CBSE Questions for Class 11 Commerce Applied Mathematics Differentiation Quiz 5 - MCQExams.com

If P(x) is a polynomial such that $$P\left ( x^{2}+1 \right )=\left \{ P\left ( x^{2} \right ) \right \}^{2}+1$$ and $$P(0)=0$$ then $$P^{'}(0)$$ is equal to
  • $$1$$
  • $$0$$
  • $$-$$1
  • none of these
If   $$\displaystyle y^{x}=x^{\sin y} $$, find $$\cfrac{dy}{dx}$$.
  • $$\displaystyle \frac{y}{x}\left [ \frac{x \log y-\sin y}{y \:\log x\: \cos y-x} \right ]$$
  • $$\displaystyle \frac{y}{x}\left [ \frac{x \log y+\sin y}{y \:\log x\: \cos y+x} \right ]$$
  • $$\displaystyle \frac{-y}{x}\left [ \frac{x \log y-\sin y}{y \:\log x\: \cos y-x} \right ]$$
  • $$\displaystyle \frac{y}{x}\left [ \frac{x \log y-\sin y}{y \:\log x\: \cos y+x} \right ]$$
$$\displaystyle y=(\cot x)^{\sin x}+(\tan  x)^{\cos x}$$.Find dy/dx 
  • $$\sin x(\cot x)^{ \sin x-1 }(-cosec ^{ 2 } x)+(\cot x)^{ \sin x }(log\cot x)\cos x+\\\cos { x } { (\tan { x } ) }^{ \cos { x-1 } }\sec ^{ 2 }{ x } +{ (\tan { x } ) }^{ cosx }(\log { tanx)(-sinx) } $$
  • $$\sin x(\cot x)^{ \sin x-1 }(-co\sec ^{ 2 } x)+\cos { x } { (\tan { x } ) }^{ \cos { x-1 } }\sec ^{ 2 }{ x } $$
  • $$\sin x(\cot x)^{ \sin x-1 }(-sec ^{ 2 } x)+(\cot x)^{ \sin x }(log\cot x)\cos x+\\\cos { x } { (\tan { x } ) }^{ \cos { x+1 } }co\sec ^{ 2 }{ x } +{ (\tan { x } ) }^{ cosx }(\log { tanx)(sinx) } $$
  • None of these
If $$\displaystyle x^{2}+y^{2}= 1$$ then $$\displaystyle \left ( where\  y'= \frac{dy}{dx}, y''= \frac{d^{2}y}{dx^{2}}\right )$$ 
  • $$\displaystyle yy''-2y'^{2}+1= 0$$
  • $$\displaystyle yy''+y'^{2}+1= 0$$
  • $$\displaystyle yy''-y'^{2}-1= 0$$
  • $$\displaystyle yy''+2y'^{2}+1= 0$$
$$\displaystyle \frac{d}{dx}(\log_{e}\left ( \frac{1+x}{1-x} \right )^{1/4}-\frac{1}{2}\tan^{-1}x.)$$
  • $$\displaystyle \frac{x^{2}}{1-x^{4}}.$$
  • $$\displaystyle \frac{x^{3}}{1-x^{4}}.$$
  • $$\displaystyle \frac{x^{4}}{1-x^{4}}.$$
  • $$-\displaystyle \frac{x^{2}}{1-x^{4}}.$$
If $$\displaystyle x={e^{\displaystyle y+e^{\displaystyle y+e^{\displaystyle y+...\infty }}}}$$, $$\forall x> 0$$, then $$\displaystyle \frac{dy}{dx}=$$
  • $$\displaystyle \frac{1-x}{x}$$
  • $$\displaystyle \frac{1}{x}$$
  • $$\displaystyle \frac{x}{1+x}$$
  • $$\displaystyle \frac{1+x}{x}$$
If $$f$$ is a real-valued differentiable function satisfying $$\displaystyle \left | f(x)-f(y) \right |\leq (x-y)^{2}$$ for all $$x,y\:\epsilon\:R$$ and $$f(0)=0$$ then $$f(1)$$ equals
  • $$0$$
  • $$-1$$
  • $$1$$
  • $$2$$
$$\displaystyle \frac{d}{dx}(\tan ^{-1}\frac{\sin x+\cos x}{\cos x-\sin x})$$
  • $$-1$$
  • $$-2$$
  • $$1$$
  • $$2$$
$$\displaystyle \frac{d}{dx}\tan ^{-1}\left(\frac{a \cos x-b\sin x}{b\cos x+a\sin x}\right)$$
  • $$-1$$
  • $$-2$$
  • $$1$$
  • $$2$$
If $$\displaystyle  f\left( x \right) =\sqrt { 1+\sqrt { x }  } , x > 0,$$ then $$\displaystyle f\left ( x \right )\cdot f'\left ( x \right )$$ is equal to
  • $$\displaystyle \frac{1}{2\sqrt{x}}$$
  • $$\displaystyle \frac{1}{2}$$
  • $$\displaystyle \frac{1}{4\sqrt{x}}$$
  • $$\displaystyle \frac{2\sqrt{x}+1}{4\sqrt{x}}$$
$$\displaystyle \dfrac{d}{dx}\tan ^{-1}\left(\dfrac{\cos x}{1+\sin x}\right)$$
  • $$-\displaystyle \dfrac{1}{2}$$
  • $$-\displaystyle \dfrac{1}{4}$$
  • $$-\displaystyle \dfrac{1}{8}$$
  • $$\displaystyle \dfrac{1}{2}$$
Differentiate $$\displaystyle x^{\sin^{-1}x}$$ w.r.t. $$\displaystyle \sin ^{-1}x.$$
  • $$\displaystyle x^{\sin ^{-1}x}\left [ \log x+\sin ^{-1}x.\frac{\sqrt{\left ( 1-x^{2} \right )}}{x} \right ]$$
  • $$-\displaystyle x^{\sin ^{-1}x}\left [ \log x+\sin ^{-1}x\frac{\sqrt{\left ( 1-x^{2} \right )}}{x} \right ]$$
  • $$\displaystyle x^{\sin ^{-1}x}\left [ \log x+\sin ^{-1}x\frac{\sqrt{\left ( 1+x^{2} \right )}}{x} \right ]$$
  • $$-\displaystyle x^{\sin ^{-1}x}\left [ \log x+\sin ^{-1}x\frac{\sqrt{\left ( 1+x^{2} \right )}}{x} \right ]$$
If $$y = \displaystyle (\tan x)^{\log x}$$, then $$\cfrac{dy}{dx} = $$
  • $$(\tan x)^{\log x} \left[\cfrac{\log \tan x}{x}+\cfrac{\log x}{\tan x}(\sec^2x) \right]$$
  • $$\frac { 1 }{ x } { tanx }^{ logx }log(tanx)+\frac { 1 }{ tanx } \sec ^{ 2 }{ x } logx$$
  • $$\frac { 1 }{ x } { tanx }^{ logx }log(tanx)+\frac { 1 }{ tanx } \sec ^{ 2 }{ x } $$
  • none of these
Differentiate $$\displaystyle \tan x^{n}+\tan ^{n}x-\tan ^{-1}\frac{a+x^{n}}{1-ax^{n}}.$$
  • $$ \left ( \sec^{2}x^{n} \right ).nx^{n-1}+n\tan^{n-1}x.\sec^{2}x-\left [\dfrac{ 1}{\left ( 1-x^{2n} \right ) }\right ]nx^{n-1}$$
  • $$ \left ( \sec^{2}x^{n} \right ).nx^{n-1}+n\tan^{n-1}x.\sec^{2}x-\left [ \dfrac{1}{\left ( 1+x^{2n} \right )} \right ]nx^{n}$$
  • $$ \left ( \sec^{2}x^{n} \right ).nx^{n-1}+n\tan^{n}x.\sec^{2}x-\left [\dfrac{ 1}{\left ( 1+x^{2n} \right )} \right ]nx^{n-1}$$
  • $$ \left ( \sec^{2}x^{n} \right ).nx^{n-1}+n\tan^{n-1}x.\sec^{2}x-\left [ \dfrac{1}{\left ( 1+x^{2n} \right )} \right ]nx^{n-1}$$
If $$\displaystyle y=x^{n} log x+x(log x)^{n}$$, find  $$dy/dx.$$
  • $$x^{n-1}(1+n log x)+(log x)^{n-1}[n+log x]$$
  • $$x^{n}(1+n log x)+(log x)^{n}[n+log x]$$
  • $$x^{n-1}(1+(n-1) log x)+(log x)^{n-1}[n-1+log x]$$
  • none of these
If  $$\displaystyle x\sqrt{(1+y)}+y\sqrt{(1+x)}=0$$, then $$\displaystyle \frac{dy}{dx}$$=
  • $$\displaystyle \frac{1}{(1+x)^{2}}$$
  • $$\displaystyle -\frac{1}{(1+x)^{2}}$$
  • $$\displaystyle -\frac{1}{(1-x)^{2}}$$
  • $$\displaystyle \frac{1}{(1-x)^{2}}$$
If $$x^{m}.y^{n}=\left ( x+y \right )^{m+n}$$, then $$\dfrac{dy}{dx}=$$
  • $$\displaystyle \frac{y}{x}$$
  • $$\displaystyle \frac{-y}{x}$$
  • $$\dfrac {my}{x}$$
  • $$\dfrac {ny}{x}$$
Differentiate the following: $$\displaystyle \cot ^{-1}\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{\left ( 1+\sin x \right )}-\sqrt{\left ( 1-\sin x \right )}}$$
  • $$ \displaystyle \frac{1}{2}.$$
  • $$\displaystyle \frac{-1}{2}.$$
  • $$\displaystyle \frac{1}{4}.$$
  • $$\displaystyle \frac{-1}{4}.$$
Find the differential equation of the family of curves whose equations are $$\displaystyle \frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}+\lambda }=1,$$ where $$\displaystyle \lambda $$ is parameter.
  • $$\displaystyle -\frac{xy}{a^{2}{y}'}=\frac{a^{2}-x^2}{a^{2}}$$
  • $$\displaystyle -\frac{xy}{a^{2}{y}'}=\frac{a^{2}+x^2}{a^{2}}$$
  • $$\displaystyle -\frac{xy}{a^{2}{y}'}=\frac{a^{4}-x^2}{a^{2}}$$
  • $$\displaystyle -\frac{xy}{a^{2}{y}'}=\frac{a^{4}+x^2}{a^{2}}$$
Let $$ \displaystyle f\left ( x \right ) $$ be defined by $$ \displaystyle f\left ( x \right )=\left\{\begin{matrix}\sin 2x & \text{if } 0< x\leq \dfrac{\pi}6\\ ax+b& \text{if } \dfrac{\pi}6< x\leq 1\end{matrix}\right. $$. The values of $$a$$ and $$b$$ such that $$ \displaystyle f $$ and $$ \displaystyle {f}' $$ are continuous, are
  • $$ \displaystyle a=1,b=\dfrac1{\sqrt{2}}+\dfrac{\pi}6 $$
  • $$ \displaystyle a=\dfrac1{\sqrt{2}},b=\dfrac1{\sqrt{2}} $$
  • $$ \displaystyle a=1,b=\dfrac{\sqrt{3}}2-\dfrac{\pi}6 $$
  • None of these
Find the solution of $$\displaystyle \frac{dy}{dx}= \frac{2x+2y-2}{3x+y-5}.$$
  • $$\displaystyle \left ( 2x+y-3 \right )= k\left ( x-y-3 \right )^{4}$$
  • $$\displaystyle \left ( 2x-y-3 \right )= k\left ( x-y-3 \right )^{4}$$
  • $$\displaystyle \left ( 2x+y+3 \right )= k\left ( x-y-3 \right )^{4}$$
  • $$\displaystyle \left ( 2x+y-3 \right )= k\left ( 2x-y-3 \right )^{4}$$
If $$f\left( x \right) $$ is a polynomial of degree $$n(>2)$$ and $$f\left( x \right) =f\left( k-x \right) ,($$ where $$k$$ is a fixed real number$$),$$ then degree of $$f'(x)$$ is
  • $$n$$
  • $$n-1$$
  • $$n-2$$
  • None of these
If $$2f\left( \sin { x }  \right) +f\left( \cos { x }  \right) =x$$, then $$\displaystyle \frac { d }{ dx } f\left( x \right)$$ is
  • $$\sin{x}+\cos{x}$$
  • $$2$$
  • $$\displaystyle \frac { 1 }{ \sqrt { 1-{ x }^{ 2 } }  } $$
  • none of these
Obtain the differential equation whose solutions are
$$\displaystyle y=A\cos \left ( x+3 \right ),$$ A being constant.
  • $$\displaystyle \frac{dy}{dx}+y\tan \left ( x+3 \right )=0$$
  • $$\displaystyle \frac{dy}{dx}+y\tan \left ( x-3 \right )=0$$
  • $$\displaystyle -\frac{dy}{dx}+y\tan \left ( x-3 \right )=0$$
  • $$\displaystyle -\frac{dy}{dx}+y\tan \left ( x+3 \right )=0$$
If $$ \displaystyle {f}'\left ( x \right )=g\left ( x \right ) $$ and $$ \displaystyle {g}'\left ( x \right )=-f\left ( x \right ) $$ and $$ \displaystyle f\left ( 2 \right )=4={f}'\left ( 2 \right ) $$ then $$ \displaystyle f^{2}\left ( 16 \right )+g^{2}\left ( 16 \right ) $$ is
  • 16
  • 32
  • 64
  • None of these
Let $$f\left( x \right)=\sqrt { x-1 } +\sqrt { x+24-10\sqrt { x-1 }  } ;1<x<26$$ be a real valued function. Then $$f'(x)$$ for $$1<x<26$$ is
  • $$0$$
  • $$\displaystyle \frac { 1 }{ \sqrt { x-1 }  } $$
  • $$2\sqrt { x-1 } -5$$
  • none of these
A curve passing through the point $$(1,1)$$ is such that the intercept made by a tangent to it on x-axis is three times the x co-ordinate of the point of tangency, then the equation of the curve is:
  • $$\displaystyle y=\frac{1}{x^{2}}$$
  • $$\displaystyle y=\sqrt{x}$$
  • $$\displaystyle y=\frac{1}{\sqrt{x}}$$
  • none
Let $$ \displaystyle f $$ be a function satisfying $$ \displaystyle f\left ( x+y \right )=f\left ( x \right )f\left ( y \right ) $$ for all $$x$$ and $$y$$ and $$ \displaystyle f\left ( 0 \right )={f}'\left ( 0 \right )=1 $$ then
  • $$ \displaystyle f $$ is differentiable for all x
  • $$ \displaystyle {f}'\left ( x \right )=f\left ( x \right ) $$
  • $$ \displaystyle f\left ( x \right )=e^{x} $$
  • $$ \displaystyle f $$ is continuous for alI x
If $$ \displaystyle f\left ( 1 \right )=3 $$ and $$ \displaystyle {f}'\left ( 1 \right )=-\dfrac13 $$ then the derivative of $$ \displaystyle \left ( x^{11} +f\left ( x \right )\right )^{-2} $$ at $$ \displaystyle x=1 $$ is
  • $$-\dfrac12$$
  • $$-1$$
  • $$1$$
  • $$ \displaystyle {f}'\left ( 1 \right ) $$
A polynomial $$f(x)$$ leaves remainder $$15$$ when divided by $$(x-3)$$ and $$(2x+1)$$ when divided by $$(x-1)^2$$. When $$f$$ is divided by $$(x-3)(x-1)^2,$$ the remainder is
  • $$2x^2+2x+3$$
  • $$2x^2-2x-3$$
  • $$2x^2-2x+3$$
  • none of these
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers