Processing math: 5%

CBSE Questions for Class 11 Commerce Applied Mathematics Functions Quiz 10 - MCQExams.com

For set A,B and C, let f:AB,g:BC be functions such that gof is Injective.
Then f is injective.
  • True
  • False
Which of the following functions from Z to Z are bijection?
  • f(x)=x3
  • f(x)=x+2
  • f(x)=2x2+1
  • f(x)=x2+1
Let f(x) and g(x) be differentiable for 0×<1 such that f(0)=0,g(0),f(1)=6. Let there exist a real number c in (0,1) such that f(c)=2g(c), then the value of g(1) must be 
  • 1
  • 3
  • 2.5
  • 1
If g is the inverse of function f and f(x)=11+x, then the value of g'(x) is equal to:
  • 1+x7
  • 11+[g(x)]7
  • 1+[g(x)]7
  • 7x6
Which one of the following is onto function define R to R .
  • f(x) = |x|
  • f(x) = e^{x}
  • f(x) = x^{3}
  • f(x) = \sin x
Which of the following in one -one function defined from R to R
  • f(x) = |x|
  • f(x) = \cos x
  • f(x) =e^{x}
  • f(x) = x^{2}
Which of the following is onto function-
  • f : Z \rightarrow Z , f (x) = |x|
  • f : N \rightarrow N , f (x) = |x|
  • f : R_{0} \rightarrow R^{+} , f (x) = |x|
  • f : C \rightarrow R , f (x) = |x|
From  ] \dfrac{- \pi}{2} , \dfrac{- \pi}{2}[ which of the following is one - one onto function defined in R
  • f(x) = \tan x
  • f(x) = \sin x
  • f(x) = \cos x
  • f(x) = e^{x} + r^{-x}
Let f: [ -1,1] \rightarrow [0,2] be a linear function which is onto then f(x) is/are 
  • 1 - x
  • 1 + x
  • x - 1
  • x - 2
If f(x) = x^{2} + x and g(x) = \sqrt {x}, then the value of f(g(3)) is
  • 1.73
  • 3.46
  • 4.73
  • 7.34
  • 12.00
If f\left( x \right)=\sqrt { 3\left| x \right| -x-2 } and g(x)=\sin(x), then the domain of the definition of f\circ g\left( x \right) is
  • \displaystyle \left\{ 2n\pi +\frac { \pi  }{ 2 }  \right\}
  • \displaystyle \left( 2n\pi +\frac { 7\pi  }{ 6 } ,2n\pi +\frac { 11\pi  }{ 6 }  \right)
  • \displaystyle \left\{ 2n\pi +\frac { 7\pi  }{ 6 }  \right\}
  • \displaystyle \left( 2n\pi +\frac { 7\pi  }{ 6 } ,2n\pi +\frac { 11\pi  }{ 6 }  \right) \bigcup _{ n,m\in I }^{  }{ \left( 2n\pi +\frac { \pi  }{ 2 }  \right)  }
Domain of the function,
f(x)=\sqrt{\cos(\sin  x)}+\sin^{-1}(x^2-1) is
  • [-1, 1]
  • [-2, 2]
  • [-\pi, -\sqrt{2}] \cup [\sqrt{2}, \pi]
  • [-\sqrt{2}, \sqrt{2}]
If f(x) = x^{2}, -1\leq x \leq 4 , g(x) = sec^{-1}x, x\geq 1 then


  • Domain of gof(x) is [1, 4] \cup {-1}
  • Domain of gof(x) is [1, 4]
  • Range of gof(x) is [0, sec^{-1}16]
  • Range of fog(x) is \left ( 0,\frac{\pi^{2}}{4} \right )
If f (x) = x + 2, g (x) = 2 x +3, then find gof
  • 2x -7
  • 7x + 2
  • 2x + 7
  • 7 + 2x
The domain of the function \displaystyle f(x)=\sin^{-1}\dfrac {1}{|x^2-1|}+\dfrac {1}{\sqrt {\sin^2x+\sin x+1}} is
  • \displaystyle (-\infty, \infty)
  • \displaystyle (-\infty, -\sqrt 2]\cup [\sqrt 2, \infty)
  • \displaystyle (-\infty , -\sqrt 2]\cup [\sqrt 2, \infty)\cup \left \{0\right \}
  • none of these
Let \displaystyle \mathrm{f}:\mathrm{R}\rightarrow \left[0,\frac{\pi}{2}\right) be defined by \mathrm{f}(\mathrm{x})=\mathrm{t}\mathrm{a}\mathrm{n}^{-1}(\mathrm{x}^{2}+\mathrm{x}+\mathrm{a}). Then the set of values of '\mathrm{a}' for which \mathrm{f} is onto is
  • [0,\infty)
  • [2, 1]
  • \displaystyle \left\{ \frac{1}{4}\right\}
  • \displaystyle \left[ \frac{1}{4}, \infty\right)
Let \displaystyle {f}({x})=\frac{{a}{x}+{b}}{{c}{x}+{d}}, then fof(x)={x}, provided
  • d = -a
  • d = a
  • a = b = c = d = 1
  • a = b = 1
Which of the following functions is/are injective map(s) ?
  • f(x)=x^2+2, x \in (-\infty,\infty)
  • f(x)=|x+2|, x \in [-2,\infty)
  • f(x)=(x-4)(x-5), x \in (-\infty,\infty)
  • f(x)=\dfrac{4x^2 + 3x -5}{4+3x-5x^2}, x\in(-\infty, \infty)
Which of the following functions is not injective ?
  • f:R \rightarrow R, f(x)=2x+7
  • f:[0,\pi]\rightarrow[-1,1],f(x)=\cos x
  • f:\left [ -\dfrac{\pi}{2},\dfrac{\pi}{2} \right ]\rightarrow R, f(x)=2 \sin x +3
  • f:R\rightarrow [-1,1],f(x)=\sin x
The domain of the function f(x)=\log_3 \log_{1/3}(x^2+10x+25)+\dfrac {1}{[x]+5} where [.] denotes the greatest integer function) is
  • (-4, -3)
  • (-6, -5)
  • (-6, 4)
  • None of these
Suppose f(x)=ax+b and g(x)=bx+a, where a and b are positive integers. If  f\left ( g(50) \right )-g\left ( f(50) \right )=28 then the product (ab) can have the value equal to
  • 12
  • 48
  • 180
  • 210
Which one of the following functions is not one-one?
  • f:(-1,\infty )\rightarrow R given by f(x)={ x }^{ 2 }+2x\quad
  • g:(2,\infty )\rightarrow R given by g(x)={ e }^{ { x }^{ 3 }-3x+2 }\quad
  • h:R\rightarrow R given by h(x)={ 2 }^{ { x }(x-1) }\quad
  • \phi :(-\infty ,0)\rightarrow R given by \phi (x)=\cfrac { { x }^{ 2 } }{ { x }^{ 2 }+1 }
l= \lim_{x\rightarrow \alpha}\displaystyle \frac{f(x)}{x(x-\alpha)(x-2)} is
  • positive
  • negative
  • 0
  • sign of l depends upon \alpha\pi
Domain of the function f(x)=\dfrac {1}{\sqrt {4x-|x^2-10x+9|}}, is
  • (7-\sqrt {40}, 7+\sqrt {40})
  • (0, 7+\sqrt {40})
  • (7-\sqrt {40}, \infty)
  • none of these
If f:R\rightarrow \left [\dfrac {\pi}{6}, \dfrac {\pi}{2}\right ), f(x)=\sin^{-1}\left (\dfrac {x^2-a}{x^2+1}\right ) is a onto function, then set of values of a is
  • \left \{-\dfrac {1}{2}\right \}
  • \left [-\dfrac {1}{2}, -1\right )
  • (-1, \infty)
  • none of these
In the following functions defined from [-1, 1] to [-1, 1], then functions which are not bijective are
  • \displaystyle \sin (\sin^{-1} \: x)
  • \displaystyle \frac {2}{\pi} \: \sin^{-1} (\sin \: x)
  • \displaystyle (sgn \: x) \ lne^x
  • \displaystyle x^3 \: sgn \: x
Which of the function defined below are one-one function(s)?
  • f(x)=x+1,(x\geq-1)
  • g(x)=x+\dfrac1x,(x\geq0)
  • h(x)=x^2+4x-5,(x>0)
  • f(x)=e^{-x},(x\geq0)
f(x)=x^3+3x^2+4x+b \sin x+c \cos x, \forall x\in R is a one-one function, then the value of b^2+c^2 is
  • \geq 1
  • \geq 2
  • \leq 1
  • none of these
Find the domain of the function f(x) = \dfrac {\sqrt {x - 1}}{x}
  • All real numbers except for 0
  • All real numbers greater than or equal to 1
  • All real numbers less than or equal to 1
  • All real numbers greater than or equal to -1 but less than or equal to 1
  • All real numbers less than or equal to -1
If f(x)=2x+|x|, g(x)=\dfrac {1}{3}(2x-|x|) and h(x)=f(g(x)), then domain of \sin^{-1}\underset {\text {n times}}{\underbrace {(h(h(h(h.....h(x).....))))}} is
  • [-1, 1]
  • \left [-1, -\dfrac {1}{2}\right ]\cup \left [\dfrac {1}{2}, 1\right ]
  • \left [-1, -\dfrac {1}{2}\right ]
  • \left [\dfrac {1}{2}, 1\right ]
Let f(x)=max\left\{1+\sin x,1,1-\cos x \right\}, x\in \left [ 0,2\pi  \right ]  and g(x)=max\left\{ 1,\left | x-1 \right |\right\},x\in R , then
  • g(f(0))=1
  • g(f(1))=1
  • f(g(1))=1
  • f(g(0))=\sin 1
The domain of function \displaystyle f(x)=\sqrt{x-\sqrt{1-x^{2}}} is
  • \displaystyle \left [ -1,-\frac{1}{\sqrt{2}} \right ]\cup \left [ \frac{1}{\sqrt{2}},1 \right ]
  • \displaystyle [-1,1]
  • \displaystyle \left ( -\infty,-\frac{1}{2} \right ]\cup \left [ \frac{1}{\sqrt{2}},+\infty \right )
  • \displaystyle \left [ \frac{1}{\sqrt{2}},1 \right ]
The domain of the function \displaystyle f(x)=\sqrt{1-\sqrt{1-\sqrt{1-x^{2}}}} is
  • \displaystyle \left \{ x|x< 1 \right )
  • \displaystyle \left \{ x|x> -1 \right \}
  • [0,1]
  • [-1,1]
The function f is one to one and the sum of all the intercepts of the graph is 5. The sum of all the intercept of the graph \displaystyle y = f^{-1} \left ( x \right ) is
  • 5
  • \dfrac15
  • \dfrac25
  • -5
Let f\left( x \right) =\left\{ \begin{matrix} 1+|x|,\; x<-1 \\ \left[ x \right] ,\; x\ge -1 \end{matrix} \right.  where [\cdot] denotes the greatest integer function. Then \displaystyle f\left \{f(-2.3) \right\} is equal to 
  • 4
  • 2
  • -3
  • 3
The largest set of real values of x for which \displaystyle f(x)=\sqrt{(x+2)(5-x)}-\frac{1}{\sqrt{x^{2}-4}} is a real function is
  • \displaystyle [1,2)\cup (2,5]
  • \displaystyle (2,5]
  • \displaystyle [3,4]
  • none\:of\:these
If \displaystyle f \left ( x \right ) = px + q and \displaystyle f \left ( f\left ( f\left ( x \right ) \right ) \right ) = 8x + 21, where p and q are real numbers, the p + q equals
  • 3
  • 5
  • 7
  • 11
The value of (a + b) is equal to
  • -2
  • -1
  • 0
  • 1
K(x) is a function such that K(f(x))=a+b+c+d,
Where,
$$a=\begin{cases}
0 & \text{ if f(x) is even}  \\ 
-1 & \text{ if f(x) is odd} \\ 
2 & \text{ if f(x) is neither even nor odd} 
\end{cases}$$
$$b=\begin{cases}
3 & \text{ if  f(x) is periodic} \\ 
4 & \text{  if  f(x) is  aperiodic}
\end{cases}$$
$$c=\begin{cases}
5 & \text{ if  f(x) is  one one} \\ 
6 & \text{  if  f(x) is many one}
\end{cases}$$
$$d=\begin{cases}
7 & \text{ if  f(x) is onto} \\ 
8 & \text{  if  f(x) is into}
\end{cases}$$ 
h:R\rightarrow R,h(x)=\left ( \displaystyle \frac{e^{2x}+e^{x}+1}{e^{2x}-e^{x}+1} \right ) 

On the basis of above information, answer the following questions.K(\phi(x))
  • 15
  • 16
  • 17
  • 18
Let f:{x, y, z}\rightarrow (a, b, c) be a one-one function. It is known that only one of the following statements is true:
(i) f(x)\neq b
(ii)f(y)=b
(iii)f(z)\neq  a
  • f=\{(x, a), (y, b), (z, c)\}
  • f=\{(x, b), (y, a), (z, c)\}
  • f=\{(x, b), (y, c), (z, c)\}
  • f=\{(x, b), (y, c), (z, a)\}
Let \displaystyle f(x)=\begin{cases}x^{2} & \mbox{if}  \quad0< x< 2\\2x-3 & \mbox{if}  \quad2\leq x< 3 \\ x+2 & \mbox{if}\quad  x\geq 3\end{cases}.
Then 
  • \displaystyle f\left \{ f\left ( f\left ( \frac{3}{2} \right ) \right ) \right \}=f\left ( \frac{3}{2} \right )
  • \displaystyle 1+f\left \{ f\left ( f\left ( \frac{5}{2} \right ) \right ) \right \}=f\left ( \frac{5}{2} \right )
  • \displaystyle f\left \{ f(0) \right \}=f\left ( 1 \right )=1
  • none of these
If f:R\rightarrow R and g:R\rightarrow R are given by f(x)=|x| and g(x)=[x] for each x\in R, then \left\{ x\in R:g\left( f\left( x \right) \right) \le f\left( g\left( x \right) \right)  \right\} =
  • Z\cup \left( -\infty ,0 \right)
  • \left( -\infty ,0 \right)
  • Z
  • R
Let f and g be increasing and decreasing functions respectively from \displaystyle \left ( 0,\infty  \right ) to \left ( 0,\infty  \right ) and let h\left ( x \right )=f\left [ g\left ( x \right ) \right ]. If h\left ( 0 \right )=0 then  h\left ( x \right )-h\left ( 1 \right ) is
  • always zero
  • always negative
  • always positive
  • strictly increasing
  • None of these
If \displaystyle f(x)=27x^{3}+\frac{1}{x^{3}} and \alpha,\beta are the roots of \displaystyle 3x+\frac{1}{x}=2 is
  • f(\alpha)=f(\beta)
  • f(\alpha)=10
  • f(\beta)=-10
  • none of these
The value of x satisfying the equation \displaystyle \left | x-1 \right |^{\log_{3}x^{2}-2\log_{9}x}= (x-1)^7 is
  • 3^4
  • 3^5
  • 3^6
  • 3^7
The domain of \displaystyle f(x)=\frac{1}{\sqrt{|\cos\:x|+\cos\:x}} is 
  • [-2n\pi,2n\pi]
  • (2n\pi,\overline{2n+1}\pi)
  • \displaystyle \left ( \frac{(4n+1)\pi}{2} ,\frac{(4n+3)\pi}{2}\right )
  • \displaystyle \left ( \frac{(4n-1)\pi}{2} ,\frac{(4n+1)\pi}{2}\right )
If f(x)=2x^3 and g(x)=3x, calculate the value of g(f(-2))-f(g(2)).
  • -480
  • -384
  • 0
  • 384
  • 480
Find the maximum value of g(f(x)) if:
f(x) = x + 4 and
g(x) = 6 - x^{2}
  • -6
  • -4
  • 2
  • 4
  • 6
Let \displaystyle f\left ( x \right )=\frac{ax^{2}+2x+1}{2x^{2}-2x+1}, the value of a for which \displaystyle f:R\rightarrow \left [ -1,2 \right ] is onto , is
  • \displaystyle \left [ 2,5 \right ]
  • \displaystyle \left [ -5,-2 \right ]
  • \displaystyle \left [ 0,5 \right ]
  • None of these.
The total number of injective mappings from a set with m elements to a set with n elements, m \leq n is 
  • \displaystyle m^{n}
  • \displaystyle n^{m}
  • \displaystyle \frac{n!}{(n-m)!}
  • n!
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers