Processing math: 5%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Commerce Applied Mathematics Functions Quiz 10 - MCQExams.com
CBSE
Class 11 Commerce Applied Mathematics
Functions
Quiz 10
For set
A
,
B
and
C
, let
f
:
A
→
B
,
g
:
B
→
C
be functions such that
g
o
f
is Injective.
Then
f
is injective.
Report Question
0%
True
0%
False
Explanation
Suppose that
g
∘
f
is injective;
we show that
f
is injective.
To this end, let
x
1
,
x
2
∈
A
and suppose that
f
(
x
1
)
=
f
(
x
2
)
.
Then
(
g
∘
f
)
(
x
1
)
=
g
(
f
(
x
1
)
)
=
g
(
f
(
x
2
)
)
=
(
g
∘
f
)
(
x
2
)
.
But since
g
∘
f
is injective,
this implies that
x
1
=
x
2
.
Therefore
f
is injective.
Which of the following functions from
Z
to
Z
are bijection?
Report Question
0%
f
(
x
)
=
x
3
0%
f
(
x
)
=
x
+
2
0%
f
(
x
)
=
2
x
2
+
1
0%
f
(
x
)
=
x
2
+
1
Explanation
Here,
f
(
x
)
=
x
+
2
⇒
f
(
x
1
)
=
f
(
x
2
)
x
1
+
2
=
x
2
+
2
⇒
x
1
=
x
2
Let
y
=
x
+
2
x
=
y
−
2
∈
Z
,
∀
∈
x
Here,
f
(
x
)
is one-one is onto.
Let
f
(
x
)
and
g
(
x
)
be differentiable for
0
×
<
1
such that
f
(
0
)
=
0
,
g
(
0
)
,
f
(
1
)
=
6
. Let there exist a real number
c
in
(
0
,
1
)
such that
f
′
(
c
)
=
2
g
′
(
c
)
, then the value of
g
(
1
)
must be
Report Question
0%
1
0%
3
0%
2.5
0%
−
1
If g is the inverse of function
f
and
f
′
(
x
)
=
1
1
+
x
, then the value of g'(x) is equal to:
Report Question
0%
1
+
x
7
0%
1
1
+
[
g
(
x
)
]
7
0%
1
+
[
g
(
x
)
]
7
0%
7
x
6
Explanation
Since g is the inverse of
f
,
f
−
1
(
x
)
=
g
(
x
)
∴
\therefore f'[g(x)] \cdot \frac{d}{dx} [g(x)] = 1
\therefore f'[g(x)] \times g'(x) = 1
\therefore g'(x) = \frac{1}{f'[g(x)]}
, where
f'(x) = \frac{1}{1 + x^7}
\therefore g(x) = 1 + [g(x)]^7
Which one of the following is onto function define R to R .
Report Question
0%
f(x) = |x|
0%
f(x) = e^{x}
0%
f(x) = x^{3}
0%
f(x) = \sin x
Which of the following in one -one function defined from R to R
Report Question
0%
f(x) = |x|
0%
f(x) = \cos x
0%
f(x) =e^{x}
0%
f(x) = x^{2}
Which of the following is onto function-
Report Question
0%
f : Z \rightarrow Z , f (x) = |x|
0%
f : N \rightarrow N , f (x) = |x|
0%
f : R_{0} \rightarrow R^{+} , f (x) = |x|
0%
f : C \rightarrow R , f (x) = |x|
From
] \dfrac{- \pi}{2} , \dfrac{- \pi}{2}[
which of the following is one - one onto function defined in R
Report Question
0%
f(x) = \tan x
0%
f(x) = \sin x
0%
f(x) = \cos x
0%
f(x) = e^{x} + r^{-x}
Let
f: [ -1,1] \rightarrow [0,2]
be a linear function which is onto then f(x) is/are
Report Question
0%
1 - x
0%
1 + x
0%
x - 1
0%
x - 2
Explanation
If
f(x) = x^{2} + x
and
g(x) = \sqrt {x}
, then the value of
f(g(3))
is
Report Question
0%
1.73
0%
3.46
0%
4.73
0%
7.34
0%
12.00
Explanation
Given,
f(x)=x^2+x, g(x)=\sqrt x
Then we need to find the value of
f(g(3))
\Rightarrow g(3) = \sqrt3
..... given
g(x) = \sqrt x
\Rightarrow f(g(3)) = f(\sqrt3) = 3 + \sqrt3
..... given
f(x) = { x }^{ 2 }+x
If
f\left( x \right)=\sqrt { 3\left| x \right| -x-2 }
and
g(x)=\sin(x)
, then the domain of the definition of
f\circ g\left( x \right)
is
Report Question
0%
\displaystyle \left\{ 2n\pi +\frac { \pi }{ 2 } \right\}
0%
\displaystyle \left( 2n\pi +\frac { 7\pi }{ 6 } ,2n\pi +\frac { 11\pi }{ 6 } \right)
0%
\displaystyle \left\{ 2n\pi +\frac { 7\pi }{ 6 } \right\}
0%
\displaystyle \left( 2n\pi +\frac { 7\pi }{ 6 } ,2n\pi +\frac { 11\pi }{ 6 } \right) \bigcup _{ n,m\in I }^{ }{ \left( 2n\pi +\frac { \pi }{ 2 } \right) }
Explanation
We have
\displaystyle f\left( x \right) =\sqrt { 3\left| x \right| -x-2 }
and
g\left( x \right) =\sin { x }
\therefore f\circ g\left( x \right) =\sqrt { 3\left| \sin { x } \right| -\sin { x } -2 }
which is defined,
if
3\left| \sin { x } \right| -\sin { x } -2\ge 0
If
\sin { x } >0,
then
2\sin { x } -2\ge 0\quad
\Rightarrow \sin { x } \ge 1
\displaystyle \Rightarrow \sin { x } =1\Rightarrow x=\frac { \pi }{ 2 }
If
\sin { x } <0,
then
\displaystyle -4\sin { x } -2\ge 0\Rightarrow -1\le -\frac { 1 }{ 2 }
\displaystyle \therefore x\in \left( 2n\pi +\frac { 7\pi }{ 6 } ,2n\pi +\frac { 11\pi }{ 6 } \right) \bigcup _{ n,m\in I }^{ }{ \left( 2n\pi +\frac { \pi }{ 2 } \right) } n,m\in I
Domain of the function,
f(x)=\sqrt{\cos(\sin x)}+\sin^{-1}(x^2-1)
is
Report Question
0%
[-1, 1]
0%
[-2, 2]
0%
[-\pi, -\sqrt{2}] \cup [\sqrt{2}, \pi]
0%
[-\sqrt{2}, \sqrt{2}]
Explanation
f(x)=\sqrt{\cos(\sin x)}+\sin^{-1}(x^2-1)
-1 \leq \sin x \leq 1
\forall x \in R
\therefore \cos(\sin x) > 0
\forall x \in R
\therefore
domain of
\sqrt{\cos(\sin x)}
is
R
.....(i)
-1 \leq x^2-1 \leq 1
i.e.
0 \leq x^2 \leq 2
i.e.
x \in [-\sqrt{2}, \sqrt{2}]
\therefore
domain of
\sin^{-1}(x^2-1)
is
[-\sqrt{2}, \sqrt{2}]
....(ii)
From (i) and (ii)
Domain of
f(x)
is
[-\sqrt{2}, \sqrt{2}]
If
f(x) = x^{2}
,
-1\leq x \leq 4
,
g(x) = sec^{-1}x
,
x\geq 1
then
Report Question
0%
Domain of gof(x) is
[1, 4] \cup {-1}
0%
Domain of gof(x) is
[1, 4]
0%
Range of gof(x) is
[0, sec^{-1}16]
0%
Range of fog(x) is
\left ( 0,\frac{\pi^{2}}{4} \right )
Explanation
gof(x) exists when
f(x) \geq 1
and
x \epsilon [-1, 4]
x^{2}\geq 1\Rightarrow X \epsilon (-\infty,-1]\cup[1,\infty)
\Rightarrow X \epsilon [1,4]\cup {-1}
Range of
gof(x) = [0, sec^{-1}16]
If
f (x) = x + 2, g (x) = 2 x +3,
then find gof
Report Question
0%
2x -7
0%
7x + 2
0%
2x + 7
0%
7 + 2x
The domain of the function
\displaystyle f(x)=\sin^{-1}\dfrac {1}{|x^2-1|}+\dfrac {1}{\sqrt {\sin^2x+\sin x+1}}
is
Report Question
0%
\displaystyle (-\infty, \infty)
0%
\displaystyle (-\infty, -\sqrt 2]\cup [\sqrt 2, \infty)
0%
\displaystyle (-\infty , -\sqrt 2]\cup [\sqrt 2, \infty)\cup \left \{0\right \}
0%
none of these
Explanation
As,
\sin^2x+\sin x+1 > 0, \forall x\in R
\displaystyle \therefore \frac {1}{\sqrt {\sin^2x+\sin x+1}}
is always exists.
\displaystyle \therefore
For
\sin^{-1}\left (\dfrac {1}{|x^2-1|}\right )
to exists,
\displaystyle 0 < \frac {1}{|x^2-1|} \leq 1\Rightarrow |x^2-1|\geq 1
\displaystyle \Rightarrow x^2-1 \leq -1
or
x^2-1\geq 1
\displaystyle \Rightarrow x^2\leq 0
or
x^2\geq 2
\displaystyle \Rightarrow x=0
or
(x\leq -\sqrt 2
or
x\geq \sqrt 2)
\displaystyle \therefore x\in (-\infty, -\sqrt 2]\cup [\sqrt 2, \infty)\cup \left \{0\right \}
Hence, (c) is the correct answer.
Let
\displaystyle \mathrm{f}:\mathrm{R}\rightarrow \left[0,\frac{\pi}{2}\right)
be defined by
\mathrm{f}(\mathrm{x})=\mathrm{t}\mathrm{a}\mathrm{n}^{-1}(\mathrm{x}^{2}+\mathrm{x}+\mathrm{a})
. Then the set of values of '
\mathrm{a}
' for which
\mathrm{f}
is onto is
Report Question
0%
[0,\infty)
0%
[2, 1]
0%
\displaystyle \left\{ \frac{1}{4}\right\}
0%
\displaystyle \left[ \frac{1}{4}, \infty\right)
Explanation
f(x)=\tan^{-1}(x^2+x+a)
For,
f(x)
to be onto, codomain should be exactly equal to range.
That is, range of funnction
\displaystyle f(x) = \left[ 0,\frac { \pi }{ 2 } \right)
So,
0\leqslant \tan^{-1}(x^2+x+a)<\dfrac{\pi}{2}
Now,
\displaystyle { x }^{ 2 }+x+a={ \left( x+\dfrac { 1 }{ 2 } \right) }^{ 2 }+a-\dfrac { 1 }{ 4 }
The above expression will take all real values from
\left[0, \infty \right)
, only if
\displaystyle a = \dfrac{1}{4}
Hence, only for
a= \dfrac{1}{4}
, the function is onto.
Let
\displaystyle {f}({x})=\frac{{a}{x}+{b}}{{c}{x}+{d}}
, then
fof(x)={x}
, provided
Report Question
0%
d = -a
0%
d = a
0%
a = b = c = d = 1
0%
a = b = 1
Explanation
Given,
f(x)=\dfrac{ax+b}{cx+d}
f(f(x))=\dfrac{a\left ( \dfrac{ax+b}{cx+d}\right )+b}{c\left ( \dfrac{ax+b}{cx+d} \right )+d}=x
=\dfrac{a(ax+b)+b(cx+d)}{c(ax+b)+d(cx+d)}=x
a(ax+b)+b(cx+d)=x[c(ax+b)+d(cx+d)]
(a^2+bc)x+(ab+bd)=(ac+cd)x^2+(bc+d^2)x
matching the coefficients of
x
, we get,
a^2+bc=bc+d^2
a^2=d^2
d=\pm a
matching the coefficients of
x^2
, we get,
ac+cd=0
\therefore d=-a
matching constant terms, we get,
ab+bd=0
d=-a
Which of the following functions is/are injective map(s) ?
Report Question
0%
f(x)=x^2+2, x \in (-\infty,\infty)
0%
f(x)=|x+2|, x \in [-2,\infty)
0%
f(x)=(x-4)(x-5), x \in (-\infty,\infty)
0%
f(x)=\dfrac{4x^2 + 3x -5}{4+3x-5x^2}, x\in(-\infty, \infty)
Explanation
The function
f(x)=x^2 + 2, x \in (-\infty, \infty)
is not injective as
f(1)=f(-1)
but
1 \neq -1.
The function
f(x)=(x-4)(x-5), x \in (-\infty, \infty)
is not one-one as
f(4)=f(5)
but
4 \neq 5.
The functin
f(x)=\dfrac{4x^2 + 3x -5}{4 + 3x - 5x^2}, x \in (-\infty,\infty)
is also not injective as
f(1)=f(-1)
but
1 \neq -1
.
For the function ,
f(x)=-|x+2|, x\in [-2,\infty)
Let
f(x)=f(y),x,y \in [-2,\infty) \Rightarrow |x+2| = |y+2|
\Rightarrow x+2 = y+2
\Rightarrow x=y
So ,
f
is an injective map.
Which of the following functions is not injective ?
Report Question
0%
f:R \rightarrow R, f(x)=2x+7
0%
f:[0,\pi]\rightarrow[-1,1],f(x)=\cos x
0%
f:\left [ -\dfrac{\pi}{2},\dfrac{\pi}{2} \right ]\rightarrow R, f(x)=2 \sin x +3
0%
f:R\rightarrow [-1,1],f(x)=\sin x
Explanation
A:
f:R\rightarrow R, f(x)=2x+7
\dfrac{dy}{dx}=2>0 \rightarrow
one-one (Injective)
B:
f:[0,\pi]\rightarrow [-1,1],f(x)=\cos x
\dfrac{dy}{dx}=\sin x=(+ve) \rightarrow
one-one (Injective)
C:
f: \left[-\dfrac{\pi}2, \dfrac{\pi}2\right], f(x) = 2\sin x+3
\dfrac{dy}{dx}= 2\cos x=+ve \rightarrow
one-one (Injective)
D:
f:R\rightarrow [-1,1],f(x)=\sin x
\dfrac{dy}{dx}=\cos x=+ve
&
-ve \rightarrow
many one
Hence, option D.
The domain of the function
f(x)=\log_3 \log_{1/3}(x^2+10x+25)+\dfrac {1}{[x]+5}
where [.] denotes the greatest integer function) is
Report Question
0%
(-4, -3)
0%
(-6, -5)
0%
(-6, 4)
0%
None of these
Explanation
For given function to be defined,
(i)
x^2+10x+25>0\Rightarrow (x+5)^2>0\Rightarrow x\neq -5=D_1
(ii)
\log_{1/3}(x^2+10x+25)>0\Rightarrow x^2+10x+25<1
\Rightarrow x^2+10x+24<0\Rightarrow (x+4)(x+6)<0\Rightarrow x\in(-6,-4)=D_2
and
(iii)
[x]+5\neq 0\Rightarrow x\notin [-5,4)=D_3
Hence domain of f is
D_!\cap D_2\cap D_3 =(-6,-5)
Suppose
f(x)=ax+b
and
g(x)=bx+a
, where
a
and
b
are positive integers. If
f\left ( g(50) \right )-g\left ( f(50) \right )=28
then the product
(ab)
can have the value equal to
Report Question
0%
12
0%
48
0%
180
0%
210
Explanation
f(g(x))=a(bx+a)+b
=abx+a^2+b
g(f(x))=b(ax+b)+a
=abx+b^2+a.
Therefore
f(g(x))-g(f(x))
=abx+a^2+b-(abx+b^2+a)
=a^2-b^2+b-a
=(a-b)(a+b-1)
Since it is a constant function.
(a-b)(a+b-1)=28
(a-b)(a+b-1)=4(7)
Hence
a-b=4
a+b=8
a=6
and
b=2
Hence
ab=12
Also
(a-b)(a+b-1)=(1)(28)
a-b=1
a+b=29
a=15
and
b=14
Therefore
ab=14(15)=210
Which one of the following functions is not one-one?
Report Question
0%
f:(-1,\infty )\rightarrow R
given by
f(x)={ x }^{ 2 }+2x\quad
0%
g:(2,\infty )\rightarrow R
given by
g(x)={ e }^{ { x }^{ 3 }-3x+2 }\quad
0%
h:R\rightarrow R
given by
h(x)={ 2 }^{ { x }(x-1) }\quad
0%
\phi :(-\infty ,0)\rightarrow R
given by
\phi (x)=\cfrac { { x }^{ 2 } }{ { x }^{ 2 }+1 }
Explanation
x(x-1)
is not a one -one function in whole
R
.
This function has a minima at
x=\dfrac12
, therefore repeats value after
x=\dfrac12
.
We can also see that
x(x-1) = 0
for
x=0,1
and therefore
e^{x(x-1)} =1
for both
x=0 \&\ 1
, which rules it out as a one to one function.
l= \lim_{x\rightarrow \alpha}\displaystyle \frac{f(x)}{x(x-\alpha)(x-2)}
is
Report Question
0%
positive
0%
negative
0%
0
0%
sign of
l
depends upon
\alpha\pi
Explanation
For the quadratic function
f(x) = ax^2 + bx +c
, it's given that
a, b, c
are non-zero.
Hence,
f(0) = c \neq 0
It's given that
f:[0,2] \rightarrow [0,2]
is bijective.
Since
f(0) \neq 0
,
f(0) = 2
for it to be bijective.
\Rightarrow f(2) = 0
So, three cases possible as shown in the figure, which will satisfy the second condition as well.
For cases 1 and 2,
\displaystyle \lim_{x\rightarrow \alpha}\displaystyle \frac{f(x)}{x(x-\alpha)(x-2)}
\displaystyle =\lim _{ x\rightarrow \alpha } \frac { 1 }{ x\left( x-2 \right) } \lim _{ x\rightarrow \alpha } \frac { f(x) }{ x-\alpha } \\ \displaystyle =\frac { 1 }{ \alpha \left( \alpha -2 \right) } \lim _{ x\rightarrow \alpha } \frac { f'(x) }{ 1 } =\frac { f'(\alpha ) }{ \alpha \left( \alpha -2 \right) }
f'(\alpha)
is positive for both cases.
\alpha( \alpha -2)
is also positive for both cases. Hence, the limit value is also positive.
For the case in figure-3,
\displaystyle \lim _{ x\rightarrow \alpha } \frac { f(x) }{ x(x-\alpha )(x-2) } =\lim _{ x\rightarrow \alpha } \frac { 1 }{ x } \lim _{ x\rightarrow \alpha } \frac { f(x) }{ { \left( x-\alpha \right) }^{ 2 } } \\ \displaystyle =\frac { 1 }{ \alpha } \lim _{ x\rightarrow \alpha } \frac { f'(x) }{ 2\left( x-\alpha \right) } =\frac { 1 }{ \alpha } \lim _{ x\rightarrow \alpha } \frac { f''(x) }{ 2 } =\frac { 1 }{ \alpha } \frac { f''\left( \alpha \right) }{ 2 }
f''(\alpha) > 0
since the graph is facing upwards. Also
\alpha
is positive.
Hence, in this case also , the value of limit is positive. Hence, option A is correct.
Domain of the function
f(x)=\dfrac {1}{\sqrt {4x-|x^2-10x+9|}}
, is
Report Question
0%
(7-\sqrt {40}, 7+\sqrt {40})
0%
(0, 7+\sqrt {40})
0%
(7-\sqrt {40}, \infty)
0%
none of these
Explanation
Here,
f(x)=\dfrac {1}{\sqrt {4x-|x^2-10x+9|}}
would exist, if
\displaystyle 4x-|x^2-10x+9| > 0
ie,
\displaystyle |x^2-10x+9| < 4x
,
where
\displaystyle |x^2-10x+9|=\begin{cases}x^2-10x+9 & x\leq 1 \text{ or } x \geq 9\\ -(x^2-10x+9) &1 < x < 9 \end{cases}
Case I: When
x\leq 1
or
x\geq 9
\therefore x^2-10x+9 < 4x
\Rightarrow x^2-14x+9 < 0 \Rightarrow (x-7)^2 < 40
\Rightarrow x\in (7-\sqrt {40}, 7+\sqrt {40})
(But
x\leq 1
or
x\geq 9
)
\Rightarrow x\in (7-\sqrt {40}, 1]\cup [9, 7+\sqrt {40})
.....(i)
Case II: When
1 < x < 9
-x^2+10x-9 < 4x\Rightarrow x^2-6x+9 > 0
\Rightarrow (x-3)^2 > 0
which is always true except
x=\left \{3\right \}
\therefore x\in (1, 9)=\left \{3\right \}
.....(ii)
From Eqs. (i) and (ii), domain of
f(x)\in (7-\sqrt {40}, 7+\sqrt {40})-\left \{3\right \}
Hence, (d) is the correct answer.
If
f:R\rightarrow \left [\dfrac {\pi}{6}, \dfrac {\pi}{2}\right ), f(x)=\sin^{-1}\left (\dfrac {x^2-a}{x^2+1}\right )
is a onto function, then set of values of
a
is
Report Question
0%
\left \{-\dfrac {1}{2}\right \}
0%
\left [-\dfrac {1}{2}, -1\right )
0%
(-1, \infty)
0%
none of these
Explanation
Given,
f(x)
is onto.
\therefore \displaystyle \frac {\pi}{6}\leq \sin^{-1}\left (\frac {-x^2-a}{x^2+1}\right ) < \frac {\pi}{2}
\Rightarrow \displaystyle \frac {1}{2}\leq \frac {x^2-a}{x^2+1} < 1
\Rightarrow \displaystyle \frac {1}{2}\leq 1-\frac {(a+1)}{x^2+1} < 1, \forall x\epsilon R
\Rightarrow a+1 > 0
\Rightarrow a\in (-1, \infty)
Hence, (c) is the correct answer.
In the following functions defined from
[-1, 1]
to
[-1, 1]
, then functions which are not bijective are
Report Question
0%
\displaystyle \sin (\sin^{-1} \: x)
0%
\displaystyle \frac {2}{\pi} \: \sin^{-1} (\sin \: x)
0%
\displaystyle (sgn \: x) \ lne^x
0%
\displaystyle x^3 \: sgn \: x
Explanation
sin\sin ^{ -1 }{ x } = x
hence it is bijective.
\dfrac { 2 }{ \pi } \sin ^{ -1 }{ sinx }
=
\dfrac { 2x }{ \pi }
. Hence it is one one but not onto, hence not bijective
sgn(x).x=\dfrac { \left| x \right| }{ x }.x= |x|, x\neq
0
Hence it is not one one or onto, hence not bijective
{ x }^{ 3 }sgnx={ x }^{ 3 }\dfrac { |x| }{ x } ={ x }^{ 2 }|x|={ |x| }^{ 3 },x\neq 0
. Hence function is not one one or onto, hence not bijective.
Which of the function defined below are one-one function(s)?
Report Question
0%
f(x)=x+1,(x\geq-1)
0%
g(x)=x+\dfrac1x,(x\geq0)
0%
h(x)=x^2+4x-5,(x>0)
0%
f(x)=e^{-x},(x\geq0)
Explanation
A function is called one-one if it is monotonic
A.
f(x)= x+1)\Rightarrow f'(x) =1>0\Rightarrow f
is monotonically increasing
B.
g(x) =x+\dfrac{1}{x}\Rightarrow g'(x)=1-\dfrac{1}{x^2},
which is -ve for
0\le x<1
and +ve for
x>0\Rightarrow f
is not monotonic
C.
h(x) =x^2+4x-5\Rightarrow h'(x)=2x+4>0\forall x>0\Rightarrow f
is monotonically increasing
D.
f(x) =e^{-x}\Rightarrow f'(x) =-e^{-x}<0\forall x\le 0\Rightarrow f
is monotonically decreasing
f(x)=x^3+3x^2+4x+b \sin x+c \cos x, \forall x\in R
is a one-one function, then the value of
b^2+c^2
is
Report Question
0%
\geq 1
0%
\geq 2
0%
\leq 1
0%
none of these
Explanation
Here,
f(x)=x^3+3x^2+4x+b \sin x+c \cos x
f'(x)=3x^2+6x+4+b \cos x-c \sin x
Now, for
f(x)
to be one-one, the only possibility is
f'(x)\geq 0, \forall x\in R
ie,
3x^2+6x+4+b \cos x-c \sin x\geq 0, \forall x\in R
ie,
3x^2+6x+4 \geq c \sin x-b \cos x, \forall x\in R
As we are approximating lower bound for the function by a number instead of a function, hence we chose the number.
ie,
3x^2+6x+4 \geq \sqrt {b^2+c^2}, \forall x\in R
ie,
\sqrt {b^2+c^2} \leq 3(x^2+2x+1)+1,\forall x\in R
\sqrt {b^2+c^2} \leq 3(x+1)^2+1, \forall x\in R
\sqrt {b^2+c^2} \leq 1, \forall x \in R
\Rightarrow b^2+c^2 \leq 1, \forall x \in R
Hence, (c) is the correct answer.
Find the domain of the function
f(x) = \dfrac {\sqrt {x - 1}}{x}
Report Question
0%
All real numbers except for
0
0%
All real numbers greater than or equal to
1
0%
All real numbers less than or equal to
1
0%
All real numbers greater than or equal to
-1
but less than or equal to
1
0%
All real numbers less than or equal to
-1
Explanation
f(x) = \dfrac {\sqrt {x-1}}{x}
, for
f(x)
to exist, the expression in the square root must be non - negative and the expression in denominator should not be equal to
0
.
So,
x-1 \ge 0
and
x \ne 0
x \ge 1
and
x \ne 0
, which implies
x \ge 1
.
If
f(x)=2x+|x|, g(x)=\dfrac {1}{3}(2x-|x|)
and
h(x)=f(g(x))
, then domain of
\sin^{-1}\underset {\text {n times}}{\underbrace {(h(h(h(h.....h(x).....))))}}
is
Report Question
0%
[-1, 1]
0%
\left [-1, -\dfrac {1}{2}\right ]\cup \left [\dfrac {1}{2}, 1\right ]
0%
\left [-1, -\dfrac {1}{2}\right ]
0%
\left [\dfrac {1}{2}, 1\right ]
Explanation
Since,
f(x)=\left\{\begin{matrix}2x+x, & x\geq 0\\ 2x-x, & x < 0\end{matrix}\right.=\left\{\begin{matrix}3x, & x\geq 0\\ x, & x < 0\end{matrix}\right.
and
g(x)=\dfrac {1}{3}\left\{\begin{matrix}2x-x, & x\geq 0\\ 2x+x, & x < 0\end{matrix}\right.=\left\{\begin{matrix}\dfrac {x}{3}, & x\geq 0\\ x, & x < 0\end{matrix}\right.
\therefore f(g(x))=\left\{\begin{matrix}3\left (\dfrac {x}{3} \right ) & x\geq0\\ x & x < 0\end{matrix}\right.
\Rightarrow f(g(x))=x, \forall x\in R
\therefore h(x)=x
\Rightarrow \sin^{-1} (h(h(h....h(x)....)))=\sin^{-1}x
\therefore
Domain of
\sin^{-1} (h(h(h(h.....h(x)....))))
is
[-1, 1]
Hence, A is the correct answer.
Let
f(x)=max\left\{1+\sin x,1,1-\cos x \right\}, x\in \left [ 0,2\pi \right ]
and
g(x)=max\left\{ 1,\left | x-1 \right |\right\},x\in R
, then
Report Question
0%
g(f(0))=1
0%
g(f(1))=1
0%
f(g(1))=1
0%
f(g(0))=\sin 1
Explanation
f(x)=(max [1+sinx,1,1-cos(x)]
for
x\epsilon[0,2\pi]
f(0)
=(max(1+0,1,0))
=1
f(1)
=(max(1+sin(1)),1,1-cos1)
=1+sin(1)
g(x)=max(1,|x-1|)
Hence,
g(f(0))
=g(1)
=max(1,0)
=1
And,
g(f(1))
=max(1,|1+sin(1)-1|)
=max(1,|sin(1)|)
=1
g(0) = 1
f(g(0)) = 1+sin 1
The domain of function
\displaystyle f(x)=\sqrt{x-\sqrt{1-x^{2}}}
is
Report Question
0%
\displaystyle \left [ -1,-\frac{1}{\sqrt{2}} \right ]\cup \left [ \frac{1}{\sqrt{2}},1 \right ]
0%
\displaystyle [-1,1]
0%
\displaystyle \left ( -\infty,-\frac{1}{2} \right ]\cup \left [ \frac{1}{\sqrt{2}},+\infty \right )
0%
\displaystyle \left [ \frac{1}{\sqrt{2}},1 \right ]
Explanation
\displaystyle f(x)=\sqrt{x-\sqrt{1-x^{2}}}
x-\sqrt{1-x^{2}} \geq 0
and
1 -x^{2}\geq0
\Rightarrow x\geq\sqrt{1-x^{2}}
and
-1\leq x \leq1
... (i)
Now,
x^2\geq(\sqrt{1-x^{2}})^2
, for positive
x
x\leq-\dfrac{1}{\sqrt{2}}
or
x\geq\dfrac{1}{\sqrt{2}}
... (ii)
From (i) and (ii), we get
x\in\displaystyle \left [ -1,-\frac{1}{\sqrt{2}} \right ]\cup \left [ \frac{1}{\sqrt{2}},1 \right ]
Hence, option 'D' is correct.
The domain of the function
\displaystyle f(x)=\sqrt{1-\sqrt{1-\sqrt{1-x^{2}}}}
is
Report Question
0%
\displaystyle \left \{ x|x< 1 \right )
0%
\displaystyle \left \{ x|x> -1 \right \}
0%
[0,1]
0%
[-1,1]
Explanation
For real range of
f(x)
1-x^{2}\geq 0
x^2\leq 1
|x|\leq 1
-1 \leq x \leq 1
x\in [-1,1]
Hence the domain for the above function is
[-1,1]
The function
f
is one to one and the sum of all the intercepts of the graph is
5
. The sum of all the intercept of the graph
\displaystyle y = f^{-1} \left ( x \right )
is
Report Question
0%
5
0%
\dfrac15
0%
\dfrac25
0%
-5
Explanation
Since the function
f
is one-one there exist only one
x
-intercept and only one
y
-intercept for the function.
Let
a
be the
y
-intercept of the function
f
. Hence
f\left( 0 \right) = a
, but then we have
{f^{ - 1}}\left( a \right) = 0
.
Therefore
a
is an
x
-intercept of the function
{f^{ - 1}}
.
Similarly the
x
-intercept of the function
f
is
y
-intercept of the function
{f^{ - 1}}
, say
b
.
Hence the sum of the intercepts of the function
f
is same as the sum of the intercepts of the function
{f^{ - 1}}
which is equal to 5.
Let
f\left( x \right) =\left\{ \begin{matrix} 1+|x|,\; x<-1 \\ \left[ x \right] ,\; x\ge -1 \end{matrix} \right.
where
[\cdot]
denotes the greatest integer function. Then
\displaystyle f\left \{f(-2.3) \right\}
is equal to
Report Question
0%
4
0%
2
0%
-3
0%
3
Explanation
f\left( x \right) =\left\{ \begin{matrix} 1+|x|,\; x<-1 \\ \left[ x \right] ,\; x\ge -1 \end{matrix} \right.
.
f\left( -2.3 \right) =1+\left| -2.3 \right| =3.3\dots ( \because x < -1
)
.
hence,
f\left( f\left( -2.3 \right) \right) =f\left( 3.3 \right) =\left[ 3.3 \right] =3
f\left( f\left( -2.3 \right) \right)=3
The largest set of real values of
x
for which
\displaystyle f(x)=\sqrt{(x+2)(5-x)}-\frac{1}{\sqrt{x^{2}-4}}
is a real function is
Report Question
0%
\displaystyle [1,2)\cup (2,5]
0%
\displaystyle (2,5]
0%
\displaystyle [3,4]
0%
none\:of\:these
Explanation
\sqrt { \left( x+2 \right) \left( 5-x \right) }
is defined for
\left( x+2 \right) \left( 5-x \right) \ge 0\\ \Rightarrow \left( x+2 \right) \left( x-5 \right) \le 0\\ \Rightarrow x\in \left[ -2,5 \right] .........(1)
.
Similarly,
\dfrac { 1 }{ \sqrt { { x }^{ 2 }-4 } }
is defined for
{ x }^{ 2 }-4>0\\ x\in \left( -\infty ,-2 \right) \bigcup \left( 2,\infty \right) ......(2)
.
From
(1)
and
(2)
, the domain of
f(x)
is
x \in \left( 2, 5 \right]
If
\displaystyle f \left ( x \right ) = px + q
and
\displaystyle f \left ( f\left ( f\left ( x \right ) \right ) \right ) = 8x + 21
, where
p
and
q
are real numbers, the
p + q
equals
Report Question
0%
3
0%
5
0%
7
0%
11
Explanation
f(x)=px+q
f(f(x))=p(px+q)+q
=p^2x+q(p+1)
f(f(f(x)))=p(p^2x+q(p+1))+q
=p^{3}x+q(p(p+1)+1)
=8x+21
By comparing coefficients, we get
p^{3}=8
p=2
And
q(2(3)+1)=21
7q=21
q=3
Hence
f(x)=2x+3
Therefore,
p+q=2+3=5
The value of
(a + b)
is equal to
Report Question
0%
-2
0%
-1
0%
0
0%
1
Explanation
x^{2}-2x-1
is an upwards facing parabola. Therefore, it has a point of minimum
=-\dfrac{b}{2a}=\dfrac12\times
Sum of roots
After the point of minimum the curve slopes up and the function no longer remain one-one. Hence the largest interval for it to be injecvtive is upto the point of minimum.
The roots of the quadratic are,
\rightarrow x=1+\sqrt{2}
and
x=1-\sqrt{2}
So
a=\dfrac{1+\sqrt{2}+1-\sqrt{2}}{2}
=1
f(1)=(1-1)^{2}-2
=-2
=b
Hence
a+b
=1-2
=-1
K(x)
is a function such that
K(f(x))=a+b+c+d
,
Where,
$$a=\begin{cases}
0 & \text{ if f(x) is even} \\
-1 & \text{ if f(x) is odd} \\
2 & \text{ if f(x) is neither even nor odd}
\end{cases}$$
$$b=\begin{cases}
3 & \text{ if f(x) is periodic} \\
4 & \text{ if f(x) is aperiodic}
\end{cases}$$
$$c=\begin{cases}
5 & \text{ if f(x) is one one} \\
6 & \text{ if f(x) is many one}
\end{cases}$$
$$d=\begin{cases}
7 & \text{ if f(x) is onto} \\
8 & \text{ if f(x) is into}
\end{cases}$$
h:R\rightarrow R,h(x)=\left ( \displaystyle \frac{e^{2x}+e^{x}+1}{e^{2x}-e^{x}+1} \right )
On the basis of above information, answer the following questions.
K(\phi(x))
Report Question
0%
15
0%
16
0%
17
0%
18
Explanation
\phi(x)\rightarrow \left(\dfrac{-\pi}{2},\dfrac{\pi}{2}\right)
Now we know that for the given domain,
\tan(x)
is one-one, periodic, odd and an into function.
Hence
f(\phi(x))
=-1+3+5+8
=16-1
=15
Let
f:{x, y, z}\rightarrow (a, b, c)
be a one-one function. It is known that only one of the following statements is true:
(i)
f(x)\neq b
(ii)
f(y)=b
(iii)
f(z)\neq a
Report Question
0%
f=\{(x, a), (y, b), (z, c)\}
0%
f=\{(x, b), (y, a), (z, c)\}
0%
f=\{(x, b), (y, c), (z, c)\}
0%
f=\{(x, b), (y, c), (z, a)\}
Explanation
When (i) is true, then
f(x) \neq b, f(y) \neq b , f(z) = a
\Rightarrow
Two ordered pair function is possible
f(x) = a, f(y) = c, f(z) = a
or
f(x) = c, f(y) = a, f(z) = a
But given
f
is one-one and only one such function is possible. Hence (i) can't be true.
When (ii) is true, then
f(y) = b, f(z) =a , f(x) = b
. This is also not possible.
Clearly if (iii) is true then it is satisfying every condition.
Hence ordered pair of
f
is
\{(x,a), (y,b), (z,c)\}
Let
\displaystyle f(x)=\begin{cases}x^{2} & \mbox{if} \quad0< x< 2\\2x-3 & \mbox{if} \quad2\leq x< 3 \\ x+2 & \mbox{if}\quad x\geq 3\end{cases}
.
Then
Report Question
0%
\displaystyle f\left \{ f\left ( f\left ( \frac{3}{2} \right ) \right ) \right \}=f\left ( \frac{3}{2} \right )
0%
\displaystyle 1+f\left \{ f\left ( f\left ( \frac{5}{2} \right ) \right ) \right \}=f\left ( \frac{5}{2} \right )
0%
\displaystyle f\left \{ f(0) \right \}=f\left ( 1 \right )=1
0%
none of these
Explanation
consider option A)
\displaystyle f\left( {\frac{3}{2}} \right) = \frac{9}{4}
as
\displaystyle \frac{3}{2} < 2
and
\displaystyle f\left( {\frac{9}{4}} \right) =2 \times \frac{9}{4} - 3 = \frac{3}{2}
as
\displaystyle \frac{9}{4} > 2
.
Therefore
\displaystyle f\left( {f\left( {f\left( {\frac{3}{2}} \right)} \right)} \right) = f\left( {\frac{3}{2}} \right)
.
Hence option A is correct answer.
Consider option B)
\displaystyle f\left( {\frac{5}{2}} \right) = 2 \times \frac{5}{2} - 3 = 2
as
\displaystyle \frac{5}{2} > 2
and
\displaystyle f\left( 2 \right) = 2 \times 2 - 3 = 1
.
Also,
\displaystyle f\left( 1 \right) = 1
Hence,
\displaystyle 1+f\left \{ f\left ( f\left ( \frac{5}{2} \right ) \right ) \right \}= 2 =f\left( {\frac{5}{2}} \right)
Hence option B is also a correct answer .
Since the function is not defined for
x=0
option C can be eliminated.
If
f:R\rightarrow R
and
g:R\rightarrow R
are given by
f(x)=|x|
and
g(x)=[x]
for each
x\in R,
then
\left\{ x\in R:g\left( f\left( x \right) \right) \le f\left( g\left( x \right) \right) \right\} =
Report Question
0%
Z\cup \left( -\infty ,0 \right)
0%
\left( -\infty ,0 \right)
0%
Z
0%
R
Explanation
g\left( f\left( x \right) \right) \le f\left( g\left( x \right) \right) \Rightarrow g\left( \left| x \right| \right) \le f\left( \left[ x \right] \right) \Rightarrow \left[ \left| x \right| \right] \le \left[ \left| x \right| \right]
This is true for each
x\in R
Let
f
and
g
be increasing and decreasing functions respectively from
\displaystyle \left ( 0,\infty \right )
to
\left ( 0,\infty \right )
and let
h\left ( x \right )=f\left [ g\left ( x \right ) \right ]
. If
h\left ( 0 \right )=0
then
h\left ( x \right )-h\left ( 1 \right )
is
Report Question
0%
always zero
0%
always negative
0%
always positive
0%
strictly increasing
0%
None of these
Explanation
Let
\displaystyle F\left ( x \right )=h\left ( x \right )-h\left ( 1 \right )=f\left ( g\left ( x \right ) \right )-h\left ( 1 \right )
\displaystyle F'\left ( x \right )=f'\left ( g\left ( x \right ) \right ).g'\left ( x \right )=\left ( + \right )\left ( - \right )=-ive.
(As f is increasing function
\displaystyle f'\left ( g\left ( x \right ) \right )
is +ive and as g is decreasing function
\displaystyle g'\left ( x \right )
is-ive.)
Since F'(x) is-ive therefore F(x)i.e.h(x)-h(1) is decreasing function.
Now split the interval
\displaystyle I=\left [ 0,\infty \right ]
into two intervals
\displaystyle I_{1},0\leq x< 1and I_{2}, 1\leq x< \infty ,
Apply the definition of decreasing function on
\displaystyle h\left ( x \right )-h\left ( 1 \right ):
on
\displaystyle I_{1},0\leq x< 1,\underset{\left ( Big \right )}{h\left ( x \right )}-\underset{\left ( Less \right )}{h\left ( 1 \right )}=+ive
On
\displaystyle I_{2},1\leq x< \infty ,\underset{\left ( Less \right )}{h\left ( x \right )}-\underset{\left ( Big \right )}{h\left ( 1 \right )}=-ive
Hence for
\displaystyle I,h\left ( x \right )-h\left ( 1 \right )
is neither always zero nor always +ive nor always-ive,nor strictly increasing throughout.
Hence (v) is the correct answer.
If
\displaystyle f(x)=27x^{3}+\frac{1}{x^{3}}
and
\alpha,\beta
are the roots of
\displaystyle 3x+\frac{1}{x}=2
is
Report Question
0%
f(\alpha)=f(\beta)
0%
f(\alpha)=10
0%
f(\beta)=-10
0%
none of these
Explanation
3x+\dfrac{1}{x}=2
Cubing the above equation, we get
\left(3x+\dfrac{1}{x}\right)^3=2^3
\therefore 27x^3+\dfrac{1}{x^3}+3(3x)\left(\dfrac{1}{x}\right)\left(3x+\dfrac{1}{x}\right)=8
\therefore 27x^3+\dfrac{1}{x^3}+9\left(3x+\dfrac{1}{x}\right)=8
\therefore 27x^3+\dfrac{1}{x^3}+9(2)=8
\therefore 27x^3+\dfrac{1}{x^3}=-10
\alpha
and
\beta
are roots of above equation.
\therefore 27\alpha^3+\dfrac{1}{\alpha^3}=-10
...(1)
and
27\beta^3+\dfrac{1}{\beta^3}=-10
...(2)
f(x)=27x^3+\dfrac{1}{x^3}
f(\alpha)=27\alpha^3+\dfrac{1}{\alpha^3}
\implies f(\alpha) =-10
...(from 1)
Similarly,
f(\beta)=27\beta^3+\dfrac{1}{\beta^3}
\implies f(\beta)=-10
...(from 2)
\therefore f(\alpha)=f(\beta)=-10
So, the correct options are option (A) and (C)
The value of
x
satisfying the equation
\displaystyle \left | x-1 \right |^{\log_{3}x^{2}-2\log_{9}x}= (x-1)^7
is
Report Question
0%
3^4
0%
3^5
0%
3^6
0%
3^7
Explanation
\displaystyle (i) \log_{a}b
hold good if
\displaystyle a> 0,a\neq 1,a> 1
i.e.
a-1> 0
\therefore \left | a-1 \right |= a-1
(ii) a^{b}> 0\,\,\forall\, b\in R
Now from given
\displaystyle \left | x-1 \right |^{\log_{3}x^{2}-2\log_{9}x}= (x-1)^{7}
\displaystyle \Rightarrow \left ( x-1 \right )^{\log_{3}x^{2}-2\log_{9}x}= (x-1)^{7}
\displaystyle\Rightarrow 2\log_{3}x-2\log^{x}{9}= 7
taking log at base
(x -1)
bothsides.
log_{x}{3}=7,x=3^7
The domain of
\displaystyle f(x)=\frac{1}{\sqrt{|\cos\:x|+\cos\:x}}
is
Report Question
0%
[-2n\pi,2n\pi]
0%
(2n\pi,\overline{2n+1}\pi)
0%
\displaystyle \left ( \frac{(4n+1)\pi}{2} ,\frac{(4n+3)\pi}{2}\right )
0%
\displaystyle \left ( \frac{(4n-1)\pi}{2} ,\frac{(4n+1)\pi}{2}\right )
If
f(x)=2x^3
and
g(x)=3x
, calculate the value of
g(f(-2))-f(g(2))
.
Report Question
0%
-480
0%
-384
0%
0
0%
384
0%
480
Explanation
f(-2) = 2 \times { (-2) }^{ 3 } = -16
g(2) = 3 \times 2 =6
g(f(-2)) = g(-16) = 3 \times -16 = -48
f(g(2)) = f(6) = 2 \times { (6) }^{ 3 } = 432
g(f(-2)) - f(g(2)) = -48-432 = -480
Find the
maximum value of
g(f(x))
if:
f(x) = x + 4
and
g(x) = 6 - x^{2}
Report Question
0%
-6
0%
-4
0%
2
0%
4
0%
6
Explanation
Given,
f(x)=x+4, g(x)=6-x^2
\therefore g(f(x)) = g(x+4) = 6-{(x+4)}^{2}
The minimum value of
{(x+4)}^{2}
is
0
which occurs at
x=-4
.
So, the maximum value of
g(f(x))
is
6-0 = 6
.
Let
\displaystyle f\left ( x \right )=\frac{ax^{2}+2x+1}{2x^{2}-2x+1}
, the value of
a
for which
\displaystyle f:R\rightarrow \left [ -1,2 \right ]
is onto , is
Report Question
0%
\displaystyle \left [ 2,5 \right ]
0%
\displaystyle \left [ -5,-2 \right ]
0%
\displaystyle \left [ 0,5 \right ]
0%
None of these.
Explanation
Given
\displaystyle f\left ( x \right )=\frac{ax^{2}+2x+1}{2x^{2}-2x+1}
Since,
\displaystyle f:R\rightarrow \left [ -1,2 \right ]
is onto
R(f)=Co-domain [-1,2]
-1 \le \dfrac{ax^{2}+2x+1}{2x^{2}-2x+1}\le 2
\Rightarrow -(2x^{ 2 }-2x+1)\le ax^{ 2 }+2x+1\le 2(2x^{ 2 }-2x+1)
\Rightarrow -2x^{ 2 }+2x-1\le ax^{ 2 }+2x+1\le 4x^{ 2 }-4x+2
....(1)
\Rightarrow -2x^{ 2 }+2x-1\le ax^{ 2 }+2x+1
\Rightarrow (a+2)x^2+2\ge 0
So for all
x\in R
,
a+2\ge 0
\Rightarrow a\ge -2
.....(2)
From the inequality (1), it follows that
ax^{ 2 }+2x+1\le 4x^{ 2 }-4x+2
\Rightarrow (a-4)x^2+6x-1 \le 0
\Rightarrow a-4 < 0
and
D\le 0
\Rightarrow a<4
and
36+4a-16 \le 0
\Rightarrow a<4
and
a\le -5
....(3)
From (2) and (3), we get
a\in (-\infty,-5]\cup [-2,4)
The total number of injective mappings from a set with
m
elements to a set with
n
elements,
m \leq n
is
Report Question
0%
\displaystyle m^{n}
0%
\displaystyle n^{m}
0%
\displaystyle \frac{n!}{(n-m)!}
0%
n!
Explanation
a_{1} \in
A can have
n
images in
B
, but the element
a_{2}
will have only
(n-1)
images as the mappings are to be one-one (injective).
Similarly the elements
a_{3}
will have
(n-2)
images.
Hence the total number of mappings will be,
n(n-1)(n-2)...(n-\overline{m-1})=n(n-1)(n-2)...(n-m+1)
Multiply above and below by
(n-m)(n-m-1)...3.2.1
\therefore
Required numbers is
\displaystyle \frac{n!}{(n-m)!}
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
0
Answered
1
Not Answered
49
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page