Explanation
$$\textbf{Step -1: Differentiating with respect to x }$$
$$\text{Given,}$$ $${ y=x \tan y }$$
$${\Rightarrow\tan \ y=\dfrac{y}{x} \qquad\rightarrow (1)}$$
$$\text{Now,}$$
$$\Rightarrow\dfrac{\mathrm{d} y}{\mathrm{d} x}=1\times\tan y+x\sec ^{2}y\dfrac{\mathrm{d} y}{\mathrm{d} x}$$ $$\textbf{[ Using Product rule of derivative ]}$$
$$\Rightarrow\dfrac{\mathrm{d} y}{\mathrm{d} x}[1-x\sec ^{2}y]=\tan y$$
$$\Rightarrow\dfrac{\mathrm{d} y}{\mathrm{d} x}=\dfrac{\tan y}{1-x\sec ^{2}y}\rightarrow (2)$$
$$\textbf{Step -2: Find the value of }$$$$\mathbf{ sec ^{2}y.}$$
$$\text{We know, }$$ $$\sec ^{2}y-\tan ^{2}y=1$$
$$\Rightarrow\sec ^{2}y=1+\tan ^{2}y$$
$$\text{Putting the value from eq(1),}$$
$$\Rightarrow\sec ^{2}y=1+\dfrac{y^{2}}{x^{2}}$$ $$\qquad\rightarrow (3)$$
$$\textbf{Step -3: Prove the desired.}$$
$$\text{From eq(2),}$$
$$\Rightarrow\dfrac{\mathrm{d} y}{\mathrm{d} x}=\dfrac{\tan y}{1-x\sec ^{2}y}$$
$$\Rightarrow\mathrm{\dfrac{dy}{dx}}=\dfrac{\tan y}{1-x(1+\dfrac{y^{2}}{x^{2}})}$$
$$\Rightarrow\dfrac{\mathrm{d} y}{\mathrm{d} x}$$ $$=\dfrac{x\tan y}{x-x^{2}-y^{2}}$$
$$\Rightarrow\dfrac{\mathrm{d} y}{\mathrm{d} x}$$ $$=\dfrac{y}{x-x^{2}-y^{2}}$$ $$\textbf{[From eq(1)]}$$
$$\therefore\ \text{If }$$ $$y=x\tan y\text{ then, }\dfrac{\mathrm{d} y}{\mathrm{d} x} \text{ = } \dfrac{ y}{x-x^{2}-y^{2}}.$$
$$\textbf{Hence, the correct answer is option B.}$$
$${ 2 }^{ x }+{ 2 }^{ y }={ 2 }^{ x+y }$$
Differentiating both sides
$$\ln { 2 }. { 2 }^{ x }+\ln { 2 } .{ 2 }^{ y }\dfrac { dy }{ dx } =\ln { 2 }. { 2 }^{ x+y }\left( 1+\dfrac { dy }{ dx } \right) \\ { 2 }^{ x }+{ 2 }^{ y }\dfrac { dy }{ dx } ={ 2 }^{ x+y }\left( 1+\dfrac { dy }{ dx } \right) \\ { 2 }^{ x }+{ 2 }^{ y }\dfrac { dy }{ dx } ={ 2 }^{ x+y }+{ 2 }^{ x+y }\dfrac { dy }{ dx } \\ \left( { 2 }^{ y }-{ 2 }^{ x+y } \right) \dfrac { dy }{ dx } =\left( { 2 }^{ x+y }-{ 2 }^{ x } \right) \\ \dfrac { dy }{ dx } =\dfrac { { 2 }^{ x+y }-{ 2 }^{ x } }{ { 2 }^{ y }-{ 2 }^{ x+y } } \\ \dfrac { dy }{ dx } =\dfrac { { 2 }^{ x }({ 2 }^{ y }-1) }{ { 2 }^{ y }(1-{ 2 }^{ x }) } \\ \dfrac { dy }{ dx } ={ 2 }^{ x-y }\left( \dfrac { { 2 }^{ y }-1 }{ 1-{ 2 }^{ x } } \right) $$
So option $$C$$ is correct.
Please disable the adBlock and continue. Thank you.