Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

CBSE Questions for Class 11 Commerce Applied Mathematics Differentiation Quiz 6 - MCQExams.com

If for a non-zero x, the function f(x) satisfies the equation af(x)+bf(1x)=1x5(ab) then f(x) is equal to
  • 1b2a2(ax2+b)
  • 1a2b2(ax2+b)
  • 1a2b2(ax2b)
  • none of these
If for all x,y the function f is defined by f(x)+f(y)+f(x).f(y)=1 and f(x)>0, then
  • f(x) does not exist
  • f(x)=0 for all x
  • f(0)<f(1)
  • None of these
If f(x)=f(x) for all x and f(0)=4 then f(x) is equal to
  • 2e2x
  • e4x
  • x4+4x2+4x
  • 4ex
If the functions f(x)=sin(x+a) and g(x)=bsinx+ccosx satisfy f(0)=g(0) and f(0)=g(0) then
  • b=π2
  • b=cosa
  • c=sina
  • c=cosa
If y=sec1(x+1x1)+sin1(x1x+1) then dydx is equal to
  • 0
  • x+1
  • 1
  • 1
If 1x6+1y6=a(x3y3) and dydx=f(x,y)1y61x6 then
  • f(x,y)=yx
  • f(x,y)=x2y2
  • f(x,y)=2y2x2
  • f(x,y)=y2x2
If f(x+y)=f(x)f(y)x,y and f(5)=2,f(0)=3; then f(5) is equal to-
  • 2
  • 4
  • 6
  • 8
Consider the function: f(,)(,) defined by f(x)=x2ax+1x2+ax+1,0<a<2
Which of the following is true?
  • (2+a)2f(1)+(2a)2f(1)=0
  • (2a)2f(1)(2+a)2f(1)=0
  • f(1)+f(1)=(2a)2
  • f(1)f(1)=(2a)2
Differentiation of xsinx with respect to x is
  • xcosx+sinx
  • xsinx+cosx
  • xcosx
  • xcosxsinx
Let y=x+x+x+...... then dydx
  • 12y1
  • xx2y
  • 11+4x
  • y2x+y
If x=asin1t and y=acos1t then dydx=
  • yx
  • xy
  • xy
  • yx
Let f(x+y)=f(x)f(y) for all x and y. If f(7)=2 and f(0)=3, then f(7) is equal to
  • 5
  • 6
  • 0
  • none of these

\displaystyle f^{ ' }\left( x \right) =g\left( x \right) and \displaystyle g^{ ' }\left( x \right) =-f\left( x \right) for all real x and \displaystyle f\left( 5 \right) =2=f^{ ' }\left( 5 \right) then \displaystyle f^{ 2 }\left( 10 \right) +g^{ 2 }\left( 10 \right) is -

  • 2
  • 4
  • 8
  • None of these
If \sqrt { y + x } + \sqrt { y - x } = c, then \displaystyle\frac { dy }{ dx } is equal to
  • \displaystyle\frac { 2x }{ { c }^{ 2 } }
  • \displaystyle\frac { x }{ y+\sqrt { { y }^{ 2 }-{ x }^{ 2 } } }
  • \displaystyle\frac { y-\sqrt { { y }^{ 2 }-{ x }^{ 2 } } }{ x }
  • \displaystyle\frac { { c }^{ 2 } }{ 2y }
If g is the inverse of f and f'(x) = \displaystyle \frac{1}{1+x^{3}} then g'(x) is equal to-
  • \displaystyle 1+\left [ g\left ( x \right ) \right ]^{3}
  • \displaystyle \frac{-1}{2\left ( 1+x^{2} \right )}
  • \displaystyle \frac{1}{2\left ( 1+x^{2} \right )}
  • None of these

If \displaystyle x\sqrt { \left( 1+y \right)  } +y\sqrt { \left( 1+x \right)  } =0. then \displaystyle \frac{dy}{dx} equals -

  • \displaystyle \frac { 1 }{ \left( 1+x \right) ^{ 2 } }
  • - \displaystyle \frac { 1 }{ \left( 1+x \right) ^{ 2 } }
  • \displaystyle -\frac { 1 }{ \left( 1+x \right) } +\frac { 1 }{ \left( 1+x \right) ^{ 2 } }
  • None of these

If  \displaystyle y=\dfrac { x }{ a+\dfrac { x }{ b+y }  } , then \displaystyle \frac{dy}{dx} is

  • \displaystyle \frac{a}{ab+2ay}
  • \displaystyle \frac{b}{ab+2by}
  • \displaystyle \frac{a}{ab+2by}
  • \displaystyle \frac{b}{ab+2ay}
If { S }_{ n } denotes the sum of n terms of g.p. whose common ratio is r, then \displaystyle \left( r-1 \right) \frac { d{ S }_{ n } }{ dr } is equal to
  • \left( n-1 \right) { S }_{ n }+n{ S }_{ n-1 }
  • \left( n-1 \right) { S }_{ n }-n{ S }_{ n-1 }
  • \left( n-1 \right) { S }_{ n }
  • None of these
The values of f'(1) is
  • 0
  • 1
  • 2
  • 3
If { y }^{ 2 } + { b }^{ 2 } = 2xy, then \displaystyle\frac { dy }{ dx } equals
  • \displaystyle\frac { 1 }{ xy-{ b }^{ 2 } }
  • \displaystyle\frac { y }{ y-x }
  • \displaystyle\frac { xy-{ b }^{ 2 } }{ { \left( y-x \right) }^{ 2 } }
  • \displaystyle\frac { xy-{ b }^{ 2 } }{ y }
Find  \displaystyle  \frac{dy}{dx} if y=x^{x}
  • \displaystyle x^{x}\left ( lnx+1 \right )
  • \displaystyle x^{x}\left ( lnx-1 \right )
  • \displaystyle x .x^{x-1}
  • \displaystyle x^{x-1}\left ( lnx+1 \right )

Find  \displaystyle \frac { dy }{ dx } ,   if x + y =\displaystyle \sin { \left( x-y \right)  }


  • \displaystyle \frac { \cos { \left( x-y \right) -1 } }{ \cos { \left( x-y \right) +1 } }
  • \displaystyle \frac { \cos { \left( x-y \right) +1 } }{ \cos { \left( x-y \right) -1 } }
  • \displaystyle \frac { \cos { \left( x+y \right) +1 } }{ \cos { \left( x-y \right) -1 } }
  • \displaystyle \frac { \cos { \left( x+y \right) -1 } }{ \cos { \left( x-y \right)+1 } }
A balloon which always remains spherical, has a variable diameter \displaystyle \frac {3} {2}(2x+3). The rate of change of volume with respect to x will be
  • \displaystyle \frac {27 \pi}{8} (2x-3)^2
  • \displaystyle \frac {27 \pi}{8} (2x+3)^2
  • \displaystyle \frac {27 \pi}{8} (3x-2)^2
  • \displaystyle \frac {8} {27 \pi} (2x+3)^2
The surface area of a cube is increasing at the rate of 2 cm^2/sec. When its edge is 90 cm, the volume is increasing at the rate of.
  • 1620 cm^3/sec
  • 810 cm^3/sec
  • 405 cm^3/sec
  • 45 cm^3/sec
If f(x) = \displaystyle \left | \cos x-\sin x \right | then \displaystyle f'\left ( \dfrac{\pi}4 \right ) is equal to-
  • \displaystyle \sqrt{2}
  • \displaystyle -\sqrt{2}
  • 0
  • Does\ not\ exist
The surface area of a spherical bubble is increasing at the rate of 2 cm^2/s. When the radius of the bubble is 6 cm, then the rate by which the volume of the bubble increasing is.
  • 6 cm^3/sec
  • 9 cm^3/sec
  • 3 cm^3/sec
  • 13 cm^3/sec
The radius of a sphere is changing at the rate of 0.1 cm/sec. The rate of change of its surface area when the radius is 200 cm, is.
  • 8\pi cm^2/sec
  • 12\pi cm^2/sec
  • 160\pi cm^2/sec
  • 200\pi cm^2/sec
If \displaystyle y=\left | \cos x \right |+\left | \sin x \right | then \displaystyle \frac{dy}{dx} at x=\dfrac{2\pi }{3} is:
  • \displaystyle \frac{1-\sqrt{3}}{2}
  • 0
  • \displaystyle \frac{\sqrt{3}-1}{2}
  • None of these
The surface area of a sphere when its volume is increasing at the same rate as its radius, is.
  • 1 sq. units
  • \dfrac {1} {2 \sqrt {\pi}} sq. units
  • 4 \pi sq. units
  • \dfrac {4 \pi} {3 } sq. units
If f(x) = \displaystyle \left | \left ( x-4 \right )\left ( x-5 \right ) \right | then f'(x) is equal to-
  • -2x + 9, for all \displaystyle x\: \: \epsilon \: \: R
  • 2x - 9, if 4 < x < 5
  • -2x + 9, if 4 < x < 5
  • None of these
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers