Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Questions for Class 11 Commerce Applied Mathematics Differentiation Quiz 7 - MCQExams.com

If y=sinx+y then dydx equals to
  • cosx2y1
  • cos12y
  • sinx12y
  • sinx2y1
ddx(tan1(xx1+x3/2)) equals (for x0)
  • 12x(1+x)11+x2
  • 12x(1+x)+11+x2
  • 11+x11+x2
  • None of these
ddx(tan1(ax1+ax)) equals if ax > -1
  • a1+x2
  • 11+x2
  • a1+x2
  • 11+x2
ddx(xlogx) is equal to
  • 2xlogx1logx
  • xlogx1
  • 23(logx)
  • xlogx1.logx
If ysinx=x+y then (dydx)x=0 equals
  • 1
  • 1
  • 0
  • 2
If x=y ln(xy), then  dxdy equals
  • y(xy)x(x+y)
  • x(x+y)y(xy)
  • y(x+y)x(xy)
  • x(xy)y(x+y)
If g(x)=xtan1x then the value of g(1) equals-
  • 12
  • π4
  • 12π4
  • 12+π4
If xy+yx=1 then (dydx) equals
  • yxy1+yxlogyxylogx+xyx1
  • yxy1+yxlogyxylogx+xyx1
  • xylogx+xyx1yxy1+yxlogy
  • None of these
If x3y3+3xy23x2y+1=0, then at (0,1) dydx equals
  • 1
  • 1
  • 2
  • 0
If xy+yx=a then y.dxdy=
  • xy
  • yx
  • x
  • 0
If xy+yx=1, then dydx equals
  • y+2xyx+2xy
  • xy(y+2xyx+2xy)
  • yx(y+2xyx+2xy)
  • None of these
If 2x+2y=2x+y then dydx is equal to 
  • 2x+2y2x2y
  • 2x+2y1+2x+y
  • 2xy(2y112x)
  • 2x+y2x2y
If y=f(x) be a function satisfying the relation y2x2y=x, then which of the following may hold good for y=f(x) ?
  • f(x)=1+2xf(x)2f(x)x2
  • f(x)=f(x)+2xf2(x)f2(x)+x
  • f(1)=1+25
  • f(1)=125
If y=secx0 then dydx=
  • secxtanx
  • secx0tanx0
  • π180secx0tanx0
  • 180πsecx0tanx0
Let y=(1+x2)tan1(xx) and f(x)=12xdydx, then f(x)+cot1x is equal to
  • 0
  • π2
  • π2
  • π
If y=31+3x41+4x51+5x71+7x81+8x, then y(0) is equal to
  • 1
  • 1
  • 2
  • Non existant
If y1+x+x1+y=0 then value of dydx at y=1 is, 
  • 12
  • 1
  • 4
  • 2
If y=xlogex, then dydx at x=e is-
  • 1e
  • 1e
  • e
  • None of these
f(1)+g(2) is equal to
  • 15
  • 14
  • 13
  • 12
If xpyq=(x+y)p+q, then dydx is equal to
  • yx
  • pyqx
  • xy
  • qypx
Let y be the solution of the differential equation xdydx=y21ylogx satisfying y(1)=1. Then y satisfies
  • y=xy1
  • y=xy
  • y=xy+1
  • y=xy+2
If f(x)=1+cos2(x2), then f(π2) equal to
  • π6
  • π6
  • 16
  • π6
If xp+yq=(x+y)p+q, then dydx is
  • xy
  • xy
  • yx
  • yx
If y=asin3θ and x=acos3θ, then at θ=π3,dydx is equal to:
  • 13
  • 3
  • 13
  • 3
If f(x)=exg(x),g(0)=2,g(0)=1, then f(0) is
  • 1
  • 3
  • 2
  • 0
The derivative of sin2x with respect to cos2x is
  • tan2x
  • tanx
  • tanx
  • None of these
If xy=1+logy and k.dydx+y2=0 then k is
  • 1+xy
  • 1xy1
  • xy1
  • 12xy
The differential equation of family of circles having centre on line y=10 and touching  x-axis is
  • d2ydx25dydx+6y=0
  • x2d2ydx2+xdydx+y=0
  • 8(dydx)327y=0
  • (y10)2(dydx)2+y220y=0
If y=(1+x)(1+x2)(1+x4)......(1+x2n) then the value of (dydx) at x=0 is
  • 0
  • 1
  • 1
  • 2
What is the derivative of |x1| at x=2?
  • 1
  • 0
  • 1
  • Derivative does not exist
0:0:3


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers