CBSE Questions for Class 11 Commerce Applied Mathematics Differentiation Quiz 7 - MCQExams.com

If $$\displaystyle y=\sqrt{\sin x+y}$$ then $$\displaystyle \frac{dy}{dx}$$ equals to
  • $$\displaystyle \frac{\cos x}{2y-1}$$
  • $$\displaystyle \frac{\cos }{1-2y}$$
  • $$\displaystyle \frac{\sin x}{1-2y}$$
  • $$\displaystyle \frac{\sin x}{2y-1}$$
$$\displaystyle \frac{d}{dx}\left ( \tan ^{-1}\left ( \frac{\sqrt{x}-x}{1+x^{3/2}} \right ) \right )$$ equals $$\displaystyle ($$for $$x\geq 0)$$
  • $$\displaystyle \frac{1}{2\sqrt{x}(1+x)}-\frac{1}{1+x^{2}}$$
  • $$\displaystyle \frac{1}{2\sqrt{x}(1+x)}+\frac{1}{1+x^{2}}$$
  • $$\displaystyle \frac{1}{1+x}-\frac{1}{1+x^{2}}$$
  • None of these
$$\displaystyle \frac{d}{dx}\left ( \tan ^{-1}\left ( \frac{a-x}{1+ax} \right ) \right )$$ equals if ax > -1
  • $$\displaystyle \frac{a}{1+x^{2}}$$
  • $$\displaystyle \frac{1}{1+x^{2}}$$
  • $$\displaystyle- \frac{a}{1+x^{2}}$$
  • $$\displaystyle -\frac{1}{1+x^{2}}$$
$$\displaystyle \frac{d}{dx}\left ( x^{\log x} \right )$$ is equal to
  • $$\displaystyle 2x^{\log x-1}\log x$$
  • $$\displaystyle x^{\log x-1}$$
  • $$\dfrac 23 (\log x)$$
  • $$\displaystyle x^{\log x-1}.\log x$$
If $$y \sin x = x + y$$ then $$\displaystyle \left ( \frac{dy}{dx} \right )_{x=0}$$ equals
  • $$1$$
  • $$-1$$
  • $$0$$
  • $$2$$
If $$\displaystyle x=y\ ln(xy)$$, then  $$\displaystyle \frac{dx}{dy}$$ equals
  • $$\displaystyle \frac{y(x-y)}{x(x+y)}$$
  • $$\displaystyle \frac{x(x+y)}{y(x-y)}$$
  • $$\displaystyle \frac{y(x+y)}{x(x-y)}$$
  • $$\displaystyle \frac{x(x-y)}{y(x+y)}$$
If $$\displaystyle g(x)=x\tan ^{-1}x $$ then the value of $$g'(1)$$ equals-
  • $$\displaystyle \frac{1}{2}$$
  • $$\displaystyle \frac{\pi }{4}$$
  • $$\displaystyle \frac{1}{2}-\frac{\pi }{4}$$
  • $$\displaystyle \frac{1}{2}+\frac{\pi }{4}$$
If $$\displaystyle x^{y}+y^{x}=1$$ then $$\left ( \displaystyle \frac{dy}{dx} \right )$$ equals
  • $$\displaystyle \frac{yx^{y-1}+y^{x}\log y}{x^{y}\log x+xy^{x-1}}$$
  • $$\displaystyle -\frac{yx^{y-1}+y^{x}\log y}{x^{y}\log x+xy^{x-1}}$$
  • $$\displaystyle- \frac{x^{y}\log x +xy^{x-1}}{yx^{y-1}+y^{x}\log y}$$
  • None of these
If $$\displaystyle x^{3}-y^{3}+3xy^{2}-3x^{2}y+1=0$$, then at $$(0 , 1)$$ $$\displaystyle \frac{dy}{dx}$$ equals
  • $$1$$
  • $$-1$$
  • $$2$$
  • $$0$$
If $$\sqrt {\dfrac {x}{y}} + \sqrt {\dfrac {y}{x}} = \sqrt {a}$$ then $$y . \dfrac {dx}{dy} =$$
  • $$\dfrac {x}{y}$$
  • $$\dfrac {y}{x}$$
  • $$x$$
  • $$0$$
If $$\displaystyle x\sqrt{y}+y\sqrt{x}=1$$, then $$\displaystyle \frac{dy}{dx}$$ equals
  • $$\displaystyle - \frac{y+2\sqrt{xy}}{x+2\sqrt{xy}}$$
  • $$\displaystyle -\sqrt{\frac{x}{y}}\left ( \frac{y+2\sqrt{xy}}{x+2\sqrt{xy}} \right )$$
  • $$\displaystyle -\sqrt{\frac{y}{x}}\left ( \frac{y+2\sqrt{xy}}{x+2\sqrt{xy}} \right )$$
  • None of these
If $$\displaystyle 2^{x}+2^{y}=2^{x+y}$$ then $$\displaystyle \frac{dy}{dx} $$ is equal to 
  • $$\displaystyle \frac{2^{x}+2^{y}}{2^{x}-2^{y}}$$
  • $$\displaystyle \frac{2^{x}+2^{y}}{1+2^{x+y}}$$
  • $$\displaystyle 2^{x-y}\left ( \frac{2^{y}-1}{1-2^{x}} \right )$$
  • $$\displaystyle \frac{2^{x}+y-2^{x}}{2^{y}}$$
If $$y = f(x)$$ be a function satisfying the relation $$y^2-  x^2 y = x$$, then which of the following may hold good for $$y =f (x)$$ ?
  • $$f'(x) = \displaystyle \frac{1+2x f(x)}{2f (x) - x^2}$$
  • $$f'(x) = \displaystyle \frac{f(x) + 2x f^2 (x)}{f^2 (x) + x}$$
  • $$f'(1) = 1 + \displaystyle \frac{2}{\sqrt 5}$$
  • $$f'(1) = 1 - \displaystyle \frac{2}{\sqrt 5}$$
If $$y = sec  x^0$$ then $$\displaystyle \frac{dy}{dx} = $$
  • $$sec x tan x$$
  • $$sec x^0 tan x^0$$
  • $$\displaystyle \frac{\pi}{180} sec x^0 tan x^0$$
  • $$\displaystyle \frac{180}{\pi} sec x^0 tan x^0$$
Let $$\displaystyle y=(1+x^{2})\tan^{-1}(x-x)$$ and $$\displaystyle f(x)=\frac1{2x}\frac {dy}{dx},$$ then $$f(x)+\cot^{-1}x$$ is equal to
  • $$0$$
  • $$\displaystyle \frac {\pi}{2}$$
  • $$\displaystyle -\frac {\pi}{2}$$
  • $$\pi$$
If $$\displaystyle y= \frac {\sqrt[3]{1+3x}\sqrt[4]{1+4x}\sqrt[5]{1+5x}}{\sqrt[7]{1+7x}\sqrt[8]{1+8x}}$$, then $$y'(0)$$ is equal to
  • $$-1$$
  • $$1$$
  • $$2$$
  • Non existant
If $$\displaystyle y\sqrt{1+x}+x\sqrt{1+y}=0$$ then value of $$\displaystyle \frac{dy}{dx}$$ at $$y = 1$$ is, 
  • $$\displaystyle -\frac{1}{2}$$
  • $$1$$
  • $$-4$$
  • $$2$$
If $$y\displaystyle =\sqrt{x\log _{e}x,}$$ then $$\displaystyle \frac{dy}{dx}$$ at $$x= e$$ is-
  • $$\displaystyle \frac{1}{e}$$
  • $$\displaystyle \frac{1}{\sqrt{e}}$$
  • $$\displaystyle \sqrt{e}$$
  • None of these
$$\displaystyle f'(1) + g'(2)$$ is equal to
  • $$15$$
  • $$14$$
  • $$13$$
  • $$12$$
If $$x^py^q=(x+y)^{p+q}$$, then $$\dfrac{dy}{dx}$$ is equal to
  • $$\dfrac {y}{x}$$
  • $$\dfrac {py}{qx}$$
  • $$\dfrac {x}{y}$$
  • $$\dfrac {qy}{px}$$
Let $$y$$ be the solution of the differential equation $$x \dfrac {dy}{dx} = \dfrac {y^{2}}{1 - y\log x}$$ satisfying $$y(1) = 1$$. Then $$y$$ satisfies
  • $$y = x^{y - 1}$$
  • $$y = x^{y}$$
  • $$y = x^{y + 1}$$
  • $$y = x^{y + 2}$$
If $$f\left( x \right) =\sqrt { 1+\cos ^{ 2 }{ \left( { x }^{ 2 } \right)  }  } $$, then $$f^{ \prime  }\left( \dfrac { \sqrt { \pi  }  }{ 2 }  \right) $$ equal to
  • $$\dfrac { \sqrt { \pi } }{ 6 } $$
  • $$-\sqrt { \dfrac { \pi }{ 6 } } $$
  • $$\dfrac { 1 }{ \sqrt { 6 } } $$
  • $$\dfrac { \pi }{ \sqrt { 6 } } $$
If $$x^{p} + y^{q} = (x + y)^{p + q}$$, then $$\dfrac {dy}{dx}$$ is
  • $$-\dfrac {x}{y}$$
  • $$\dfrac {x}{y}$$
  • $$-\dfrac {y}{x}$$
  • $$\dfrac {y}{x}$$
If $$y=a\sin ^{ 3 }{ \theta  } $$ and $$x=a\cos ^{ 3 }{ \theta  } $$, then at $$\theta =\dfrac { \pi  }{ 3 } ,\dfrac { dy }{ dx } $$ is equal to:
  • $$\dfrac { 1 }{ \sqrt { 3 } } $$
  • $$-\sqrt { 3 } $$
  • $$\dfrac { -1 }{ \sqrt { 3 } } $$
  • $$\sqrt { 3 } $$
If $$f(x) = e^xg(x), g(0)=2, g'(0)=1$$, then $$f'(0)$$ is
  • $$1$$
  • $$3$$
  • $$2$$
  • $$0$$
The derivative of $$\sin ^{ 2 }{ x } $$ with respect to $$\cos ^{ 2 }{ x } $$ is
  • $$\tan ^{ 2 }{ x } $$
  • $$\tan { x } $$
  • $$-\tan { x } $$
  • None of these
If $$\displaystyle xy=1+\log { y } $$ and $$\displaystyle k.\frac { dy }{ dx } +{ y }^{ 2 }=0$$ then k is
  • $$\displaystyle 1+xy$$
  • $$\displaystyle \frac { 1 }{ xy-1 } $$
  • $$\displaystyle xy-1$$
  • $$\displaystyle 1-2xy$$
The differential equation of family of circles having centre on line $$y = 10$$ and touching  x-axis is
  • $$\displaystyle \frac { { d }^{ 2 }y }{ d{ x }^{ 2 } } -5\frac { dy }{ dx } +6y=0$$
  • $$\displaystyle { x }^{ 2 }\frac { { d }^{ 2 }y }{ d{ x }^{ 2 } } +x\frac { dy }{ dx } +y=0$$
  • $$\displaystyle { 8\left( \frac { dy }{ dx } \right) }^{ 3 }-27y=0$$
  • $$\displaystyle { \left( y-10 \right) }^{ 2 }{ \left( \frac { dy }{ dx } \right) }^{ 2 }+{ y }^{ 2 }-20y=0$$
If $$y = (1+x) (1+x^2)(1+x^4)......(1+x^{2n})$$ then the value of $$\begin{pmatrix}\dfrac{dy}{dx}\end{pmatrix}$$ at $$x=0$$ is
  • $$0$$
  • $$-1$$
  • $$1$$
  • $$2$$
What is the derivative of $$\left| x-1 \right| $$ at $$x=2$$?
  • $$-1$$
  • $$0$$
  • $$1$$
  • Derivative does not exist
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers