Explanation
y=√x+√x+√x+......∞∴y=√x+ySquaringonboth sides,y2=x+yDifferentiating on both sides,2ydydx=1+dydx∴dydx=12y−1⇒1√(2y−1)2=1√4y2−4y+1=1√1+4x⇒√x+y√(1+4x)(x+y)=√y2√4x2+4xy+x+y⇒√y2√4x2+4xy+y2=√y2√(2x+y)2=y2x+y
\displaystyle f^{ ' }\left( x \right) =g\left( x \right) and \displaystyle g^{ ' }\left( x \right) =-f\left( x \right) for all real x and \displaystyle f\left( 5 \right) =2=f^{ ' }\left( 5 \right) then \displaystyle f^{ 2 }\left( 10 \right) +g^{ 2 }\left( 10 \right) is -
Given, \displaystyle f^{ ' }\left( x \right) =g\left( x \right) and g^{ ' }\left( x \right) =-f\left( x \right)
Now \displaystyle \frac { d }{ dx } \left[ f^{ 2 }\left( x \right) +g^{ 2 }\left( x \right) \right] =2f\left( x \right) f^{ ' }\left( x \right) +2g\left( x \right) g^{ ' }\left( x \right)
\displaystyle =2f\left( x \right) g\left( x \right) -2g\left( x \right) f\left( x \right) =0
\displaystyle \therefore \quad f^{ 2 }\left( x \right) +g^{ 2 }\left( x \right) =constant
\displaystyle f^{ 2 }\left( 5 \right) +g^{ 2 }\left( 5 \right) = 4 + 4 = 8
\displaystyle \therefore \quad f^{ 2 }\left( 10 \right) +g^{ 2 }\left( 10 \right) = 8
If \displaystyle x\sqrt { \left( 1+y \right) } +y\sqrt { \left( 1+x \right) } =0. then \displaystyle \frac{dy}{dx} equals -
\displaystyle x\sqrt { \left( 1+y \right) } +y\sqrt { \left( 1+x \right) } =0.
\Rightarrow \displaystyle x\sqrt { \left( 1+y \right) } =-y\sqrt { \left( 1+x \right) } .
Squaring both sides, \displaystyle { x }^{ 2 }\left( 1+y \right)={ y }^{ 2 }\left( 1+x \right) \Rightarrow { x }^{ 2 }-{ y }^{ 2 }+xy\left( x-y \right) = 0
\displaystyle \Rightarrow \left( x-y \right) \left( x+y+xy \right) = 0
Now \displaystyle x\neq y [does not satisfy the given equation]
\displaystyle \therefore x+y+xy=0 \Rightarrow y=\frac { -x }{ 1+x }
\displaystyle \therefore \quad \frac { dy }{ dx } =\frac { -\left( 1+x \right) +x }{ \left( 1+x \right) ^{ 2 } } =-\frac { 1 }{ \left( 1+x \right) ^{ 2 } }
If \displaystyle y=\dfrac { x }{ a+\dfrac { x }{ b+y } } , then \displaystyle \frac{dy}{dx} is
\displaystyle y=\dfrac { x }{ a+\dfrac { x }{ b+y } }
\displaystyle y=\frac { x(b+y) }{ ab+ay+x }
\displaystyle \Rightarrow aby+ay^{2}+xy = xb+xy
\displaystyle \Rightarrow aby+ay^{2} = xb
Differentiating both side w.r.t x we get,
\displaystyle \Rightarrow ab\frac { dy }{ dx } +2ay\frac { dy }{ dx }=b \Rightarrow \frac { dy }{ dx } =\frac { b }{ ab+2ay }
Find \displaystyle \frac { dy }{ dx } , if x + y =\displaystyle \sin { \left( x-y \right) }
Please disable the adBlock and continue. Thank you.