Processing math: 17%

CBSE Questions for Class 11 Commerce Applied Mathematics Differentiation Quiz 8 - MCQExams.com

If r=[2ϕ+cos2(2ϕ+π4)]12, then what is the value of the derivative of drdϕ at ϕ=π4?
  • 2(1π+1)12
  • 2(2π+1)2
  • (2π+1)12
  • 2(2π+1)12
ddx(xx) is equal to:
  • xxlog(ex)
  • xxlogex
  • logex
  • xxlogx
If x2+y2=t+1t and x4+y4=t2+1t2 then dydx=
  • xy
  • yx
  • x2y2
  • y2x2
f(x)=log(ex(x2x+2)34)f(0)=
  • 14
  • 4
  • 34
  • 1
If xy0,x+y0 and xmyn=(x+y)m+n where m,nN then dydx=
  • yx
  • x+yxy
  • xy
  • xy
If sin1x+sin1y=π2, then dydx is equal to
  • xy
  • xy
  • yx
  • yx
If x=a\cos { \theta  } +a\log { \tan { \dfrac { \theta  }{ 2 }  }  } and y=a\sin { \theta  } , then \dfrac { dy }{ dx } is equal to
  • \cot { \theta }
  • \tan { \theta }
  • \sin { \theta }
  • \cos { \theta }
If { e }^{ x }\left( 1+x \right) \sec ^{ 2 }{ x{ e }^{ x } } dx =f\left( x \right) + constant, then f\left( x \right) is equal to
  • \cos { \left( x{ e }^{ x } \right) }
  • \sin { \left( x{ e }^{ x } \right) }
  • 2\tan ^{ -1 }{ \left( x \right) }
  • \tan { \left( x{ e }^{ x } \right) }
State true or false, If y=\log x^2 then \dfrac{dy}{dx}=\dfrac2x
  • True
  • False
Let f(x)=cos^{-1}\left [ \frac{1}{\sqrt{13}}(2cos x-3 sin x) \right ]. Then f'(0.5)=____
  • 0.5
  • 1
  • 0
  • -1
Let f(x)=(x-1) ^4(x-2) ^n, n\in N. Then f(x) has
  • A maximum at x=1 if n is odd.
  • A maximum at x=1 if n is even.
  • A minimum at x=1 if n is even.
  • A minimum at x=2 if n is even.
If { x }^{ y }={ e }^{ x-y } then \cfrac { dy }{ dx } is equal to
  • \cfrac { \log { x } }{ \log { (x-y) } }
  • \cfrac { { e }^{ x } }{ { x }^{ x-y } }
  • \cfrac { \log { x } }{ { (1+\log { x } ) }^{ 2 } }
  • \cfrac { 1 }{ y } -\cfrac { 1 }{ x-y }
  • \dfrac{y(x -y)}{x^2}
If y = f(x^{2} + 2) and f'(3) = 5, then \dfrac {dy}{dx} at x = 1 is _____
  • 5
  • 25
  • 15
  • 10
If f(x) is a function such that f^{\prime \prime}(x)+f(x)=0 and g(x)=[f(x)]^2+[f'(x)]^2 and g(3)=8, then g(8)= _____
  • 0
  • 3
  • 5
  • 8
If y = \tan^{-1} \left (\dfrac {1}{1 + x + x^{2}}\right ) + \tan^{-1} \left (\dfrac {1}{x^{2} + 3x + 2}\right ) + \tan^{-1} \left (\dfrac {1}{x^{2} + 5x + 6}\right ) + .... + upto n terms then \dfrac {dy}{dx} at x = 0 and n = 1 is equal to
  • \dfrac {1}{2}d
  • -\dfrac {1}{2}
  • 0
  • \dfrac {1}{3}
If y={\cot}^{-1}\begin{bmatrix}\dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\end{bmatrix}, where 0 < x < \dfrac{\pi}{2}, then \dfrac{dy}{dx} is equal to
  • -\dfrac{1}{2}
  • 2
  • \sin x + \cos x
  • \sin x - \cos x
If x^ay^b=(x-y)^{a+b}, then the value of \dfrac{dy}{dx}-\dfrac{y}{x} is equal to
  • \dfrac{a}{b}
  • \dfrac{b}{a}
  • 1
  • 0
If { x }^{ m }+{ y }^{ m }=1 such that \cfrac { dy }{ dx } =-\cfrac { x }{ y } , then what should be the value of m?
  • 0
  • 1
  • 2
  • None of the above
If \sec \left (\dfrac {x + y}{x - y}\right ) = a, then \dfrac {dy}{dx} is.
  • \dfrac {x}{y}
  • \dfrac {y}{x}
  • y
  • x
If y=\sqrt{x+\sqrt{y+\sqrt{x+\sqrt{y+.....\infty}}}}, then \displaystyle\frac{dy}{dx} is equal to?
  • \displaystyle\frac{y+x}{y^2-2x}
  • \displaystyle\frac{y^3-x}{2y^2-2xy-1}
  • \displaystyle\frac{y^3+x}{2y^2-x}
  • None of these
If { 2 }^{ x }+{ 2 }^{ y }={ 2 }^{ x+y }, then the value of \cfrac { dy }{ dx } at (1,1) is equal to
  • -2
  • -1
  • 0
  • 1
  • 2
If y = x\tan y, then \dfrac {dy}{dx} is equal to.
  • \dfrac {\tan y}{x - x^{2} - y^{2}}
  • \dfrac {y}{x - x^{2} - y^{2}}
  • \dfrac {\tan y}{y - x}
  • \dfrac {\tan x}{x - y^{2}}
If \log _{ 10 }{ \left( \cfrac { { x }^{ 2 }-{ y }^{ 2 } }{ { x }^{ 2 }+{ y }^{ 2 } }  \right)  } =2, then \cfrac { dy }{ dx } =............
  • -\cfrac { 99x }{ 101y }
  • \cfrac { 99x }{ 101y }
  • -\cfrac { 99y }{ 101x }
  • \cfrac { 99y }{ 101x }
If sin  x = \dfrac{2t}{1 + t^2}, tan y = \dfrac{2t}{1 - t^2}, then \dfrac{dy}{dx} is equal to
  • -1
  • 2
  • 0
  • 1
The slope of the tangent to the curve y^2 e^{xy} = 9e^{-3} x^2 at (-1, 3) is
  • \dfrac{-15}{2}
  • \dfrac{-9}{2}
  • 15
  • \dfrac{15}{2}
  • \dfrac{9}{2}
If x\sin (a + y) + \sin a\cos (a + y) = 0, then \dfrac {dy}{dx} is equal to
  • \dfrac {\sin^{2}(a + y)}{\sin a}
  • \dfrac {\cos^{2}(a + y)}{\cos a}
  • \dfrac {\sin^{2}(a + y)}{\cos a}
  • \dfrac {\cos^{2}(a + y)}{\sin a}
If 2^x + 2^y = 2^{x + y}, then \dfrac{dy}{dx} is equal to
  • \dfrac{2^x + 2^y}{2^x - 2^y}
  • \dfrac{2^x + 2^y}{1 + 2^{x + y}}
  • 2^{x - y} \left( \dfrac{2^y - 1}{1 - 2^x} \right )
  • \dfrac{2^{x + y} - 2^x}{2^y}
If x^{y} = e^{x - y}, then \dfrac {dy}{dx} is equal to.
  • \dfrac {\log x}{1 + \log x}
  • \dfrac {\log x}{1 - \log x}
  • \dfrac {\log x}{(1 + \log x)^{2}}
  • \dfrac {y\log x}{x(1 + \log x)^{2}}
If y = \dfrac {1}{1 + x + x^{2}}, then \dfrac {dy}{dx} is equal to
  • y^{2} (1 + 2x)
  • \dfrac {-(1 + 2x)}{y^{2}}
  • \dfrac {1 + 2x}{y^{2}}
  • -y (1 + 2x)
  • -y^{2} (1 + 2x)
If u = \tan^{-1}\left (\dfrac {\sqrt {1 - x^{2}} - 1}{x}\right ) and v= \sin^{-1} x, then \dfrac {du}{dv} is equal to
  • \sqrt {1 - x^{2}}
  • -\dfrac {1}{2}
  • 1
  • -x
  • -2
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers