Processing math: 100%

CBSE Questions for Class 11 Commerce Applied Mathematics Differentiation Quiz 9 - MCQExams.com

If y=4x5 is a tangent to the curve y2=px3+q at (2,3), then (p+q) is equal to
  • 5
  • 5
  • 9
  • 9
  • 0
If f(x)=|log|x||, then
  • f(x) is continuous and differentiable for all x in its domain
  • f(x) is continuous for all x in its domain but not differentiable at x=±1
  • f(x) is neither continuous nor differentiable at x=±1
  • None of the above
If x+y=10, find dydx  at y=4.
  • 4
  • 3
  • 4
  • 3
If xexy+yexy=sin2x, then dydx at x=0 is
  • 2y21
  • 2y
  • y2y
  • y2+1
  • y21
If x2+2xy+2y2=1, then dydx at the point where y=1 is equal to :
  • 1
  • 2
  • 1
  • 2
  • 0
If yxxy=1, then the value of dydx at x=1 is
  • 2(1log2)
  • 2(1+log2)
  • 2log2
  • 2+log2
If yx=2x, then dydx is equal to :
  • yxlog(2y)
  • xylog(2y)
  • yxlog(y2)
  • xylog(y2)
  • yxlog(2y)
If y=xx2, then the derivative of y2w.r.t.x2 is
  • 2x2+3x1
  • 2x23x+1
  • 2x2+3x+1
  • None of these
If (f(x))g(y)=ef(x)g(y) then dydx=.
  • f1(x)logf(x)g1(y)(1+logf(x))2
  • f1(x)logf(x)g1(y)(1+logf(x))3
  • f1(x).logf(x)g1(y)(1logf(x))2
  • f1(x)logf(x)g(y)(1+logf(x))2
Let f and g be differential functions satisfying g(a)=2,g(a)b and fog=I (identify function) then f(b)= :
  • 1/2
  • 2
  • 2/3
  • None of these
ddx(3sin(2x+π3)+cos(2x+π3))= _________.
  • 4cos2x
  • 4sin2x
  • 4sin2x
  • 4cos2x
If |x|<1, then ddx[1+pqx+p(p+q)2!(xq)2+p(p+q)(p+2q)3!(xq)3....]=
  • pq(1x)pq+1
  • pq(1x)pq
  • (1x)pq1
  • (1x)pq+1
If y=Tan1(log(e/x2)logex2)+Tan1(3+2logx16logx) then (dydx)x=2+(dydx)x=3.
  • 6
  • 2
  • 0
  • 2
Let x0(btcos4tasin4tt2)dt=asin4xx then a and b are given by
  • a=14,b=1
  • a=2,b=2
  • a=1,b=4
  • a=2,b=4
If 8f(x)+6f(1x)=x+5 and y=x2f(x) ,then dydx at x=-1 is equal to
  • 0
  • 114
  • 114
  • None of these
If f:RR is a differentiable function such that f(x)>2f(x)xR and f(0)=1, then 
  • f(x) is increasing in (0,)
  • f(x) is decreasing in (0,)
  • f(x)>e2x in (0,)
  • f(x)<e2x in (0,)
If y=Asin(ωtkx), then the value of dydx is
  • Acos(ωtkx)
  • Aωcos(ωtkx)
  • Akcos(ωtkx)
  • Akcos(ωtkx)
dndxn[log(ax+b)] is equal to:
  • (1)nn!an(ax+b)n+1
  • (1)n1(n1)!an(ax+b)n+1
  • (1)n+1(n+1)!an1(ax+b)n+1
  • (1)n1(n1)!an(ax+b)n
Derivative of loge(loge|sinx|)with respect to x at x=π6 is
  • 3loge2
  • 3loge2
  • 32log2
  • does not exist
Statement I: The function f(x) in the figure is differentiable at x = a
Statement II: The function f(x) continuous at x = a

1019713_fa884f00f0bf444a8a92598dbf0fe684.png
  • Both Statement I and Statement II are true and the Statement II is the correct explanation of the Statement I.
  • Both Statement I and Statement II are true and the Statement II is not the correct explanation of the Statement I.
  • Statement I is true but Statement II is false
  • Statement I is false but Statement II is true.
If y=xx then  d2ydx21y(dydx)2yx=0
  • True
  • False
If ey(x+1)=1, then d2ydx2 is equal to
  • y
  • dydx
  • y
  • (dydx)2
Given y=3x,dydx=
  • 3
  • 3x2
  • 3x2
  • 3x

State True or False.

If eyex=xy, then y=2logx(1logx)2

  • True
  • False
If f(x)=[a+x1+x]a+1+2x then aa+1[2 log a+1a2a] is
  • f(1)
  • f(0)
  • f(2)
  • f
Find dydx of the function given:
xy=e(xy)
  • exy+yxexy
  • exy+xexyy
  • exyyx+exy
  • exyxexy+y
ddx(sec2x+cosec2x)=
  • 4secxtanxcosecxcotx
  • 4secxcosecx
  • 2secxtanx2cosecxcotx
  • 2sec2tanx2cosec2xcotx
Function f(x)=|x2|2|x4|is discontinous at:
  • x=2,4
  • x=2
  • No where
  • Except x=2
Differentiate with respect to x.
xcosx+sinxtanx
  • xcosx[cosxxsinx]+sinxtanx[1+sec2x.logsinx]
  • xcosx[cosxxsinx.logx]+sinxtanx[1+sec2x.logsinx]
  • xcosx[cosxsinx.logx]+sinxtanx[1+secx.logsinx]
  • None
Differentiate xtanx+tanxx with respect to x
  • xtanx(sec2xlogx+tanxx)+tanxx(logtanx+2sin2x)
  • xtanx(sec2xlogsecx+tanxx)+tanxx(logtanx+2sin2x)
  • xtanx(sec2xlogx+tanxx)tanxx(logtanx+2sin2x)
  • xtanx(sec2xlogx+tanxx)+tanxx(logtanx2sin2x)
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers