Explanation
y=\tan ^{ -1 }{ \left( \cfrac { \log { \cfrac { e }{ { x }^{ 2 } } } }{ \log { e{ x }^{ 2 } } } \right) } +\tan ^{ -1 }{ \left( \cfrac { 3+2\log { x } }{ 1-6\log { x } } \right) } \\ \quad =\tan ^{ -1 }{ \left( \cfrac { \log { e } -\log { { x }^{ 2 } } }{ \log { e } +\log { { x }^{ 2 } } } \right) } +\tan ^{ -1 }{ \left[ \cfrac { 3+2\log { x } }{ 1-3-2\log { x } } \right] } \\ \quad =\tan ^{ -1 }{ \left[ \cfrac { 1-\log { { x }^{ 2 } } }{ 1+\log { { x }^{ 2 } } } \right] + } \tan ^{ -1 }{ 3 } +\tan ^{ -1 }{ 2\log { x } } \\ \quad =\tan ^{ -1 }{ 1 } -\tan ^{ -1 }{ \log { { \left( x \right) }^{ 2 } } +\tan ^{ -1 }{ 3 } } +\tan ^{ -1 }{ \log { { \left( x \right) }^{ 2 } } } \\ \quad =\tan ^{ -1 }{ 1+\tan ^{ -1 }{ 3 } } \\ y=\tan ^{ -1 }{ 1 } +\tan ^{ -1 }{ 3 } is constant
So, \cfrac { dy }{ dx } =0
Answer C
State True or False.
If \dfrac{{{e^y}}}{{{e^x}}} = xy, then y' = \dfrac{{2 - \log x}}{{{{\left( {1 - \log x} \right)}^2}}}
Please disable the adBlock and continue. Thank you.