Processing math: 38%

CBSE Questions for Class 11 Commerce Applied Mathematics Differentiation Quiz 9 - MCQExams.com

If y=4x5 is a tangent to the curve y2=px3+q at (2,3), then (p+q) is equal to
  • 5
  • 5
  • 9
  • 9
  • 0
If f(x)=|log|x||, then
  • f(x) is continuous and differentiable for all x in its domain
  • f(x) is continuous for all x in its domain but not differentiable at x=±1
  • f(x) is neither continuous nor differentiable at x=±1
  • None of the above
If x+y=10, find dydx  at y=4.
  • 4
  • 3
  • 4
  • 3
If xexy+yexy=sin2x, then dydx at x=0 is
  • 2y21
  • 2y
  • y2y
  • y2+1
  • y21
If x2+2xy+2y2=1, then dydx at the point where y=1 is equal to :
  • 1
  • 2
  • 1
  • 2
  • 0
If yxxy=1, then the value of dydx at x=1 is
  • 2(1log2)
  • 2(1+log2)
  • 2log2
  • 2+log2
If yx=2x, then dydx is equal to :
  • yxlog(2y)
  • xylog(2y)
  • yxlog(y2)
  • xylog(y2)
  • yxlog(2y)
If y=xx2, then the derivative of y2w.r.t.x2 is
  • 2x2+3x1
  • 2x23x+1
  • 2x2+3x+1
  • None of these
If (f(x))g(y)=ef(x)g(y) then dydx=.
  • f1(x)logf(x)g1(y)(1+logf(x))2
  • f1(x)logf(x)g1(y)(1+logf(x))3
  • f1(x).logf(x)g1(y)(1logf(x))2
  • f1(x)logf(x)g(y)(1+logf(x))2
Let f and g be differential functions satisfying g' (a) =2 , g (a) b and fog = I (identify function) then f'(b) = :
  • 1/2
  • 2
  • 2/3
  • None of these
\dfrac {d}{dx}\left (\sqrt {3} \sin \left (2x + \dfrac {\pi}{3}\right ) + \cos \left (2x + \dfrac {\pi}{3}\right )\right ) = _________.
  • 4\cos 2x
  • -4\sin 2x
  • 4\sin 2x
  • -4\cos 2x
If |x| < 1, then \dfrac{d}{dx}\left[1+\dfrac{p}{q}x+\dfrac{p(p+q)}{2!}\left(\dfrac{x}{q}\right)^2+\dfrac{p(p+q)(p+2q)}{3!}\left(\dfrac{x}{q}\right)^3....\infty\right]=
  • \dfrac{p}{q(1-x)^{\frac{p}{q}+1}}
  • \dfrac{p}{q(1-x)^{\frac{p}{q}}}
  • (1-x)^{-pq-1}
  • (1-x)^{pq+1}
If y = Tan^{-1} \left (\dfrac {\log (e/x^{2})}{\log ex^{2}}\right ) + Tan^{-1} \left (\dfrac {3 + 2\log x}{1 - 6\log x}\right ) then \left (\dfrac {dy}{dx}\right )_{x = 2} + \left (\dfrac {dy}{dx}\right )_{x = 3}.
  • -6
  • 2
  • 0
  • -2
Let \int _{ 0 }^{ x }{ \left( \cfrac { bt\cos { 4t } -a\sin { 4t }  }{ { t }^{ 2 } }  \right)  } dt=\cfrac { a\sin { 4x }  }{ x } then a and b are given by
  • a=\cfrac { 1 }{ 4 } ,b=1
  • a=2,b=2
  • a=-1,b=4
  • a=2,b=4
If 8f(x) + 6f\left( {{1 \over x}} \right) = x + 5 and y = {x^2}f(x) ,then {{dy} \over {dx}} at x=-1 is equal to
  • 0
  • {1 \over {14}}
  • - {1 \over {14}}
  • None of these
If f:\mathrm{R}\to\mathrm{R} is a differentiable function such that f'(x)\gt 2f(x)\forall x\in \mathrm{R} and f(0)=1, then 
  • f(x) is increasing in (0,\infty)
  • f(x) is decreasing in (0,\infty)
  • f(x)\gt e^{2x} in (0,\infty)
  • f(x)\lt e^{2x} in (0,\infty)
If y=A\sin (\omega t - kx), then the value of {{dy} \over {dx}} is
  • A\cos (\omega t - kx)
  • - A\omega \cos (\omega t - kx)
  • Ak\cos (\omega t - kx)
  • - Ak\cos (\omega t - kx)
\frac{d^n}{dx^n}[log(ax+b)] is equal to:
  • \frac{(-1)^n n! a^n}{(ax+b)^{n+1}}
  • \frac{(-1)^{n-1} {(n-1)}! a^n}{(ax+b)^{n+1}}
  • \frac{(-1)^{n+1} ({n+1)}! a^{n-1}}{(ax+b)^{n+1}}
  • \frac{(-1)^{n-1} {(n-1)}! a^n}{(ax+b)^n}
Derivative of log_e(log_e|\sin x|) with respect to x at x=\dfrac{\pi}{6} is
  • -\dfrac{\sqrt{3}}{log_e2}
  • \dfrac{\sqrt{3}}{log_e2}
  • -\dfrac{\sqrt{3}}{2\log2}
  • does not exist
Statement I: The function f(x) in the figure is differentiable at x = a
Statement II: The function f(x) continuous at x = a

1019713_fa884f00f0bf444a8a92598dbf0fe684.png
  • Both Statement I and Statement II are true and the Statement II is the correct explanation of the Statement I.
  • Both Statement I and Statement II are true and the Statement II is not the correct explanation of the Statement I.
  • Statement I is true but Statement II is false
  • Statement I is false but Statement II is true.
If y=x^x then  \dfrac{d^2y}{dx^2}-\dfrac{1}{y}\left(\dfrac{dy}{dx}\right)^2-\dfrac{y}{x}=0
  • True
  • False
If e^y(x + 1) = 1, then \dfrac{d^2y}{dx^2} is equal to
  • y
  • \dfrac{dy}{dx}
  • -y
  • \left(\dfrac{dy}{dx}\right)^2
Given y=\dfrac {3}{x}, \dfrac {dy}{dx}=
  • 3
  • \dfrac {3}{x^{2}}
  • \dfrac {-3}{x^{2}}
  • 3x

State True or False.

If \dfrac{{{e^y}}}{{{e^x}}} = xy, then y' = \dfrac{{2 - \log x}}{{{{\left( {1 - \log x} \right)}^2}}}

  • True
  • False
If f(x) = \bigg[ \frac {a+x}{1+x} \bigg]^{a+1+2x}  then {a^{a+1}} \bigg [ 2 \ log \ a + {\frac {1-a ^2}{a}} \bigg] is
  • f^\prime (1)
  • f^\prime (0)
  • f^\prime (2)
  • f^{\prime \prime}
Find \dfrac{dy}{dx} of the function given:
xy = e^{(x-y)}
  • \dfrac{e^{x-y}+y}{x-e^{x-y}}
  • \dfrac{e^{x-y}+x}{e^{x-y}-y}
  • \dfrac{e^{x-y}-y}{x+e^{x-y}}
  • \dfrac{e^{x-y}-x}{e^{x-y}+y}
\dfrac{d}{{dx}}\left( {{{\sec }^2}x+{{{\mathop{\rm cosec}\nolimits} }^2}x} \right) =
  • - 4\sec x \cdot \tan x \cdot \cos ec\,x \cdot \cot x
  • 4\sec x \cdot \,\cos ec\,x
  • 2\sec \,x \cdot \,\tan x - 2\cos ec\,x \cdot \cot \,x
  • 2{\sec ^2} \cdot \tan x - 2{{\mathop{\rm cosec}\nolimits} ^2}x \cdot \cot x
Function f(x)=\left| {x - 2} \right| - 2\left| {x - 4} \right|\,is discontinous at:
  • x=2,4
  • x=2
  • No where
  • Except x=2
Differentiate with respect to x.
{x^{\cos x}} + \sin {x^{\tan x}}
  • x^{\cos x}\left[\dfrac {\cos x}{x}-\sin x\right]+\sin x^{\tan x}[1+\sec^2x.\log \sin x]
  • x^{\cos x}\left[\dfrac {\cos x}{x}-\sin x.\log x\right]+\sin x^{\tan x}[1+\sec^2x.\log \sin x]
  • x^{\cos x}\left[ {\cos x}-\sin x.\log x\right]+\sin x^{\tan x}[1+\sec x.\log \sin x]
  • None
Differentiate {x^{\tan x}} + {{\mathop{\rm tanx}\nolimits} ^x} with respect to x
  • x^{\tan x}(\sec^2x \log x+\dfrac{\tan x}{x})+\tan x^x(\log \tan x+\dfrac{2}{\sin 2x})
  • x^{\tan x}(\sec^2x \log \sec x+\dfrac{\tan x}{x})+\tan x^x(\log \tan x+\dfrac{2}{\sin 2x})
  • x^{\tan x}(\sec^2x \log x+\dfrac{\tan x}{x})-\tan x^x(\log \tan x+\dfrac{2}{\sin 2x})
  • x^{\tan x}(\sec^2x \log x+\dfrac{\tan x}{x})+\tan x^x(\log \tan x-\dfrac{2}{\sin 2x})
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers