Loading [MathJax]/jax/output/CommonHTML/jax.js
MCQExams
0:0:3
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Commerce Applied Mathematics Differentiation Quiz 7 - MCQExams.com
CBSE
Class 11 Commerce Applied Mathematics
Differentiation
Quiz 7
If
y
=
√
sin
x
+
y
then
d
y
d
x
equals to
Report Question
0%
cos
x
2
y
−
1
0%
cos
1
−
2
y
0%
sin
x
1
−
2
y
0%
sin
x
2
y
−
1
Explanation
Given,
y
=
√
sin
x
+
y
⟹
y
2
=
sin
x
+
y
Differentiate w.r.t.
x
,
⟹
2
y
d
y
d
x
=
cos
x
+
d
y
d
x
⟹
d
y
d
x
=
cos
x
2
y
−
1
d
d
x
(
tan
−
1
(
√
x
−
x
1
+
x
3
/
2
)
)
equals
(
for
x
≥
0
)
Report Question
0%
1
2
√
x
(
1
+
x
)
−
1
1
+
x
2
0%
1
2
√
x
(
1
+
x
)
+
1
1
+
x
2
0%
1
1
+
x
−
1
1
+
x
2
0%
None of these
Explanation
Let,
y
=
tan
−
1
(
√
x
−
x
1
+
x
3
/
2
)
y
=
tan
−
1
(
√
x
)
−
tan
−
1
x
∴
d
y
d
x
=
1
(
1
+
x
)
×
1
2
√
x
−
1
1
+
x
2
d
d
x
(
tan
−
1
(
a
−
x
1
+
a
x
)
)
equals if ax > -1
Report Question
0%
a
1
+
x
2
0%
1
1
+
x
2
0%
−
a
1
+
x
2
0%
−
1
1
+
x
2
Explanation
Let,
y
=
tan
−
1
(
a
−
x
1
+
a
x
)
y
=
tan
−
1
(
a
)
−
tan
−
1
(
x
)
∴
d
y
d
x
=
−
1
1
+
x
2
d
d
x
(
x
log
x
)
is equal to
Report Question
0%
2
x
log
x
−
1
log
x
0%
x
log
x
−
1
0%
2
3
(
log
x
)
0%
x
log
x
−
1
.
log
x
Explanation
d
d
x
(
x
log
x
)
=
d
d
x
(
e
log
x
log
x
)
=
d
d
x
(
(
log
x
)
2
)
e
(
log
x
)
2
=
2
log
x
d
d
x
(
log
x
)
e
(
log
x
)
2
=
e
(
log
x
)
2
2
log
x
(
d
d
x
(
log
x
)
)
=
1
x
2
log
x
e
(
log
x
)
2
=
2
x
log
x
−
1
log
x
If
y
sin
x
=
x
+
y
then
(
d
y
d
x
)
x
=
0
equals
Report Question
0%
1
0%
−
1
0%
0
0%
2
Explanation
Given,
y
sin
x
=
x
+
y
y
=
x
sin
x
−
1
d
y
d
x
=
(
sin
x
−
1
)
.1
−
x
.
cos
x
(
sin
x
−
1
)
2
(
d
y
d
x
)
=
−
1
1
=
−
1
If
x
=
y
l
n
(
x
y
)
, then
d
x
d
y
equals
Report Question
0%
y
(
x
−
y
)
x
(
x
+
y
)
0%
x
(
x
+
y
)
y
(
x
−
y
)
0%
y
(
x
+
y
)
x
(
x
−
y
)
0%
x
(
x
−
y
)
y
(
x
+
y
)
Explanation
x
=
y
ln
(
x
y
)
⇒
d
x
x
y
=
ln
(
x
y
)
+
y
(
d
x
d
y
y
+
x
)
(
x
y
)
⇒
x
d
x
d
y
=
x
ln
(
x
y
)
+
y
d
x
d
y
+
x
⇒
d
x
d
y
(
x
−
y
)
=
x
ln
(
x
y
)
+
x
⇒
d
x
d
y
=
x
(
x
+
y
)
y
(
x
−
y
)
If
g
(
x
)
=
x
tan
−
1
x
then the value of
g
′
(
1
)
equals-
Report Question
0%
1
2
0%
π
4
0%
1
2
−
π
4
0%
1
2
+
π
4
Explanation
g
(
x
)
=
x
tan
−
1
x
⇒
g
′
(
x
)
=
tan
−
1
x
+
x
1
+
x
2
⇒
g
′
(
1
)
=
tan
−
1
(
1
)
+
1
1
+
(
1
)
2
=
π
4
+
1
2
If
x
y
+
y
x
=
1
then
(
d
y
d
x
)
equals
Report Question
0%
y
x
y
−
1
+
y
x
log
y
x
y
log
x
+
x
y
x
−
1
0%
−
y
x
y
−
1
+
y
x
log
y
x
y
log
x
+
x
y
x
−
1
0%
−
x
y
log
x
+
x
y
x
−
1
y
x
y
−
1
+
y
x
log
y
0%
None of these
Explanation
x
y
+
y
x
=
1
⇒
e
y
log
x
+
e
x
log
y
=
1
Now differentiating w.r.t
x
⇒
e
y
log
x
(
y
x
+
log
x
d
y
d
x
)
+
e
x
log
y
(
log
y
+
x
y
d
y
d
x
)
=
0
⇒
x
y
(
y
x
+
log
x
d
y
d
x
)
+
y
x
(
log
y
+
x
y
d
y
d
x
)
=
0
⇒
d
y
d
x
=
−
y
x
y
−
1
+
y
x
log
y
x
y
log
x
+
x
y
x
−
1
If
x
3
−
y
3
+
3
x
y
2
−
3
x
2
y
+
1
=
0
, then at
(
0
,
1
)
d
y
d
x
equals
Report Question
0%
1
0%
−
1
0%
2
0%
0
Explanation
x
3
−
y
3
+
3
x
y
2
−
3
x
2
y
+
1
=
0
d
y
d
x
=
δ
f
δ
x
δ
f
δ
y
Substitute
f
=
x
3
−
y
3
+
3
x
y
2
−
3
x
2
+
1
(
δ
f
δ
x
)
=
3
x
2
+
3
y
2
−
6
x
(
δ
f
δ
x
)
(
0
,
1
)
=
3
Again
f
=
x
3
−
y
3
+
3
x
y
2
−
3
x
2
−
3
x
2
y
+
1
(
δ
f
δ
y
)
=
−
3
y
2
+
6
x
y
−
6
x
(
δ
f
δ
y
)
(
0
,
1
)
=
−
3
So,
d
y
d
x
=
δ
f
/
δ
x
δ
f
/
δ
y
=
3
−
3
=
−
1
If
√
x
y
+
√
y
x
=
√
a
then
y
.
d
x
d
y
=
Report Question
0%
x
y
0%
y
x
0%
x
0%
0
Explanation
Squaring the given expression,
x
y
+
y
x
+
2
=
a
Differentiate w.r.t.
x
y
−
x
y
′
y
2
+
x
y
′
−
y
x
2
=
0
1
y
−
x
y
′
y
2
=
y
′
x
−
y
x
2
⇒
y
′
[
1
x
+
x
y
2
]
=
1
y
+
y
x
2
⇒
y
′
y
2
+
x
2
x
y
2
=
x
2
+
y
2
x
2
y
∴
d
y
d
x
=
y
x
⇒
y
d
x
d
y
=
x
If
x
√
y
+
y
√
x
=
1
, then
d
y
d
x
equals
Report Question
0%
−
y
+
2
√
x
y
x
+
2
√
x
y
0%
−
√
x
y
(
y
+
2
√
x
y
x
+
2
√
x
y
)
0%
−
√
y
x
(
y
+
2
√
x
y
x
+
2
√
x
y
)
0%
None of these
Explanation
x
√
y
+
y
√
x
=
1
⇒
√
y
+
x
2
√
y
d
y
d
x
+
d
y
d
x
√
x
+
y
1
2
√
x
=
0
⇒
(
x
2
√
y
+
√
x
)
d
y
d
x
=
−
y
2
√
x
−
√
y
⇒
(
x
+
2
√
x
y
2
√
y
)
d
y
d
x
=
−
y
−
2
√
x
y
2
√
x
⇒
d
y
d
x
=
−
√
y
x
(
y
+
2
√
x
y
x
+
2
√
x
y
)
If
2
x
+
2
y
=
2
x
+
y
then
d
y
d
x
is equal to
Report Question
0%
2
x
+
2
y
2
x
−
2
y
0%
2
x
+
2
y
1
+
2
x
+
y
0%
2
x
−
y
(
2
y
−
1
1
−
2
x
)
0%
2
x
+
y
−
2
x
2
y
Explanation
2
x
+
2
y
=
2
x
+
y
2
x
log
2
+
(
2
y
log
2
)
d
y
d
x
=
(
2
x
+
y
log
2
)
(
1
+
d
y
d
x
)
2
x
+
2
y
d
y
d
x
=
2
x
+
y
+
2
x
+
y
d
y
d
x
(
2
y
−
2
x
+
y
)
d
y
d
x
=
2
x
+
y
−
2
x
d
y
d
x
=
2
x
+
y
−
2
x
2
y
−
2
x
+
y
d
y
d
x
=
2
x
(
2
y
−
1
)
2
y
(
1
−
2
x
)
d
y
d
x
=
2
x
−
y
(
2
y
−
1
)
1
−
2
x
If
y
=
f
(
x
)
be a function satisfying the relation
y
2
−
x
2
y
=
x
, then which of the following may hold good for
y
=
f
(
x
)
?
Report Question
0%
f
′
(
x
)
=
1
+
2
x
f
(
x
)
2
f
(
x
)
−
x
2
0%
f
′
(
x
)
=
f
(
x
)
+
2
x
f
2
(
x
)
f
2
(
x
)
+
x
0%
f
′
(
1
)
=
1
+
2
√
5
0%
f
′
(
1
)
=
1
−
2
√
5
If
y
=
s
e
c
x
0
then
d
y
d
x
=
Report Question
0%
s
e
c
x
t
a
n
x
0%
s
e
c
x
0
t
a
n
x
0
0%
π
180
s
e
c
x
0
t
a
n
x
0
0%
180
π
s
e
c
x
0
t
a
n
x
0
Explanation
Give
y
=
s
e
c
x
0
=
s
e
c
x
π
180
o
(
∵
x
o
=
x
π
180
o
r
a
d
i
a
n
s
)
∴
d
y
d
x
=
π
180
o
s
e
c
x
o
t
a
n
x
o
Let
y
=
(
1
+
x
2
)
tan
−
1
(
x
−
x
)
and
f
(
x
)
=
1
2
x
d
y
d
x
,
then
f
(
x
)
+
cot
−
1
x
is equal to
Report Question
0%
0
0%
π
2
0%
−
π
2
0%
π
Explanation
y
=
(
1
+
x
2
)
tan
−
1
(
x
−
x
)
⇒
d
y
d
x
=
2
x
tan
−
1
x
+
(
1
+
x
2
)
.
1
1
+
x
2
−
1
=
2
x
tan
−
1
x
⇒
f
(
x
)
=
d
y
d
x
2
x
=
tan
−
1
x
∴
f
(
x
)
+
cot
−
1
x
=
tan
−
1
+
cot
−
1
x
=
π
2
If
y
=
3
√
1
+
3
x
4
√
1
+
4
x
5
√
1
+
5
x
7
√
1
+
7
x
8
√
1
+
8
x
, then
y
′
(
0
)
is equal to
Report Question
0%
−
1
0%
1
0%
2
0%
Non existant
Explanation
y
=
3
√
1
+
3
x
4
√
1
+
4
x
5
√
1
+
5
x
7
√
1
+
7
x
8
√
1
+
8
x
Take log both sides,
log
y
=
1
3
log
(
1
+
3
x
)
+
1
4
log
(
1
+
4
x
)
+
1
5
log
(
1
+
5
x
)
−
1
7
log
(
1
+
7
x
)
−
1
8
log
(
1
+
8
x
)
Differentiating both side w.r.t
x
1
y
×
d
y
d
x
=
1
(
1
+
3
x
)
+
1
1
+
4
x
+
1
1
+
5
x
−
1
1
+
7
x
−
1
1
+
8
x
at
x
=
0
,
y
=
1
,
∴
d
y
d
x
=
1
+
1
+
1
−
1
−
1
=
1
If
y
√
1
+
x
+
x
√
1
+
y
=
0
then value of
d
y
d
x
at
y
=
1
is,
Report Question
0%
−
1
2
0%
1
0%
−
4
0%
2
Explanation
y
√
1
+
x
+
x
√
1
+
y
=
0
Given
Differentiating w.r.t
x
⇒
(
d
y
d
x
)
√
1
+
x
+
1
2
√
1
+
x
y
+
√
1
+
y
+
x
2
√
1
+
y
d
y
d
x
=
0
at
y
=
1
,
x
=
−
1
2
∴
(
d
y
d
x
)
1
√
2
+
√
2
2
+
√
2
−
1
4
√
2
d
y
d
x
=
0
⇒
d
y
d
x
=
−
4
If
y
=
√
x
log
e
x
,
then
d
y
d
x
at
x
=
e
is-
Report Question
0%
1
e
0%
1
√
e
0%
√
e
0%
None of these
Explanation
y
=
√
x
log
x
⇒
d
y
d
x
=
d
d
x
(
x
log
x
)
2
√
x
log
x
=
log
x
+
x
1
x
2
√
x
log
x
=
log
x
+
1
2
√
x
log
x
At
x
=
e
d
y
d
x
=
1
√
e
f
′
(
1
)
+
g
′
(
2
)
is equal to
Report Question
0%
15
0%
14
0%
13
0%
12
Explanation
Consider
6
∫
f
(
x
)
g
(
x
)
d
x
=
x
6
+
3
x
4
+
3
x
2
+
c
⇒
∫
f
(
x
)
g
(
x
)
d
x
=
1
6
(
x
6
+
3
x
4
+
3
x
2
+
c
)
Differentiate w.r.t
x
,
⇒
f
(
x
)
g
(
x
)
=
x
5
+
2
x
3
+
x
...........
(
1
)
Consider,
2
∫
g
(
x
)
d
x
f
(
x
)
=
x
2
+
c
⇒
∫
g
(
x
)
d
x
f
(
x
)
=
1
2
(
x
2
+
c
)
Differentiate w.r.t
x
⇒
g
(
x
)
f
(
x
)
=
x
............
(
2
)
(
1
)
×
(
2
)
⇒
(
g
(
x
)
)
2
=
x
6
+
2
x
4
+
x
2
=
(
x
3
+
x
)
2
⇒
g
(
x
)
=
x
3
+
x
(
1
)
(
2
)
⇒
(
f
(
x
)
)
2
=
x
4
+
2
x
2
+
1
=
(
x
2
+
1
)
2
⇒
f
(
x
)
=
x
2
+
1
Now,
f
′
(
x
)
=
2
x
and
g
′
(
x
)
=
3
x
2
+
1
⇒
f
′
(
1
)
+
g
′
(
2
)
=
2
+
13
=
15
If
x
p
y
q
=
(
x
+
y
)
p
+
q
, then
d
y
d
x
is equal to
Report Question
0%
y
x
0%
p
y
q
x
0%
x
y
0%
q
y
p
x
Explanation
Given,
x
p
y
q
=
(
x
+
y
)
p
+
q
Taking
log
on both sides, we get
p
log
x
+
q
log
y
=
(
p
+
q
)
log
(
x
+
y
)
⇒
p
x
+
q
y
d
y
d
x
=
(
p
+
q
)
(
x
+
y
)
(
1
+
d
y
d
x
)
⇒
(
p
x
−
p
+
q
x
+
y
)
=
(
p
+
q
x
+
y
−
q
y
)
d
y
d
x
⇒
d
y
d
x
=
y
x
Let
y
be the solution of the differential equation
x
d
y
d
x
=
y
2
1
−
y
log
x
satisfying
y
(
1
)
=
1
. Then
y
satisfies
Report Question
0%
y
=
x
y
−
1
0%
y
=
x
y
0%
y
=
x
y
+
1
0%
y
=
x
y
+
2
Explanation
Let
y
=
x
y
⇒
log
y
=
y
log
x
Differentiating both sides w.r.t.
x
, we get
1
y
d
y
d
x
=
y
×
1
x
+
log
x
d
y
d
x
⇒
1
y
d
y
d
x
−
log
x
d
y
d
x
=
y
x
⇒
d
y
d
x
(
1
y
−
log
x
)
=
y
x
⇒
d
y
d
x
(
1
−
y
log
x
y
)
=
y
x
⇒
x
d
y
d
x
=
y
2
(
1
−
y
log
x
)
If
f
(
x
)
=
√
1
+
cos
2
(
x
2
)
, then
f
′
(
√
π
2
)
equal to
Report Question
0%
√
π
6
0%
−
√
π
6
0%
1
√
6
0%
π
√
6
Explanation
Given,
f
(
x
)
=
√
1
+
cos
2
(
x
2
)
......(i)
On differentiating equation (i) with respect to
x
, we get
f
′
(
x
)
=
−
2
sin
x
2
cos
x
2
2
√
1
+
cos
2
(
x
2
)
(
2
x
)
.
.
.
.
.
.
.
.
.
(
cos
2
x
=
cos
2
x
+
1
2
)
⇒
f
′
(
x
)
=
−
sin
2
x
2
√
1
+
cos
2
(
x
2
)
(
x
)
∴
f
′
(
√
π
2
)
=
−
√
π
2
⋅
sin
2
(
π
4
)
√
1
+
1
2
=
−
√
π
6
If
x
p
+
y
q
=
(
x
+
y
)
p
+
q
, then
d
y
d
x
is
Report Question
0%
−
x
y
0%
x
y
0%
−
y
x
0%
y
x
Explanation
If
x
p
+
y
q
=
(
x
+
y
)
p
+
q
Taking log on both sides,
p
log
x
+
q
log
y
=
(
p
+
q
)
log
(
x
+
y
)
On differentiating w.r.t. x, we get
p
x
+
q
y
⋅
d
y
d
x
=
(
p
+
q
)
(
x
+
y
)
(
1
+
d
y
d
x
)
{
p
x
−
p
+
q
x
+
y
}
=
{
p
+
q
x
+
y
−
q
y
}
d
y
d
x
{
p
x
+
p
y
−
p
x
−
q
x
x
(
x
+
y
)
}
=
{
p
y
+
q
y
−
q
x
−
q
y
y
(
x
+
y
)
}
d
y
d
x
⇒
(
p
y
−
q
x
)
x
=
(
p
y
−
q
x
)
y
⋅
d
y
d
x
⇒
d
y
d
x
=
y
x
If
y
=
a
sin
3
θ
and
x
=
a
cos
3
θ
, then at
θ
=
π
3
,
d
y
d
x
is equal to:
Report Question
0%
1
√
3
0%
−
√
3
0%
−
1
√
3
0%
√
3
Explanation
Given,
y
=
a
sin
3
θ
and
x
=
a
cos
3
θ
On differentiating with respect to
θ
, we get
d
y
d
θ
=
3
a
sin
2
θ
cos
θ
and
d
x
d
θ
=
−
3
a
cos
2
θ
sin
θ
∴
d
y
d
x
=
d
y
d
θ
d
x
d
θ
=
−
3
a
sin
2
θ
cos
θ
3
a
cos
2
θ
sin
θ
=
−
sin
θ
cos
θ
=
−
tan
θ
At
θ
=
π
3
,
d
y
d
x
=
−
tan
π
3
=
−
√
3
If
f
(
x
)
=
e
x
g
(
x
)
,
g
(
0
)
=
2
,
g
′
(
0
)
=
1
, then
f
′
(
0
)
is
Report Question
0%
1
0%
3
0%
2
0%
0
Explanation
f
′
(
x
)
=
e
x
g
′
(
x
)
+
e
x
g
(
x
)
⇒
f
′
(
0
)
=
e
0
.
g
′
(
0
)
+
e
0
g
(
0
)
=
1.1
+
1.2
[
∵
{
g
′
(
0
)
=
1
and
g
(
0
)
=
2
}
]
=
1
+
2
=
3
The derivative of
sin
2
x
with respect to
cos
2
x
is
Report Question
0%
tan
2
x
0%
tan
x
0%
−
tan
x
0%
None of these
Explanation
Let
u
=
sin
2
x
;
v
=
cos
2
x
On differentiating w.r.t
x
respectively, we get
d
u
d
x
=
2
sin
x
cos
x
=
sin
2
x
d
v
d
x
=
−
2
cos
x
sin
x
=
−
sin
2
x
Now,
d
u
d
v
=
d
u
/
d
x
d
v
/
d
x
=
sin
2
x
−
sin
2
x
=
−
1
If
x
y
=
1
+
log
y
and
k
.
d
y
d
x
+
y
2
=
0
then k is
Report Question
0%
1
+
x
y
0%
1
x
y
−
1
0%
x
y
−
1
0%
1
−
2
x
y
Explanation
x
y
=
1
+
log
y
Differentiating both sides, we get
x
d
y
d
x
+
y
=
1
y
×
d
y
d
x
Multiplying by y throughout, we get
x
y
d
y
d
x
+
y
2
=
d
y
d
x
⇒
d
y
d
x
(
x
y
−
1
)
+
y
2
=
0
⇒
k
=
x
y
−
1
The differential equation of family of circles having centre on line
y
=
10
and touching x-axis is
Report Question
0%
d
2
y
d
x
2
−
5
d
y
d
x
+
6
y
=
0
0%
x
2
d
2
y
d
x
2
+
x
d
y
d
x
+
y
=
0
0%
8
(
d
y
d
x
)
3
−
27
y
=
0
0%
(
y
−
10
)
2
(
d
y
d
x
)
2
+
y
2
−
20
y
=
0
Explanation
The general equation for a circle can be written as
x
2
+
y
2
+
2
g
x
+
2
f
y
+
c
=
0
The center lies on
y
=
10
, and so
f
=
−
10.
Also, distance of the center from x axis has to be equal to the radius.
⇒
f
2
=
g
2
+
f
2
−
c
⇒
g
2
=
c
The equation thus becomes
x
2
+
y
2
+
2
g
x
−
20
y
+
g
2
=
0
Differentiating w.r.t. x, we get
2
x
+
2
y
d
y
d
x
+
2
g
−
20
d
y
d
x
=
0
⇒
g
=
(
10
−
y
)
d
y
d
x
−
x
Resubstituting this value in the above equation, we get
x
2
+
y
2
−
20
y
+
2
x
[
(
10
−
y
)
d
y
d
x
−
x
]
+
[
(
10
−
y
)
d
y
d
x
−
x
]
2
=
x
2
+
y
2
−
20
y
+
2
x
(
10
−
y
)
d
y
d
x
−
2
x
2
+
(
10
−
y
)
2
(
d
y
d
x
)
2
+
x
2
−
2
x
(
10
−
y
)
d
y
d
x
=
y
2
−
20
y
+
(
10
−
y
)
2
(
d
y
d
x
)
2
If
y
=
(
1
+
x
)
(
1
+
x
2
)
(
1
+
x
4
)
.
.
.
.
.
.
(
1
+
x
2
n
)
then the value of
(
d
y
d
x
)
at
x
=
0
is
Report Question
0%
0
0%
−
1
0%
1
0%
2
Explanation
We have,
y
=
(
1
+
x
)
(
1
+
x
2
)
(
1
+
x
4
)
.
.
.
.
.
.
.
(
1
+
x
4
)
take natural logarithm both sides
ln
y
=
ln
(
1
+
x
)
+
ln
(
1
+
x
2
)
+
ln
(
1
+
x
4
)
+
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
+
ln
(
1
+
x
2
n
)
Now differentiate both sides w.r.t.
x
⇒
1
y
d
y
d
x
=
1
1
+
x
+
2
x
1
+
x
2
+
4
x
3
1
+
x
4
+
.
.
.
.
.
.
+
2
n
x
2
n
−
1
1
+
x
2
n
⇒
d
y
d
x
=
y
(
1
x
+
2
x
1
+
x
2
+
.
.
.
.
.
.
.
.
.
.
.
+
2
n
x
2
n
−
1
1
+
x
2
n
)
Now substitute
x
=
0
to get the required value
⇒
d
y
d
x
|
x
=
0
=
1
(
1
+
0
+
0
+
.
.
.
.
.
.
+
0
)
=
1
Note that at
x
=
0
, value of
y
is also
1
What is the derivative of
|
x
−
1
|
at
x
=
2
?
Report Question
0%
−
1
0%
0
0%
1
0%
Derivative does not exist
Explanation
given
f
(
x
)
=
|
x
−
1
|
f
(
x
)
=
(
x
−
1
)
when
x
−
1
>
0
i.e.
x
>
1
f
(
x
)
=
−
(
x
−
1
)
=
1
−
x
when
x
−
1
<
0
i.e.
x
<
1
So, at
x
=
2
,
f
(
x
)
=
x
−
1
d
f
d
x
=
1
Thus, derivative of
f
at
x
=
2
is
1
.
0:0:3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page