Explanation
f(x)=\log _{ e }{ \{ (x+1)(x+2)\} }
For the function to be defined
(x+1)(x+2)>0\\ \Rightarrow -2>x>-1\\ \Rightarrow x\in \left( -\infty ,-2 \right) \cup \left( -1,\infty \right)
9{ x }^{ 2 }-18|x|+5=0\\ 9{ |x| }^{ 2 }-18|x|+5=0\\ \Rightarrow 9|{ x| }^{ 2 }-18|x|+5=0\quad for(x>0)\\ \Rightarrow 9|{ x| }^{ 2 }-3|x|-15|x|+5=0\\ \Rightarrow 3|x|(3|x|-1)-5(3|x|-1)=0\\ \Rightarrow (3|x|-1)(3|x|-5)=0\\ \Rightarrow |x|=\dfrac { 1 }{ 3 } ,\dfrac { 5 }{ 3 } \\ \Rightarrow x=\dfrac { 1 }{ 3 } ,\dfrac { 5 }{ 3 } ,-\dfrac { 1 }{ 3 } ,-\dfrac { 5 }{ 3 }
Clearly -\dfrac { 5 }{ 3 } do not belong to the domain of the function f(x)
So there are 3 solutions belonging to the domain of f(x)
Option C is ccorrect.
Please disable the adBlock and continue. Thank you.