Processing math: 100%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Commerce Applied Mathematics Differentiation Quiz 5 - MCQExams.com
CBSE
Class 11 Commerce Applied Mathematics
Differentiation
Quiz 5
If P(x) is a polynomial such that
P
(
x
2
+
1
)
=
{
P
(
x
2
)
}
2
+
1
and
P
(
0
)
=
0
then
P
′
(
0
)
is equal to
Report Question
0%
1
0%
0
0%
−
1
0%
none of these
Explanation
Given,
P
(
x
2
+
1
)
=
{
P
(
x
2
)
}
2
+
1
...(1)
Given
P
(
0
)
=
0
Put
x
=
0
in (1)
⇒
P
(
1
)
=
P
(
0
)
2
+
1
⇒
P
(
1
)
=
1
Also, put
x
=
1
in (1)
⇒
P
(
2
)
=
2
Also, since, P(x) is a polynomial so we have P(x)=x
⇒
P
′
(
x
)
=
1
P
′
(
0
)
=
1
If
y
x
=
x
sin
y
, find
d
y
d
x
.
Report Question
0%
y
x
[
x
log
y
−
sin
y
y
log
x
cos
y
−
x
]
0%
y
x
[
x
log
y
+
sin
y
y
log
x
cos
y
+
x
]
0%
−
y
x
[
x
log
y
−
sin
y
y
log
x
cos
y
−
x
]
0%
y
x
[
x
log
y
−
sin
y
y
log
x
cos
y
+
x
]
Explanation
Given
y
x
=
x
sin
y
.
Take log both sides.
x
log
y
=
sin
y
log
x
.
Differentiate w.r.t. x
log
y
+
x
.
1
y
d
y
d
x
=
1
x
sin
y
+
(
log
x
)
cos
y
.
d
y
d
x
(
log
y
−
sin
y
x
)
=
d
y
d
x
[
cos
y
log
x
−
x
y
]
∴
d
y
d
x
=
y
x
[
x
log
y
−
sin
y
y
log
x
cos
y
−
x
]
y
=
(
cot
x
)
sin
x
+
(
tan
x
)
cos
x
.Find dy/dx
Report Question
0%
sin
x
(
cot
x
)
sin
x
−
1
(
−
c
o
s
e
c
2
x
)
+
(
cot
x
)
sin
x
(
l
o
g
cot
x
)
cos
x
+
cos
x
(
tan
x
)
cos
x
−
1
sec
2
x
+
(
tan
x
)
c
o
s
x
(
log
t
a
n
x
)
(
−
s
i
n
x
)
0%
sin
x
(
cot
x
)
sin
x
−
1
(
−
c
o
sec
2
x
)
+
cos
x
(
tan
x
)
cos
x
−
1
sec
2
x
0%
sin
x
(
cot
x
)
sin
x
−
1
(
−
s
e
c
2
x
)
+
(
cot
x
)
sin
x
(
l
o
g
cot
x
)
cos
x
+
cos
x
(
tan
x
)
cos
x
+
1
c
o
sec
2
x
+
(
tan
x
)
c
o
s
x
(
log
t
a
n
x
)
(
s
i
n
x
)
0%
None of these
Explanation
Given
y
=
(
cot
x
)
sin
x
+
(
tan
x
)
cos
x
Let
u
=
(
cot
x
)
sin
x
Taking log on both sides
log
u
=
sin
x
log
(
cot
x
)
Differentiating w.r.t. x, we get,
1
u
d
u
d
x
=
sin
x
cot
x
(
−
c
o
s
e
c
2
x
)
+
cos
x
log
cot
x
⇒
d
u
d
x
=
sin
x
(
cot
x
)
sin
x
−
1
(
−
c
o
s
e
c
2
x
)
+
(
cot
x
)
sin
x
cos
x
log
cot
x
Now,
v
=
(
tan
x
)
cos
x
Taking log on both sides
log
v
=
cos
x
log
(
tan
x
)
Differentiating w.r.t. x, we get,
1
v
d
v
d
x
=
cos
x
tan
x
(
sec
2
x
)
−
sin
x
log
tan
x
⇒
d
v
d
x
=
cos
x
(
tan
x
)
cos
x
−
1
(
sec
2
x
)
+
(
tan
x
)
cos
x
(
−
sin
x
)
log
tan
x
Since,
y
=
u
+
v
⇒
d
y
d
x
=
d
u
d
x
+
d
v
d
x
⇒
d
y
d
x
=
sin
x
(
cot
x
)
sin
x
−
1
(
−
c
o
s
e
c
2
x
)
+
(
cot
x
)
sin
x
cos
x
log
cot
x
+
cos
x
(
tan
x
)
cos
x
−
1
(
sec
2
x
)
+
(
tan
x
)
cos
x
(
−
sin
x
)
log
tan
x
If
x
2
+
y
2
=
1
then
(
w
h
e
r
e
y
′
=
d
y
d
x
,
y
″
=
d
2
y
d
x
2
)
Report Question
0%
y
y
″
−
2
y
′
2
+
1
=
0
0%
y
y
″
+
y
′
2
+
1
=
0
0%
y
y
″
−
y
′
2
−
1
=
0
0%
y
y
″
+
2
y
′
2
+
1
=
0
Explanation
Given,
x
2
+
y
2
=
1
Differentiating w.r.t x,
2
x
+
2
y
y
′
=
0
⇒
x
+
y
y
′
=
0
Again differentiating w.r.t. x, we get
1
+
y
y
″
+
y
′
y
′
=
0
1
+
y
y
″
+
y
′
2
=
0
d
d
x
(
log
e
(
1
+
x
1
−
x
)
1
/
4
−
1
2
tan
−
1
x
.
)
Report Question
0%
x
2
1
−
x
4
.
0%
x
3
1
−
x
4
.
0%
x
4
1
−
x
4
.
0%
−
x
2
1
−
x
4
.
Explanation
Let
y
=
1
4
[
log
(
1
+
x
)
−
log
(
1
−
x
)
]
−
1
2
tan
−
1
x
.
⇒
d
y
d
x
=
1
4
[
1
1
+
x
−
1
1
−
x
(
−
1
)
]
−
1
2
.
1
1
+
x
2
=
1
2
(
1
−
x
2
)
−
1
2
(
1
+
x
2
)
=
x
2
1
−
x
4
.
If
x
=
e
y
+
e
y
+
e
y
+
.
.
.
∞
,
∀
x
>
0
, then
d
y
d
x
=
Report Question
0%
1
−
x
x
0%
1
x
0%
x
1
+
x
0%
1
+
x
x
Explanation
x
=
e
y
+
e
y
+
e
y
+
.
.
.
⇒
x
=
e
y
+
x
Take logarithm on both sides and differentiating with respect to
x
∴
1
x
=
1
+
d
y
d
x
⇒
d
y
d
x
=
1
−
x
x
If
f
is a real-valued differentiable function satisfying
|
f
(
x
)
−
f
(
y
)
|
≤
(
x
−
y
)
2
for all
x
,
y
ϵ
R
and
f
(
0
)
=
0
then
f
(
1
)
equals
Report Question
0%
0
0%
−
1
0%
1
0%
2
Explanation
Given
|
f
(
x
)
−
f
(
y
)
|
≤
|
x
−
y
|
2
x
≠
y
∴
|
f
(
x
)
−
f
(
y
)
x
−
y
|
≤
|
x
−
y
|
Taking limit as
y
→
x
, we get
lim
y
→
x
|
f
(
x
)
−
f
(
y
)
x
−
y
|
≤
lim
y
→
x
|
x
−
y
|
⇒
|
lim
y
→
x
f
(
x
)
−
f
(
y
)
x
−
y
|
≤
|
lim
y
→
x
(
x
−
y
)
|
⇒
|
f
′
(
x
)
|
≤
0
⇒
|
f
′
(
x
)
|
=
0
[
∵
|
f
′
(
x
)
|
≥
0
]
∴
f
′
(
x
)
=
0
⇒
f
(
x
)
=
c
∴
h
(
x
)
=
∫
f
(
x
)
d
x
=
∫
c
d
x
=
c
x
+
d
where
d
is constant of integraion
Therefore
h
(
x
)
is a linear function of
x
which is constant for all
x
.
f
(
0
)
=
0
........given
∴
f
(
1
)
=
0
d
d
x
(
tan
−
1
sin
x
+
cos
x
cos
x
−
sin
x
)
Report Question
0%
−
1
0%
−
2
0%
1
0%
2
Explanation
Let
y
=
tan
−
1
cos
x
+
sin
x
cos
x
−
sin
x
=
tan
−
1
1
+
tan
x
1
−
tan
x
⇒
y
=
tan
−
1
tan
π
4
+
tan
x
1
−
tan
π
4
tan
x
=
tan
−
1
tan
(
π
4
+
x
)
=
π
4
+
x
∴
d
y
d
x
=
1
d
d
x
tan
−
1
(
a
cos
x
−
b
sin
x
b
cos
x
+
a
sin
x
)
Report Question
0%
−
1
0%
−
2
0%
1
0%
2
Explanation
Put
a
=
r
cos
α
,
b
=
r
sin
α
∴
r
=
√
a
2
+
b
2
,
tan
α
=
b
a
∴
y
=
tan
−
1
r
cos
(
x
+
α
)
r
sin
(
x
+
α
)
=
tan
−
1
cot
(
x
+
α
)
=
tan
−
1
tan
[
π
2
−
(
x
+
α
)
]
∴
y
=
π
2
−
x
−
α
∴
d
y
d
x
=
−
1
If
f
(
x
)
=
√
1
+
√
x
,
x
>
0
,
then
f
(
x
)
⋅
f
′
(
x
)
is equal to
Report Question
0%
1
2
√
x
0%
1
2
0%
1
4
√
x
0%
2
√
x
+
1
4
√
x
Explanation
Let
y
=
f
(
x
)
=
√
1
+
√
x
Then,
y
2
=
1
+
√
x
Differentiating w.r.t. x, we get,
2
y
d
y
d
x
=
1
2
√
x
⇒
f
(
x
)
f
′
(
x
)
=
1
4
√
x
d
d
x
tan
−
1
(
cos
x
1
+
sin
x
)
Report Question
0%
−
1
2
0%
−
1
4
0%
−
1
8
0%
1
2
Explanation
Let
y
=
tan
−
1
(
cos
x
1
+
sin
x
)
⇒
y
=
tan
−
1
(
(
cos
2
x
2
−
sin
2
x
2
)
sin
2
x
2
+
cos
2
x
2
+
2
sin
x
2
.
cos
x
2
)
y
=
tan
−
1
(
cos
(
x
/
2
)
−
sin
(
x
/
2
)
cos
(
x
/
2
)
+
sin
(
x
/
2
)
)
=
tan
−
1
(
1
−
tan
(
x
/
2
)
1
+
tan
(
x
/
2
)
)
=
tan
−
1
(
tan
(
π
/
4
−
x
/
2
)
)
=
π
/
4
−
x
/
2
∴
d
y
d
x
=
−
1
2
Differentiate
x
sin
−
1
x
w.r.t.
sin
−
1
x
.
Report Question
0%
x
sin
−
1
x
[
log
x
+
sin
−
1
x
.
√
(
1
−
x
2
)
x
]
0%
−
x
sin
−
1
x
[
log
x
+
sin
−
1
x
√
(
1
−
x
2
)
x
]
0%
x
sin
−
1
x
[
log
x
+
sin
−
1
x
√
(
1
+
x
2
)
x
]
0%
−
x
sin
−
1
x
[
log
x
+
sin
−
1
x
√
(
1
+
x
2
)
x
]
Explanation
Let
y
=
x
sin
−
1
x
and
z
=
sin
−
1
x
⇒
sin
z
=
x
we have to find
d
y
d
z
⇒
y
=
(
sin
z
)
z
taking
log
both side
log
y
=
z
log
sin
z
Differentiating w.r.t
z
1
y
d
y
d
z
=
log
sin
z
+
z
cos
z
sin
z
∴
d
y
d
z
=
y
(
log
sin
z
+
z
cos
z
sin
z
)
=
x
sin
−
1
x
[
log
x
+
sin
−
1
x
.
√
(
1
−
x
2
)
x
]
If
y
=
(
tan
x
)
log
x
, then
d
y
d
x
=
Report Question
0%
(
tan
x
)
log
x
[
log
tan
x
x
+
log
x
tan
x
(
sec
2
x
)
]
0%
1
x
t
a
n
x
l
o
g
x
l
o
g
(
t
a
n
x
)
+
1
t
a
n
x
sec
2
x
l
o
g
x
0%
1
x
t
a
n
x
l
o
g
x
l
o
g
(
t
a
n
x
)
+
1
t
a
n
x
sec
2
x
0%
none of these
Explanation
Let
y
=
(
tan
x
)
log
x
log
y
=
log
x
.
log
tan
x
Differentiating both side w.r.t
x
1
y
.
d
y
d
x
=
log
tan
x
x
+
log
x
tan
x
(
sec
2
x
)
⇒
d
y
d
x
=
(
tan
x
)
log
x
[
log
tan
x
x
+
log
x
tan
x
(
sec
2
x
)
]
Differentiate
tan
x
n
+
tan
n
x
−
tan
−
1
a
+
x
n
1
−
a
x
n
.
Report Question
0%
(
sec
2
x
n
)
.
n
x
n
−
1
+
n
tan
n
−
1
x
.
sec
2
x
−
[
1
(
1
−
x
2
n
)
]
n
x
n
−
1
0%
(
sec
2
x
n
)
.
n
x
n
−
1
+
n
tan
n
−
1
x
.
sec
2
x
−
[
1
(
1
+
x
2
n
)
]
n
x
n
0%
(
sec
2
x
n
)
.
n
x
n
−
1
+
n
tan
n
x
.
sec
2
x
−
[
1
(
1
+
x
2
n
)
]
n
x
n
−
1
0%
(
sec
2
x
n
)
.
n
x
n
−
1
+
n
tan
n
−
1
x
.
sec
2
x
−
[
1
(
1
+
x
2
n
)
]
n
x
n
−
1
Explanation
Let
y
=
tan
x
n
+
tan
n
x
−
tan
−
1
a
+
x
n
1
−
a
x
n
.
⇒
y
=
tan
x
n
+
tan
n
x
−
(
tan
−
1
a
+
tan
−
1
x
n
)
∴
d
y
d
x
=
(
sec
2
x
n
)
.
n
x
n
−
1
+
n
tan
n
−
1
x
.
sec
2
x
−
0
−
[
1
(
1
+
x
2
n
)
]
n
x
n
−
1
=
(
sec
2
x
n
)
.
n
x
n
−
1
+
n
tan
n
−
1
x
.
sec
2
x
−
[
1
(
1
+
x
2
n
)
]
n
x
n
−
1
If
y
=
x
n
l
o
g
x
+
x
(
l
o
g
x
)
n
, find
d
y
/
d
x
.
Report Question
0%
x
n
−
1
(
1
+
n
l
o
g
x
)
+
(
l
o
g
x
)
n
−
1
[
n
+
l
o
g
x
]
0%
x
n
(
1
+
n
l
o
g
x
)
+
(
l
o
g
x
)
n
[
n
+
l
o
g
x
]
0%
x
n
−
1
(
1
+
(
n
−
1
)
l
o
g
x
)
+
(
l
o
g
x
)
n
−
1
[
n
−
1
+
l
o
g
x
]
0%
none of these
Explanation
y
=
x
n
log
x
+
x
(
log
x
)
n
⇒
d
y
d
x
=
n
x
n
−
1
log
x
+
x
n
.
(
1
/
x
)
+
x
.
n
(
log
x
)
n
−
1
.
(
1.
x
)
+
1
(
log
x
)
n
⇒
d
y
d
x
=
x
n
−
1
(
1
+
n
log
x
)
+
(
log
x
)
n
−
1
[
n
+
log
x
]
If
x
√
(
1
+
y
)
+
y
√
(
1
+
x
)
=
0
, then
d
y
d
x
=
Report Question
0%
1
(
1
+
x
)
2
0%
−
1
(
1
+
x
)
2
0%
−
1
(
1
−
x
)
2
0%
1
(
1
−
x
)
2
Explanation
Given,
x
√
(
1
+
y
)
+
y
√
(
1
+
x
)
=
0
⇒
x
√
(
1
+
y
)
=
−
y
√
(
1
+
x
)
Squaring both side we get,
x
2
(
1
+
y
)
=
y
2
(
1
+
x
)
x
+
y
+
x
y
=
0
or
y
=
x
(rejected)
y
=
−
x
1
+
x
=
1
1
+
x
−
1
∴
d
x
d
y
=
−
1
(
1
+
x
)
2
If
x
m
.
y
n
=
(
x
+
y
)
m
+
n
, then
d
y
d
x
=
Report Question
0%
y
x
0%
−
y
x
0%
m
y
x
0%
n
y
x
Explanation
x
m
×
y
n
=
(
x
+
y
)
m
+
n
Taking log both sides we get
m
log
x
+
n
log
y
=
(
m
+
n
)
log
(
x
+
y
)
Differentiating w.r.t. x we get
m
x
+
n
y
d
y
d
x
=
m
+
n
x
+
y
(
1
+
d
y
d
x
)
⇒
d
y
d
x
(
n
y
−
m
+
n
x
+
y
)
=
m
+
n
x
+
y
−
m
x
⇒
d
y
d
x
(
n
x
+
n
y
−
m
y
−
n
y
y
(
x
+
y
)
)
=
m
x
+
n
x
−
m
x
−
m
y
x
(
x
+
y
)
⇒
d
y
d
x
=
(
n
x
−
m
y
n
x
−
m
y
)
y
x
=
y
x
⇒
d
y
d
x
=
y
x
Differentiate the following:
cot
−
1
√
1
+
sin
x
+
√
1
−
sin
x
√
(
1
+
sin
x
)
−
√
(
1
−
sin
x
)
Report Question
0%
1
2
.
0%
−
1
2
.
0%
1
4
.
0%
−
1
4
.
Explanation
Let
y
=
cot
−
1
√
1
+
sin
x
+
√
1
−
sin
x
√
(
1
+
sin
x
)
−
√
(
1
−
sin
x
)
y
=
cot
−
1
(
cos
x
2
+
sin
x
2
)
+
(
cos
x
2
−
sin
x
2
)
(
cos
x
2
+
sin
x
2
)
−
(
cos
x
2
−
sin
x
2
)
=
cot
−
1
2
cos
(
x
/
2
)
2
sin
(
x
/
2
)
or
y
=
cot
−
1
cot
x
2
=
x
2
,
∴
d
y
d
x
=
1
2
.
Note: Here assumption taken that
tan
x
2
≥
1
Find the differential equation of the family of curves whose equations are
x
2
a
2
+
y
2
a
2
+
λ
=
1
,
where
λ
is parameter.
Report Question
0%
−
x
y
a
2
y
′
=
a
2
−
x
2
a
2
0%
−
x
y
a
2
y
′
=
a
2
+
x
2
a
2
0%
−
x
y
a
2
y
′
=
a
4
−
x
2
a
2
0%
−
x
y
a
2
y
′
=
a
4
+
x
2
a
2
Explanation
Differentiating given equation w.r.t
x
we get
2
x
a
2
+
2
y
a
2
+
λ
d
y
d
x
=
0
∴
(
a
2
+
λ
)
=
−
a
2
y
y
′
x
Putting for
a
2
+
λ
in the given equation , we get
⇒
x
2
a
2
−
y
2
x
a
2
y
y
′
=
1
⇒
x
2
a
2
−
y
2
x
a
2
y
y
′
=
1
⇒
−
x
y
a
2
y
′
=
1
−
x
2
a
2
=
a
2
−
x
2
a
2
Let
f
(
x
)
be defined by
f
(
x
)
=
{
sin
2
x
if
0
<
x
≤
π
6
a
x
+
b
if
π
6
<
x
≤
1
. The values of
a
and
b
such that
f
and
f
′
are continuous, are
Report Question
0%
a
=
1
,
b
=
1
√
2
+
π
6
0%
a
=
1
√
2
,
b
=
1
√
2
0%
a
=
1
,
b
=
√
3
2
−
π
6
0%
None of these
Explanation
For
f
to be continuous
√
3
2
=
f
(
π
6
)
=
lim
x
→
π
6
+
f
(
x
)
=
lim
x
→
π
6
+
(
a
x
+
b
)
=
a
π
6
+
b
f
′
(
x
)
=
{
2
cos
2
x
if
0
<
x
<
π
6
a
if
π
6
<
x
<
1
f
′
(
π
6
+
)
=
a
and
f
′
(
π
6
−
)
=
1
Thus
a
=
1
,
b
=
√
3
2
−
π
6
Find the solution of
d
y
d
x
=
2
x
+
2
y
−
2
3
x
+
y
−
5
.
Report Question
0%
(
2
x
+
y
−
3
)
=
k
(
x
−
y
−
3
)
4
0%
(
2
x
−
y
−
3
)
=
k
(
x
−
y
−
3
)
4
0%
(
2
x
+
y
+
3
)
=
k
(
x
−
y
−
3
)
4
0%
(
2
x
+
y
−
3
)
=
k
(
2
x
−
y
−
3
)
4
If
f
(
x
)
is a polynomial of degree
n
(
>
2
)
and
f
(
x
)
=
f
(
k
−
x
)
,
(
where
k
is a fixed real number
)
,
then degree of
f
′
(
x
)
is
Report Question
0%
n
0%
n
−
1
0%
n
−
2
0%
None of these
Explanation
Clearly,
f
(
x
)
must be of the from
f
(
x
)
=
a
0
[
x
n
+
(
k
−
x
)
n
]
+
a
1
[
x
n
−
1
+
(
k
−
x
)
n
−
1
]
+
.
.
.
+
a
n
−
1
[
x
+
(
k
−
x
)
]
+
a
n
.
It may be noted that
n
must be even for otherwise
f
(
x
)
will become a polynomial of degree
n
−
1.
Clearly,
f
′
(
x
)
is a polynomial of degree
n
−
1.
If
2
f
(
sin
x
)
+
f
(
cos
x
)
=
x
, then
d
d
x
f
(
x
)
is
Report Question
0%
sin
x
+
cos
x
0%
2
0%
1
√
1
−
x
2
0%
none of these
Explanation
2
f
(
sin
x
)
+
f
(
cos
x
)
=
x
...(1)
Replace
x
by
π
2
−
x
2
f
(
cos
x
)
+
f
(
sin
x
)
=
π
2
−
x
...(2)
Solving we get ,
3
f
(
sin
x
)
=
π
2
+
3
x
∴
f
(
x
)
=
π
6
+
sin
−
1
x
∴
d
d
x
f
(
x
)
=
1
√
1
−
x
2
Obtain the differential equation whose solutions are
y
=
A
cos
(
x
+
3
)
,
A being constant.
Report Question
0%
d
y
d
x
+
y
tan
(
x
+
3
)
=
0
0%
d
y
d
x
+
y
tan
(
x
−
3
)
=
0
0%
−
d
y
d
x
+
y
tan
(
x
−
3
)
=
0
0%
−
d
y
d
x
+
y
tan
(
x
+
3
)
=
0
Explanation
y
=
A
cos
(
x
+
3
)
(i)
d
y
d
x
=
−
A
sin
(
x
+
3
)
..(ii)
by (ii)
÷
(i)
d
y
d
x
y
=
−
tan
(
x
+
3
)
d
y
d
x
+
y
tan
(
x
+
3
)
=
0
If
f
′
(
x
)
=
g
(
x
)
and
g
′
(
x
)
=
−
f
(
x
)
and
f
(
2
)
=
4
=
f
′
(
2
)
then
f
2
(
16
)
+
g
2
(
16
)
is
Report Question
0%
16
0%
32
0%
64
0%
None of these
Explanation
d
d
x
(
f
2
(
x
)
+
g
2
(
x
)
)
=
2
[
f
(
x
)
f
′
(
x
)
+
g
(
x
)
g
′
(
x
)
]
=
2
[
f
(
x
)
−
g
(
x
)
f
(
x
)
]
=
0
Thus
f
2
(
x
)
+
g
2
(
x
)
is constant.
Therefore
f
2
(
16
)
+
g
2
(
16
)
=
f
2
(
2
)
+
g
2
(
2
)
=
f
2
(
2
)
+
(
f
′
(
2
)
)
2
=
16
+
16
=
32
Let
f
(
x
)
=
√
x
−
1
+
√
x
+
24
−
10
√
x
−
1
;
1
<
x
<
26
be a real valued function. Then
f
′
(
x
)
for
1
<
x
<
26
is
Report Question
0%
0
0%
1
√
x
−
1
0%
2
√
x
−
1
−
5
0%
none of these
Explanation
Let,
f
(
x
)
=
√
x
−
1
+
√
x
+
24
−
10
√
x
−
1
1
<
x
<
26
be a real valued function ,
We have,
f
(
x
)
=
√
x
−
1
+
√
x
+
24
−
10
√
x
−
1
This can be written as
f
(
x
)
=
√
x
−
1
+
√
(
5
−
√
x
−
1
)
2
∵
1
<
x
<
26
f
(
x
)
=
√
x
−
1
+
5
−
√
x
−
1
f
(
x
)
=
5
On differentiating wrt x , we get
f
′
(
x
)
=
0
Hence ,Option A
A curve passing through the point
(
1
,
1
)
is such that the intercept made by a tangent to it on x-axis is three times the x co-ordinate of the point of tangency, then the equation of the curve is:
Report Question
0%
y
=
1
x
2
0%
y
=
√
x
0%
y
=
1
√
x
0%
none
Explanation
Equation of tangent on any point on the curve is,
Y
−
y
=
d
y
d
x
(
X
−
x
)
Thus intercept on the x-axis is,
I
x
=
x
−
y
d
y
/
d
x
Now using given condition,
I
x
=
x
−
y
d
y
/
d
x
=
3
x
∴
y
d
x
d
y
+
2
x
=
0
or
d
x
2
x
+
d
y
y
=
0
or
1
2
log
x
+
log
y
=
k
or
log
y
√
x
=
e
k
=
c
o
n
s
t
a
n
t
Now given this curve passing through (1,1)
⇒
k
=
0
∴
Hence required curve is,
y
=
1
√
x
Let
f
be a function satisfying
f
(
x
+
y
)
=
f
(
x
)
f
(
y
)
for all
x
and
y
and
f
(
0
)
=
f
′
(
0
)
=
1
then
Report Question
0%
f
is differentiable for all x
0%
f
′
(
x
)
=
f
(
x
)
0%
f
(
x
)
=
e
x
0%
f
is continuous for alI x
Explanation
We have,
f
(
x
+
y
)
=
f
(
x
)
f
(
y
)
.
.
.
.
.
.
.
.
.
.
.
(
1
)
Now
f
′
(
x
)
=
lim
h
→
0
f
(
x
+
h
)
−
f
(
x
)
h
=
lim
h
→
0
f
(
x
)
f
(
h
)
−
f
(
x
)
h
using (1)
⇒
f
′
(
x
)
=
lim
h
→
0
f
(
x
)
[
f
(
h
)
−
1
)
h
=
f
(
x
)
lim
h
→
0
f
(
0
+
h
)
−
f
(
0
)
h
=
f
(
x
)
f
′
(
0
)
=
f
(
x
)
Integrating we get,
log
(
f
(
x
)
)
=
x
+
c
Since at x
=
0
,
f
(
x
)
=
1
⇒
we have,
c
=
0
Hence
f
(
x
)
=
e
x
, which is continuous and differentiable for all
x
If
f
(
1
)
=
3
and
f
′
(
1
)
=
−
1
3
then the derivative of
(
x
11
+
f
(
x
)
)
−
2
at
x
=
1
is
Report Question
0%
−
1
2
0%
−
1
0%
1
0%
f
′
(
1
)
Explanation
The given equation is:
y
=
(
x
11
+
f
(
x
)
)
−
2
Differentiating the equation w.r.t to x once we get,
⇒
y
′
=
−
2
(
x
11
+
f
(
x
)
)
−
3
.
(
11
x
10
+
f
′
(
x
)
)
Value of the derivative at
x
=
1
is given as,
⇒
y
′
=
−
2
(
1
+
3
)
3
.
(
11
−
1
3
)
⇒
y
′
=
−
2
64
.
32
3
⇒
y
′
=
−
1
3
.....Answer
⇒
y
′
=
f
′
(
1
)
A polynomial
f
(
x
)
leaves remainder
15
when divided by
(
x
−
3
)
and
(
2
x
+
1
)
when divided by
(
x
−
1
)
2
. When
f
is divided by
(
x
−
3
)
(
x
−
1
)
2
,
the remainder is
Report Question
0%
2
x
2
+
2
x
+
3
0%
2
x
2
−
2
x
−
3
0%
2
x
2
−
2
x
+
3
0%
none of these
Explanation
Since function
f
(
x
)
leaves remainder
15
when divided by
x
−
3
, therefore
f
(
x
)
can be written as
f
(
x
)
=
(
x
−
3
)
l
(
x
)
+
15
...(1)
Also,
f
(
x
)
leaves remainder
2
x
+
1
when divided by
(
x
−
1
)
2
.
Thus,
f
(
x
)
can also be written as
f
(
x
)
=
(
x
−
1
)
2
m
(
x
)
+
2
x
+
1
...(2)
If
R
(
x
)
be the remainder when
f
(
x
)
is divided by
(
x
−
3
)
(
x
−
1
)
2
,
then we may write
f
(
x
)
=
(
x
−
3
)
(
x
−
1
)
2
n
(
x
)
+
R
(
x
)
...(3)
Since
(
x
−
3
)
(
x
−
1
)
2
is a polynomial of degree three, the remainder has to be a polynomial of degree less than or equal to two.
Thus let
R
(
x
)
=
a
x
2
+
b
x
+
c
From (1) and (3), we have
f
(
3
)
=
15
=
R
(
3
)
⇒
9
a
+
3
b
+
c
=
15
...(4)
From (2) and (3), we have
f
(
1
)
=
3
=
R
(
1
)
⇒
a
+
b
+
c
=
3
...(5)
From (2) and (3), we have
f
′
(
1
)
=
2
=
R
′
(
1
)
⇒
2
a
+
b
=
2
...(6)
Solving equation (4),(5) and (6), we get
a
=
2
,
b
=
−
2
,
c
=
3
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page