CBSE Questions for Class 11 Commerce Applied Mathematics Functions Quiz 10 - MCQExams.com

For set $$A, B$$ and $$C$$, let $$f:A\to B, g:B\to C$$ be functions such that $$gof $$ is Injective.
Then $$f$$ is injective.
  • True
  • False
Which of the following functions from $$Z$$ to $$Z$$ are bijection?
  • $$f(x)=x^3$$
  • $$f(x)=x+2$$
  • $$f(x)=2x^2+1$$
  • $$f(x)=x^2+1$$
Let $$f(x)$$ and $$g(x)$$ be differentiable for $$0\times  < 1$$ such that $$f(0)=0, g(0), f(1)=6$$. Let there exist a real number $$c$$ in $$(0,1)$$ such that $$f'(c)=2g'(c)$$, then the value of $$g(1)$$ must be 
  • $$1$$
  • $$3$$
  • $$2.5$$
  • $$-1$$
If g is the inverse of function $$f$$ and $$f'(x) = \frac{1}{1 + x}$$, then the value of g'(x) is equal to:
  • $$1 + x^7$$
  • $$\frac{1}{1 + [g(x)]^7}$$
  • $$1 + [g(x)]^7$$
  • $$7x^6$$
Which one of the following is onto function define R to R .
  • $$ f(x) = |x| $$
  • $$ f(x) = e^{x}$$
  • $$ f(x) = x^{3}$$
  • $$ f(x) = \sin x $$
Which of the following in one -one function defined from R to R
  • $$ f(x) = |x| $$
  • $$ f(x) = \cos x $$
  • $$ f(x) =e^{x}$$
  • $$ f(x) = x^{2} $$
Which of the following is onto function-
  • $$ f : Z \rightarrow Z , f (x) = |x| $$
  • $$ f : N \rightarrow N , f (x) = |x| $$
  • $$ f : R_{0} \rightarrow R^{+} , f (x) = |x| $$
  • $$ f : C \rightarrow R , f (x) = |x| $$
From $$ ] \dfrac{- \pi}{2} , \dfrac{- \pi}{2}[ $$ which of the following is one - one onto function defined in R
  • $$ f(x) = \tan x $$
  • $$ f(x) = \sin x $$
  • $$ f(x) = \cos x $$
  • $$ f(x) = e^{x} + r^{-x}$$
Let $$ f: [ -1,1] \rightarrow [0,2]$$ be a linear function which is onto then f(x) is/are 
  • $$ 1 - x $$
  • $$ 1 + x $$
  • $$ x - 1$$
  • $$ x - 2 $$
If $$f(x) = x^{2} + x$$ and $$g(x) = \sqrt {x}$$, then the value of $$f(g(3))$$ is
  • $$1.73$$
  • $$3.46$$
  • $$4.73$$
  • $$7.34$$
  • $$12.00$$
If $$f\left( x \right)=\sqrt { 3\left| x \right| -x-2 } $$ and $$g(x)=\sin(x)$$, then the domain of the definition of $$f\circ g\left( x \right) $$ is
  • $$\displaystyle \left\{ 2n\pi +\frac { \pi  }{ 2 }  \right\} $$
  • $$\displaystyle \left( 2n\pi +\frac { 7\pi  }{ 6 } ,2n\pi +\frac { 11\pi  }{ 6 }  \right) $$
  • $$\displaystyle \left\{ 2n\pi +\frac { 7\pi  }{ 6 }  \right\} $$
  • $$\displaystyle \left( 2n\pi +\frac { 7\pi  }{ 6 } ,2n\pi +\frac { 11\pi  }{ 6 }  \right) \bigcup _{ n,m\in I }^{  }{ \left( 2n\pi +\frac { \pi  }{ 2 }  \right)  } $$
Domain of the function,
$$f(x)=\sqrt{\cos(\sin  x)}+\sin^{-1}(x^2-1)$$ is
  • $$[-1, 1]$$
  • $$[-2, 2]$$
  • $$[-\pi, -\sqrt{2}] \cup [\sqrt{2}, \pi]$$
  • $$[-\sqrt{2}, \sqrt{2}]$$
If $$f(x) = x^{2}$$, $$-1\leq x \leq 4$$ ,$$ g(x) = sec^{-1}x$$, $$x\geq 1$$ then


  • Domain of gof(x) is $$[1, 4] \cup {-1}$$
  • Domain of gof(x) is $$[1, 4] $$
  • Range of gof(x) is $$[0, sec^{-1}16]$$
  • Range of fog(x) is $$\left ( 0,\frac{\pi^{2}}{4} \right )$$
If $$f (x) = x + 2, g (x) = 2 x +3,$$ then find gof
  • $$2x -7 $$
  • $$7x + 2$$
  • $$2x + 7$$
  • $$7 + 2x$$
The domain of the function $$\displaystyle f(x)=\sin^{-1}\dfrac {1}{|x^2-1|}+\dfrac {1}{\sqrt {\sin^2x+\sin x+1}}$$ is
  • $$\displaystyle (-\infty, \infty)$$
  • $$\displaystyle (-\infty, -\sqrt 2]\cup [\sqrt 2, \infty)$$
  • $$\displaystyle (-\infty , -\sqrt 2]\cup [\sqrt 2, \infty)\cup \left \{0\right \}$$
  • none of these
Let $$\displaystyle \mathrm{f}:\mathrm{R}\rightarrow \left[0,\frac{\pi}{2}\right)$$ be defined by $$\mathrm{f}(\mathrm{x})=\mathrm{t}\mathrm{a}\mathrm{n}^{-1}(\mathrm{x}^{2}+\mathrm{x}+\mathrm{a})$$. Then the set of values of '$$\mathrm{a}$$' for which $$\mathrm{f}$$ is onto is
  • $$[0,\infty)$$
  • $$[2, 1]$$
  • $$ \displaystyle \left\{ \frac{1}{4}\right\}$$
  • $$ \displaystyle \left[ \frac{1}{4}, \infty\right)$$
Let $$\displaystyle {f}({x})=\frac{{a}{x}+{b}}{{c}{x}+{d}}$$, then $$fof(x)={x}$$, provided
  • $$d = -a$$
  • $$d = a$$
  • $$a = b = c = d = 1$$
  • $$a = b = 1$$
Which of the following functions is/are injective map(s) ?
  • $$f(x)=x^2+2, x \in (-\infty,\infty)$$
  • $$f(x)=|x+2|, x \in [-2,\infty)$$
  • $$f(x)=(x-4)(x-5), x \in (-\infty,\infty)$$
  • $$f(x)=\dfrac{4x^2 + 3x -5}{4+3x-5x^2}, x\in(-\infty, \infty)$$
Which of the following functions is not injective ?
  • $$f:R \rightarrow R, f(x)=2x+7$$
  • $$f:[0,\pi]\rightarrow[-1,1],f(x)=\cos x$$
  • $$f:\left [ -\dfrac{\pi}{2},\dfrac{\pi}{2} \right ]\rightarrow R, f(x)=2 \sin x +3$$
  • $$f:R\rightarrow [-1,1],f(x)=\sin x$$
The domain of the function $$f(x)=\log_3 \log_{1/3}(x^2+10x+25)+\dfrac {1}{[x]+5}$$ where [.] denotes the greatest integer function) is
  • $$(-4, -3)$$
  • $$(-6, -5)$$
  • $$(-6, 4)$$
  • None of these
Suppose $$f(x)=ax+b$$ and $$g(x)=bx+a$$, where $$a$$ and $$b$$ are positive integers. If  $$f\left ( g(50) \right )-g\left ( f(50) \right )=28$$ then the product $$(ab)$$ can have the value equal to
  • $$12$$
  • $$48$$
  • $$180$$
  • $$210$$
Which one of the following functions is not one-one?
  • $$f:(-1,\infty )\rightarrow R$$ given by $$ f(x)={ x }^{ 2 }+2x\quad $$
  • $$g:(2,\infty )\rightarrow R$$ given by $$g(x)={ e }^{ { x }^{ 3 }-3x+2 }\quad $$
  • $$h:R\rightarrow R$$ given by $$h(x)={ 2 }^{ { x }(x-1) }\quad $$
  • $$\phi :(-\infty ,0)\rightarrow R$$ given by $$\phi (x)=\cfrac { { x }^{ 2 } }{ { x }^{ 2 }+1 } $$
$$l= \lim_{x\rightarrow \alpha}\displaystyle \frac{f(x)}{x(x-\alpha)(x-2)}$$ is
  • positive
  • negative
  • $$0$$
  • sign of $$l$$ depends upon $$\alpha\pi$$
Domain of the function $$f(x)=\dfrac {1}{\sqrt {4x-|x^2-10x+9|}}$$, is
  • $$(7-\sqrt {40}, 7+\sqrt {40})$$
  • $$(0, 7+\sqrt {40})$$
  • $$(7-\sqrt {40}, \infty)$$
  • none of these
If $$f:R\rightarrow \left [\dfrac {\pi}{6}, \dfrac {\pi}{2}\right ), f(x)=\sin^{-1}\left (\dfrac {x^2-a}{x^2+1}\right )$$ is a onto function, then set of values of $$a$$ is
  • $$\left \{-\dfrac {1}{2}\right \}$$
  • $$\left [-\dfrac {1}{2}, -1\right )$$
  • $$(-1, \infty)$$
  • none of these
In the following functions defined from $$[-1, 1]$$ to $$[-1, 1]$$, then functions which are not bijective are
  • $$\displaystyle \sin (\sin^{-1} \: x)$$
  • $$\displaystyle \frac {2}{\pi} \: \sin^{-1} (\sin \: x)$$
  • $$\displaystyle (sgn \: x) \ lne^x$$
  • $$\displaystyle x^3 \: sgn \: x$$
Which of the function defined below are one-one function(s)?
  • $$f(x)=x+1,(x\geq-1)$$
  • $$g(x)=x+\dfrac1x,(x\geq0)$$
  • $$h(x)=x^2+4x-5,(x>0)$$
  • $$f(x)=e^{-x},(x\geq0)$$
$$f(x)=x^3+3x^2+4x+b \sin x+c \cos x, \forall x\in R$$ is a one-one function, then the value of $$b^2+c^2$$ is
  • $$\geq 1$$
  • $$\geq 2$$
  • $$\leq 1$$
  • none of these
Find the domain of the function $$f(x) = \dfrac {\sqrt {x - 1}}{x}$$
  • All real numbers except for $$0$$
  • All real numbers greater than or equal to $$1$$
  • All real numbers less than or equal to $$1$$
  • All real numbers greater than or equal to $$-1$$ but less than or equal to $$1$$
  • All real numbers less than or equal to $$-1$$
If $$f(x)=2x+|x|, g(x)=\dfrac {1}{3}(2x-|x|)$$ and $$h(x)=f(g(x))$$, then domain of $$\sin^{-1}\underset {\text {n times}}{\underbrace {(h(h(h(h.....h(x).....))))}}$$ is
  • $$[-1, 1]$$
  • $$\left [-1, -\dfrac {1}{2}\right ]\cup \left [\dfrac {1}{2}, 1\right ]$$
  • $$\left [-1, -\dfrac {1}{2}\right ]$$
  • $$\left [\dfrac {1}{2}, 1\right ]$$
Let $$f(x)=max\left\{1+\sin x,1,1-\cos x \right\}, x\in \left [ 0,2\pi  \right ]$$  and $$g(x)=max\left\{ 1,\left | x-1 \right |\right\},x\in R$$ , then
  • $$g(f(0))=1$$
  • $$g(f(1))=1$$
  • $$f(g(1))=1$$
  • $$f(g(0))=\sin 1$$
The domain of function $$\displaystyle f(x)=\sqrt{x-\sqrt{1-x^{2}}}$$ is
  • $$\displaystyle \left [ -1,-\frac{1}{\sqrt{2}} \right ]\cup \left [ \frac{1}{\sqrt{2}},1 \right ]$$
  • $$\displaystyle [-1,1]$$
  • $$\displaystyle \left ( -\infty,-\frac{1}{2} \right ]\cup \left [ \frac{1}{\sqrt{2}},+\infty \right )$$
  • $$\displaystyle \left [ \frac{1}{\sqrt{2}},1 \right ]$$
The domain of the function $$\displaystyle f(x)=\sqrt{1-\sqrt{1-\sqrt{1-x^{2}}}}$$ is
  • $$\displaystyle \left \{ x|x< 1 \right ) $$
  • $$\displaystyle \left \{ x|x> -1 \right \}$$
  • $$[0,1]$$
  • $$[-1,1]$$
The function $$f$$ is one to one and the sum of all the intercepts of the graph is $$5$$. The sum of all the intercept of the graph $$\displaystyle y = f^{-1} \left ( x \right )$$ is
  • $$5$$
  • $$\dfrac15$$
  • $$\dfrac25$$
  • $$-5$$
Let $$f\left( x \right) =\left\{ \begin{matrix} 1+|x|,\; x<-1 \\ \left[ x \right] ,\; x\ge -1 \end{matrix} \right. $$ where $$[\cdot]$$ denotes the greatest integer function. Then $$\displaystyle f\left \{f(-2.3) \right\}$$ is equal to 
  • $$4$$
  • $$2$$
  • $$-3$$
  • $$3$$
The largest set of real values of $$x$$ for which $$\displaystyle f(x)=\sqrt{(x+2)(5-x)}-\frac{1}{\sqrt{x^{2}-4}}$$ is a real function is
  • $$\displaystyle [1,2)\cup (2,5]$$
  • $$\displaystyle (2,5]$$
  • $$\displaystyle [3,4]$$
  • $$none\:of\:these$$
If $$\displaystyle f \left ( x \right ) = px + q$$ and $$\displaystyle f \left ( f\left ( f\left ( x \right ) \right ) \right ) = 8x + 21$$, where $$p$$ and $$q$$ are real numbers, the $$ p + q$$ equals
  • $$3$$
  • $$5$$
  • $$7$$
  • $$11$$
The value of $$(a + b)$$ is equal to
  • $$-2$$
  • $$-1$$
  • $$0$$
  • $$1$$
$$K(x)$$ is a function such that $$K(f(x))=a+b+c+d$$,
Where,
$$a=\begin{cases}
0 & \text{ if f(x) is even}  \\ 
-1 & \text{ if f(x) is odd} \\ 
2 & \text{ if f(x) is neither even nor odd} 
\end{cases}$$
$$b=\begin{cases}
3 & \text{ if  f(x) is periodic} \\ 
4 & \text{  if  f(x) is  aperiodic}
\end{cases}$$
$$c=\begin{cases}
5 & \text{ if  f(x) is  one one} \\ 
6 & \text{  if  f(x) is many one}
\end{cases}$$
$$d=\begin{cases}
7 & \text{ if  f(x) is onto} \\ 
8 & \text{  if  f(x) is into}
\end{cases}$$ 
$$h:R\rightarrow R,h(x)=\left ( \displaystyle \frac{e^{2x}+e^{x}+1}{e^{2x}-e^{x}+1} \right )$$ 

On the basis of above information, answer the following questions.$$K(\phi(x)) $$
  • $$15$$
  • $$16$$
  • $$17$$
  • $$18$$
Let $$f:{x, y, z}\rightarrow (a, b, c)$$ be a one-one function. It is known that only one of the following statements is true:
(i) $$f(x)\neq b$$
(ii)$$f(y)=b$$
(iii)$$f(z)\neq  a$$
  • $$f=\{(x, a), (y, b), (z, c)\}$$
  • $$f=\{(x, b), (y, a), (z, c)\}$$
  • $$f=\{(x, b), (y, c), (z, c)\}$$
  • $$f=\{(x, b), (y, c), (z, a)\}$$
Let $$\displaystyle f(x)=\begin{cases}x^{2} & \mbox{if}  \quad0< x< 2\\2x-3 & \mbox{if}  \quad2\leq x< 3 \\ x+2 & \mbox{if}\quad  x\geq 3\end{cases}$$.
Then 
  • $$\displaystyle f\left \{ f\left ( f\left ( \frac{3}{2} \right ) \right ) \right \}=f\left ( \frac{3}{2} \right )$$
  • $$\displaystyle 1+f\left \{ f\left ( f\left ( \frac{5}{2} \right ) \right ) \right \}=f\left ( \frac{5}{2} \right )$$
  • $$\displaystyle f\left \{ f(0) \right \}=f\left ( 1 \right )=1$$
  • none of these
If $$f:R\rightarrow R$$ and $$g:R\rightarrow R$$ are given by $$f(x)=|x|$$ and $$g(x)=[x]$$ for each $$x\in R,$$ then $$\left\{ x\in R:g\left( f\left( x \right) \right) \le f\left( g\left( x \right) \right)  \right\} =$$
  • $$Z\cup \left( -\infty ,0 \right) $$
  • $$\left( -\infty ,0 \right) $$
  • $$Z$$
  • $$R$$
Let $$f$$ and $$g$$ be increasing and decreasing functions respectively from $$\displaystyle \left ( 0,\infty  \right )$$ to $$\left ( 0,\infty  \right )$$ and let $$h\left ( x \right )=f\left [ g\left ( x \right ) \right ]$$. If $$h\left ( 0 \right )=0$$ then $$ h\left ( x \right )-h\left ( 1 \right )$$ is
  • always zero
  • always negative
  • always positive
  • strictly increasing
  • None of these
If $$\displaystyle f(x)=27x^{3}+\frac{1}{x^{3}}$$ and $$\alpha,\beta$$ are the roots of $$\displaystyle 3x+\frac{1}{x}=2$$ is
  • $$f(\alpha)=f(\beta)$$
  • $$f(\alpha)=10$$
  • $$f(\beta)=-10$$
  • none of these
The value of $$x$$ satisfying the equation $$\displaystyle \left | x-1 \right |^{\log_{3}x^{2}-2\log_{9}x}= (x-1)^7$$ is
  • $$3^4$$
  • $$3^5$$
  • $$3^6$$
  • $$3^7$$
The domain of $$\displaystyle f(x)=\frac{1}{\sqrt{|\cos\:x|+\cos\:x}}$$ is 
  • $$[-2n\pi,2n\pi]$$
  • $$(2n\pi,\overline{2n+1}\pi)$$
  • $$\displaystyle \left ( \frac{(4n+1)\pi}{2} ,\frac{(4n+3)\pi}{2}\right )$$
  • $$\displaystyle \left ( \frac{(4n-1)\pi}{2} ,\frac{(4n+1)\pi}{2}\right )$$
If $$f(x)=2x^3$$ and $$g(x)=3x$$, calculate the value of $$g(f(-2))-f(g(2))$$.
  • $$-480$$
  • $$-384$$
  • $$0$$
  • $$384$$
  • $$480$$
Find the maximum value of $$g(f(x))$$ if:
$$f(x) = x + 4$$ and
$$g(x) = 6 - x^{2}$$
  • $$-6$$
  • $$-4$$
  • $$2$$
  • $$4$$
  • $$6$$
Let $$\displaystyle f\left ( x \right )=\frac{ax^{2}+2x+1}{2x^{2}-2x+1}$$, the value of $$a$$ for which $$\displaystyle f:R\rightarrow \left [ -1,2 \right ]$$ is onto , is
  • $$\displaystyle \left [ 2,5 \right ]$$
  • $$\displaystyle \left [ -5,-2 \right ]$$
  • $$\displaystyle \left [ 0,5 \right ]$$
  • None of these.
The total number of injective mappings from a set with $$m$$ elements to a set with $$n$$ elements, $$m \leq n $$ is 
  • $$\displaystyle m^{n}$$
  • $$\displaystyle n^{m}$$
  • $$\displaystyle \frac{n!}{(n-m)!}$$
  • $$n!$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers