Processing math: 27%

CBSE Questions for Class 11 Commerce Applied Mathematics Functions Quiz 11 - MCQExams.com

Let f(x)={1+x,0x23x,2<x3, then find (fof)(x)
  • {2+x,0x12x,1<x24x,2<x3
  • {2x,0x12+x,1<x24x,2<x3
  • {2+x,0x12x,1<x24+x,2<x3
  • None of these
f(x)=1+|x2|,0x4
g(x)=2|x|,1x3
Which of the following is true
  • fog(x)={(1+x),1x0x+10<x2
  • gof(x)={x+1,0x<13x,1x2x1,2<x35x,3<x4
  • fog(x)={(1+2x),1x0x10<x2
  • gof(x)={x+1,0x<13x,1x2x+1,2<x35x,3<x4
If f(x)=x+5 and g(x)=x29  then find the domain of gof(x)
  • (-8,-2)
  • (,8)(2,)
  • (,8][2,)
  • ((,8][2,)
Let f(x)=lnx  and  g(x)=(x4x3+3x22x+22x22x+3)). The domain of f(g(x)) is
  • (,)
  • [0,)
  • (0,)
  • [1,)
If f(x)={x+1,ifx15x2ifx>1,g(x)={xifx12xifx>1
Number of negative integral solutions of g(f(x))+2=0 are 
  • 0
  • 3
  • 1
  • 2
Given two functions f(x) and g(x) such that f(x)=sin(arctanx),g(x)=tan(arcsinx), and 0x<π2. The value of the composite function f(g(π10)) is:
  • 0.314
  • 0.354
  • 0.577
  • 0.707
  • 0.866
Find g(x), if f(x)=5x2+4 and f(g(3))=84
  • 3x10
  • 4x7
  • 6x17
  • x25
  • x23
Let f:{x,y,z}{1,2,3} be a one-one mapping such that only one of the following three statements and remaining two are false : f(x)2,f(y)=2,f(z)1, then 
  • f(x)>f(y)>f(z)
  • f(x)<f(y)<f(z)
  • f(y)<f(y)<f(z)
  • f(y)<f(z)<f(x)
If h(x) = x^2, g(x)= x^2 -3 and f(x)= x -2, what can you say about ho(gof) and (hog)of?
  • (hog)of \neq ho(gof)
  • ho(gof) = (hog)of
  • (hog)of = 4 ho(gof)
  • ho(gof)=(x^2-4x-1)^2
Which of the following functions are not identical?
  • f(x)=\frac{x}{x^2} and g(x) = \frac{1}{x}
  • f(x)=\frac{x^2}{x} and g(x) =
  • f(x)=In \,x^4 and g(x)= 4 In Xx
  • f(x) = In {(x-1)(x-2)} and g(x) = In (x-2)+In (x-3)
The function f(x)={x}^{2}+bx+c, where b and c real constants, describes
  • one-to-one mapping
  • onto mapping
  • not one-to-one onto mapping
  • neither one-to-one nor onto mapping
If f(x)=x+2and g(x)=x^2-3, then which is true?
  • fog \neq gog
  • 2fog = gof
  • fog = gof
  • fog = 2 gof
If f(x) = 4x^{2} - 1 and g(x) = 8x + 7, g\circ f(2) =
  • 15
  • 23
  • 127
  • 345
  • 2115
Domain of definition of the function f\left( x \right) =\sqrt { 2\sin ^{ -1 }{ \left( 2x \right) +\dfrac { \pi  }{ 3 }  }  }, for real value x, is
  • \left[ -\dfrac { 1 }{ 4 } ,\dfrac { 1 }{ 2 } \right]
  • \left[ -\dfrac { 1 }{ 2 } ,\dfrac { 1 }{ 2 } \right]
  • \left( -\dfrac { 1 }{ 2 } ,\dfrac { 1 }{ 9 } \right)
  • \left[ -\dfrac { 1 }{ 4 } ,\dfrac { 1 }{ 4 } \right]
The domain of definition of the function f(x) = \left \{x\right \}^{\left \{x\right \}} + [x]^{[x]} is (where \left \{\cdot \right \} represents fractional part and [\cdot ] represents greatest integral function).
  • R - I
  • R - [0, 1)
  • R - \left \{I\cup (0, 1)\right \}
  • I\cup (0, 1)
Let f be real valued function defined by f(x)=\sin ^{ -1 }{ \left( \cfrac { 1-\left| x \right|  }{ 3 }  \right)  } +\cos ^{ -1 }{ \left( \cfrac { \left| x \right| -3 }{ 5 }  \right)  } . Then domain of f(x) is given by
  • \left[ -4,4 \right]
  • \left[ 0,4 \right]
  • \left[ -3,3 \right]
  • \left[ -5,5 \right]
f:\left( 0,\infty  \right) \rightarrow \left( 0,\infty  \right) is defined by f(x)=\begin{cases} { 2 }^{ x },\quad x\in \left( 0,1 \right)  \\ { 5 }^{ x },\quad x\in [1,\infty ) \end{cases} is
  • one-one but not onto
  • onto but not one-one
  • neither one-one nor onto
  • bijective
Let A=\left\{ { a }_{ 1 },{ a }_{ 2 },{ a }_{ 3 },{ a }_{ 4 }{ a }_{ 5 },{ a }_{ 6 } \right\} and B=\left\{ { b }_{ 1 },{ b }_{ 2 },{ b }_{ 3 } \right\} . The number of functions of f:A\rightarrow B such that it is onto and there are exactly three elements in A such that f(A)=b, is
  • 75
  • 90
  • 100
  • 120
Given that f'(x) > g'(x) for all real x, and f(0) = g(0). Then f(x) < g(x) for all x belongs to
  • (0, \infty)
  • (- \infty, 0)
  • (- \infty, \infty)
  • none of these
The number of solutions of the equation 9x^2 - 18 |x| + 5 = 0 belonging to the domain of definition of log_e \{(x + 1) (x + 2)\}, is
  • 1
  • 2
  • 3
  • 4
Let f(x) = \dfrac {x}{1 - x} and let \alpha be a real number. If x_{0} = \alpha, x_{1} = f(x_{0}), x_{2} = f(x_{1}), .... and x_{2011} = - \dfrac {1}{2012} then the value of \alpha is
  • \dfrac {2011}{2012}
  • 1
  • 2011
  • -1
Domain of f\left( x \right) =\sqrt { 2{ \left\{ x \right\}  }^{ 2 }-3\left\{ x \right\} +1 } where \left\{ . \right\} denotes the fractional part, in \left\{ . \right\} is
  • \left[ -1,1 \right] \sim \left( \dfrac { 1 }{ 2 } ,1 \right)
  • \left[ -1,-\dfrac { 1 }{ 2 } \right] \bigcup \left[ 0,\dfrac { 1 }{ 2 } \right] \bigcup \left\{ 1 \right\}
  • \left[ -1,\dfrac { 1 }{ 2 } \right]
  • \left[ -\dfrac { 1 }{ 2 } ,1 \right]
Consider set A={1,2,3,4} and set B={0,2,4,6,8}then the number of one-one function set A to set B in which f(i)\neq i is,
  • 84
  • 78
  • 42
  • 24
If f:R\rightarrow S defined by
f(x)=4\sin { x } -3\cos { x } +1 is onto, then S is equal to
  • [-5,5]
  • (-5,5)
  • (-4,6)
  • [-4,6]
Let for a \neq a_{1} \neq 0,\ f(x)=ax^{2}+bx+c,\ g(x)=a_{1}x^{2}+b_{1}x+c_{1} and p(x)=f(x)-g(x). If p(x)=0 only for x=-1 and p(-2)=2, then the value of p(2) is
  • 6
  • 18
  • 3
  • 9
Let f(-2, 2)\rightarrow(-2, 2) be a continuous function given f(x)=f{(x}^{2}). Given f(0)=\dfrac{1}{2} then the 4f(\dfrac{1}{2})
  • 4
  • 2
  • -2
  • 1
The domain of the function f\left( x \right) = \dfrac{\cot^{ - 1}x}  {\sqrt {{x^2} - [{x^2}]} } where [x] denotes the greatest integer not greater than x, is :
  • R
  • R - \{ 0\}
  • R - \left\{ { \pm \sqrt n :n \in {I^ + } \cup \{ 0\} } \right\}
  • R - \{ n:n \in I\}
What percent of the domain of the function \displaystyle f\left( x \right) = \frac{{\sqrt {9 - {x^2}} }}{{\sqrt[4]{{9 - \left| {2x + 5} \right|}}}} consists of non-negative integers.
  • 40\%
  • 50\%
  • 30\%
  • 65\%
If \phi (x) = 3 f(\frac{x^2}{3} ) + f(3-x^2) \forall x \in (3,4) where  f(x) >0 \forall  x (-3,4) then \phi (x) is ____________.
  • (a) increasing in ( \frac{3}{2} ,4)
  • (b) decreasing in ( 3, \frac{3}{2} )
  • (c) increasing ( -\frac{3}{2} , 0)
  • decreasing in ( 0, \frac{3}{2})
Let the function f:D \to Rf\left( x \right){\log _5}\left( {{{\log }_{{1 \over 3}}}\left( {{{\log }_8}\left( {2x + 1} \right)} \right)} \right) where D is the maximum domain of f\left( x \right). If S represents the sum of the absolute values of all integers form D. Then the value of S, is
  • 15
  • 10
  • 6
  • 3
The domain of f(x)=\dfrac{1}{\sqrt{1[\vert x \vert -1]\vert-5}}   (where [.] G.I.F)  is
  • [-7,7]
  • (-\infty,7)
  • (-\infty,-7]
  • [7, \infty)
Let f(x) and g(x) be the differentiable functions for 1\le x\le 3 such that f(1)=2=g(1) and f(3)=Let there exist exactly one real number cE (1,3) such that 3f'(c)=g'(c), then the value of g(3) must be
  • 12
  • 13
  • 16
  • 26
Let f\left( x \right)={2^{10}}x + 1 and g\left( x \right) = {3^{10}}x - 1 , If \left( {fog} \right)\left( x \right) = x , then x is equal to
  • \dfrac{{{3^{10}} - 1}}{{{3^{10}} - {2^{ - 10}}}}
  • \dfrac{{{2^{10}} - 1}}{{{2^{10}} - {3^{ - 10}}}}
  • \dfrac{{1 - {3^{10}}}}{{{2^{10}} - {3^{ - 10}}}}
  • \dfrac{{1 - {2^{-10}}}}{{{3^{10}} - {2^{ - 10}}}}
f : R^+ \rightarrow R defined by f(x) = 2^x , \, x \in (0, 1), \, f(x) = 3^x , \, x \in [1, \, \infty) is 
  • onto
  • one-one
  • neither one-one nor onto
  • one one onto
A real valued function f(x) satisfies the function equation f(x-y)=f(x)f(y)-f(a-x)f(a+y) where a is a given constant and f(0)=1, f(2a-x) is equal to?
  • f(a)+f(a-x)
  • f(-x)
  • -f(x)
  • f(x)
The domain of the function f(x) = \sqrt {\frac{{1 - \left| x \right|}}{{\left| x \right| - 2}}} is 
  • x \in ( - \infty , - 1) \cup (1,\infty )
  • x \in ( - \infty , - 2) \cup (2,\infty )
  • x \in ( - 2 , - 1) \cup (1,2 )
  • none of these
If f(x)=|x| and g(x)=[x], then value of fog \left(-\dfrac {1}{4}\right)+gof \left(-\dfrac {1}{4}\right) is  ?
  • 0
  • 1
  • -1
  • 1/4
The function f : R\rightarrow R given by, then f(x)=3-2\sin x is
  • one-one
  • onto
  • bijective
  • None of these
The domain of the function f\left( x \right) = {\sin ^{ - 1}}\left( {{{\log }_2}\left( {\dfrac{{{x^2}}}{2}} \right)} \right) is
  • \left[ { - 2, 2} \right]
  • \left[ { - 2, - 1} \right]
  • \left[ { 2, 2} \right]
  • \left[ { - 2, - 1} \right] \cup \left[ {1,2} \right]
Let f(x)=\dfrac{x^{2}-4}{x^{2}+4} for |x|>2, then the function f:(-\infty, -2)\cup [2,\infty)\rightarrow (-1,1) is
  • One-one into
  • One-one onto
  • Many one into
  • Many one onto
If f(x)=ax+b and f(f(f(x)))=27x+13 where a and b are real numbers, then-
  • a+b=3
  • a+b=4
  • f'(x)=3
  • f'(x)=-3
If f\left( x \right)  = \sin ^{ 2 }{ x } + \sin ^{ 2 }({ { x }+\frac { \pi  }{ 3 })  + \cos { x\cos { \left( { x } + \frac { \pi  }{ 3 }  \right),  ~g(\frac { 5 }{ 4 })  = 1, \text{then} \left( gof \right)\left( x \right)  }  }\ \text{ is}\  \text{equal}\  \text{to}  }
  • 1
  • 0
  • \frac{1}{4}
  • \frac{1}{2}
f:A \rightarrow A,A=\left\{a_{1},a_{2},a_{3},a_{4},a_{5}\right\}, then the number of one one function so that f(x_{i})\neq x_{i},x_{i}\ \in\ A is
  • 44
  • 88
  • 22
  • 20
If f(x)=x-\cfrac{1}{x} then number of solutions of f(f(f(x)))=1 is
  • 1
  • 2
  • 3
  • 4
Domain of the functon f\left( x \right) = {\sqrt {{{\sec }^{ - 1}}\left( {\frac{{2 - \left| x \right|}}{4}} \right)} ^{}}
  • (-6,6)
  • (-6,6)
  • (-\infty , - 6) \cup [6,\infty )
  • none
Show that the function f:[0, \infty)\rightarrow [0, \infty) defined by f(x)=\dfrac{2x}{1+2x} is?
  • One-one and onto
  • One-one but not onto
  • Not one-one but onto
  • Neither one-one nor onto
If f(x)=1+|x-1|,-1 \le x \le 3 and g(x)=2-|x+1|,-2 \le x \le 2 then choose the appropriate option.
  • fog(x)=x-1 for x\ \in\ (0,1)
  • fog(x)=x for x\ \in\ (-1,1)
  • gog(x)=x for x\ \in\ (-1,2)
  • all\ of\ these
The domain of f(x)=|x-2|-|x-5| is 
  • R-(2, 5)
  • R-\left\{0\right\}
  • (0, \infty)
  • R
The domain of f(x)=\dfrac{1}{\sqrt{(x-1)(x-2)(x-3)}} is 
  • (1, 2)
  • (3, \infty)
  • (2, 3)
  • (-\infty, 1)
Let f:R\rightarrow R be defined by f(x)=\dfrac {x|x|}{2}+\cos x+1 then f(x) is
  • One-one only
  • Onto only
  • Neither one-one nor onto
  • Bijection
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers