matrix}\sin 2x & \text{if } 0< x\leq \dfrac{\pi}6\\ ax+b& \text{if } \dfrac{\pi}6< x\leq 1\end{matrix}\right. . The values of a and b such that \displaystyle f and \displaystyle {f}' are continuous, are
  • \displaystyle a=1,b=\dfrac1{\sqrt{2}}+\dfrac{\pi}6
  • \displaystyle a=\dfrac1{\sqrt{2}},b=\dfrac1{\sqrt{2}}
  • \displaystyle a=1,b=\dfrac{\sqrt{3}}2-\dfrac{\pi}6
  • None of these
Find the solution of \displaystyle \frac{dy}{dx}= \frac{2x+2y-2}{3x+y-5}.
  • \displaystyle \left ( 2x+y-3 \right )= k\left ( x-y-3 \right )^{4}
  • \displaystyle \left ( 2x-y-3 \right )= k\left ( x-y-3 \right )^{4}
  • \displaystyle \left ( 2x+y+3 \right )= k\left ( x-y-3 \right )^{4}
  • \displaystyle \left ( 2x+y-3 \right )= k\left ( 2x-y-3 \right )^{4}
If f\left( x \right) is a polynomial of degree n(>2) and f\left( x \right) =f\left( k-x \right) ,( where k is a fixed real number), then degree of f'(x) is
  • n
  • n-1
  • n-2
  • None of these
If 2f\left( \sin { x }  \right) +f\left( \cos { x }  \right) =x, then \displaystyle \frac { d }{ dx } f\left( x \right) is
  • \sin{x}+\cos{x}
  • 2
  • \displaystyle \frac { 1 }{ \sqrt { 1-{ x }^{ 2 } }  }
  • none of these
Obtain the differential equation whose solutions are
\displaystyle y=A\cos \left ( x+3 \right ), A being constant.
  • \displaystyle \frac{dy}{dx}+y\tan \left ( x+3 \right )=0
  • \displaystyle \frac{dy}{dx}+y\tan \left ( x-3 \right )=0
  • \displaystyle -\frac{dy}{dx}+y\tan \left ( x-3 \right )=0
  • \displaystyle -\frac{dy}{dx}+y\tan \left ( x+3 \right )=0
If \displaystyle {f}'\left ( x \right )=g\left ( x \right ) and \displaystyle {g}'\left ( x \right )=-f\left ( x \right ) and \displaystyle f\left ( 2 \right )=4={f}'\left ( 2 \right ) then \displaystyle f^{2}\left ( 16 \right )+g^{2}\left ( 16 \right ) is
  • 16
  • 32
  • 64
  • None of these
Let f\left( x \right)=\sqrt { x-1 } +\sqrt { x+24-10\sqrt { x-1 }  } ;1<x<26 be a real valued function. Then f'(x) for 1<x<26 is
  • 0
  • \displaystyle \frac { 1 }{ \sqrt { x-1 }  }
  • 2\sqrt { x-1 } -5
  • none of these
A curve passing through the point (1,1) is such that the intercept made by a tangent to it on x-axis is three times the x co-ordinate of the point of tangency, then the equation of the curve is:
  • \displaystyle y=\frac{1}{x^{2}}
  • \displaystyle y=\sqrt{x}
  • \displaystyle y=\frac{1}{\sqrt{x}}
  • none
Let \displaystyle f be a function satisfying \displaystyle f\left ( x+y \right )=f\left ( x \right )f\left ( y \right ) for all x and y and \displaystyle f\left ( 0 \right )={f}'\left ( 0 \right )=1 then
  • \displaystyle f is differentiable for all x
  • \displaystyle {f}'\left ( x \right )=f\left ( x \right )
  • \displaystyle f\left ( x \right )=e^{x}
  • \displaystyle f is continuous for alI x
If \displaystyle f\left ( 1 \right )=3 and \displaystyle {f}'\left ( 1 \right )=-\dfrac13 then the derivative of \displaystyle \left ( x^{11} +f\left ( x \right )\right )^{-2} at \displaystyle x=1 is
  • -\dfrac12
  • -1
  • 1
  • \displaystyle {f}'\left ( 1 \right )
A polynomial f(x) leaves remainder 15 when divided by (x-3) and (2x+1) when divided by (x-1)^2. When f is divided by (x-3)(x-1)^2, the remainder is
  • 2x^2+2x+3
  • 2x^2-2x-3
  • 2x^2-2x+3
  • none of these
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers