Explanation
y=√x+√x+√x+......∞∴y=√x+ySquaringonboth sides,y2=x+yDifferentiating on both sides,2ydydx=1+dydx∴dydx=12y−1⇒1√(2y−1)2=1√4y2−4y+1=1√1+4x⇒√x+y√(1+4x)(x+y)=√y2√4x2+4xy+x+y⇒√y2√4x2+4xy+y2=√y2√(2x+y)2=y2x+y
f′(x)=g(x) and g′(x)=−f(x) for all real x and f(5)=2=f′(5) then f2(10)+g2(10) is -
Given, f′(x)=g(x) and g′(x)=−f(x)
Now ddx[f2(x)+g2(x)]=2f(x)f′(x)+2g(x)g′(x)
=2f(x)g(x)−2g(x)f(x)=0
∴f2(x)+g2(x) =constant
f2(5)+g2(5)=4+4=8
∴f2(10)+g2(10) = 8
If x√(1+y)+y√(1+x)=0. then dydx equals -
x√(1+y)+y√(1+x)=0.
⇒x√(1+y)=−y√(1+x).
Squaring both sides, x2(1+y)=y2(1+x)⇒x2−y2+xy(x−y)=0
⇒(x−y)(x+y+xy)=0
Now x≠y [does not satisfy the given equation]
∴x+y+xy=0⇒y=−x1+x
∴dydx=−(1+x)+x(1+x)2=−1(1+x)2
If y=xa+xb+y, then dydx is
y=xa+xb+y
y=x(b+y)ab+ay+x
⇒ aby+ay2+xy=xb+xy
⇒ aby+ay2=xb
Differentiating both side w.r.t x we get,
⇒abdydx+2aydydx=b⇒dydx=bab+2ay
Find dydx, if x+y=sin(x−y)
Please disable the adBlock and continue. Thank you.