Processing math: 87%

CBSE Questions for Class 11 Commerce Applied Mathematics Functions Quiz 11 - MCQExams.com

Let f(x)={1+x,0x23x,2<x3, then find (fof)(x)
  • {2+x,0x12x,1<x24x,2<x3
  • {2x,0x12+x,1<x24x,2<x3
  • {2+x,0x12x,1<x24+x,2<x3
  • None of these
f(x)=1+|x2|,0x4
g(x)=2|x|,1x3
Which of the following is true
  • fog(x)={(1+x),1x0x+10<x2
  • gof(x)={x+1,0x<13x,1x2x1,2<x35x,3<x4
  • fog(x)={(1+2x),1x0x10<x2
  • gof(x)={x+1,0x<13x,1x2x+1,2<x35x,3<x4
If f(x)=x+5 and g(x)=x29  then find the domain of gof(x)
  • (-8,-2)
  • (,8)(2,)
  • (,8][2,)
  • ((,8][2,)
Let f(x)=lnx  and  g(x)=(x4x3+3x22x+22x22x+3)). The domain of f(g(x)) is
  • (,)
  • [0,)
  • (0,)
  • [1,)
If f(x)={x+1,ifx15x2ifx>1,g(x)={xifx12xifx>1
Number of negative integral solutions of g(f(x))+2=0 are 
  • 0
  • 3
  • 1
  • 2
Given two functions f(x) and g(x) such that f(x)=sin(arctanx),g(x)=tan(arcsinx), and 0x<π2. The value of the composite function f(g(π10)) is:
  • 0.314
  • 0.354
  • 0.577
  • 0.707
  • 0.866
Find g(x), if f(x)=5x2+4 and f(g(3))=84
  • 3x10
  • 4x7
  • 6x17
  • x25
  • x23
Let f:{x,y,z}{1,2,3} be a one-one mapping such that only one of the following three statements and remaining two are false : f(x)2,f(y)=2,f(z)1, then 
  • f(x)>f(y)>f(z)
  • f(x)<f(y)<f(z)
  • f(y)<f(y)<f(z)
  • f(y)<f(z)<f(x)
If h(x)=x2,g(x)=x23 and f(x)= x -2, what can you say about ho(gof) and (hog)of?
  • (hog)of ho(gof)
  • ho(gof) = (hog)of
  • (hog)of = 4 ho(gof)
  • ho(gof)=(x24x1)2
Which of the following functions are not identical?
  • f(x)=xx2 and g(x)=1x
  • f(x)=x2x and g(x)=
  • f(x)=Inx4 and g(x)= 4 In Xx
  • f(x) = In {(x-1)(x-2)} and g(x) = In (x-2)+In (x-3)
The function f(x)=x2+bx+c, where b and c real constants, describes
  • one-to-one mapping
  • onto mapping
  • not one-to-one onto mapping
  • neither one-to-one nor onto mapping
If f(x)=x+2and g(x)=x23, then which is true?
  • fog gog
  • 2fog = gof
  • fog = gof
  • fog = 2 gof
If f(x)=4x21 and g(x)=8x+7,gf(2)=
  • 15
  • 23
  • 127
  • 345
  • 2115
Domain of definition of the function f(x)=2sin1(2x)+π3, for real value x, is
  • [14,12]
  • [12,12]
  • (12,19)
  • [14,14]
The domain of definition of the function f(x)={x}{x}+[x][x] is (where {} represents fractional part and [] represents greatest integral function).
  • RI
  • R[0,1)
  • R{I(0,1)}
  • I(0,1)
Let f be real valued function defined by f(x)=sin1(1|x|3)+cos1(|x|35). Then domain of f(x) is given by
  • [4,4]
  • [0,4]
  • [3,3]
  • [5,5]
f:(0,)(0,) is defined by f(x)={2x,x(0,1)5x,x[1,) is
  • one-one but not onto
  • onto but not one-one
  • neither one-one nor onto
  • bijective
Let A={a1,a2,a3,a4a5,a6} and B={b1,b2,b3}. The number of functions of f:AB such that it is onto and there are exactly three elements in A such that f(A)=b, is
  • 75
  • 90
  • 100
  • 120
Given that f(x)>g(x) for all real x, and f(0)=g(0). Then f(x)<g(x) for all x belongs to
  • (0,)
  • (,0)
  • (,)
  • none of these
The number of solutions of the equation 9x218|x|+5=0 belonging to the domain of definition of loge{(x+1)(x+2)}, is
  • 1
  • 2
  • 3
  • 4
Let f(x)=x1x and let α be a real number. If x0=α,x1=f(x0),x2=f(x1),.... and x2011=12012 then the value of α is
  • 20112012
  • 1
  • 2011
  • 1
Domain of f(x)=2{x}23{x}+1 where {.} denotes the fractional part, in {.} is
  • [1,1](12,1)
  • [1,12][0,12]{1}
  • [1,12]
  • [12,1]
Consider set A=1,2,3,4 and set B=0,2,4,6,8then the number of one-one function set A to set B in which f(i)i is,
  • 84
  • 78
  • 42
  • 24
If f:RS defined by
f(x)=4sinx3cosx+1 is onto, then S is equal to
  • [5,5]
  • (5,5)
  • (4,6)
  • [4,6]
Let for aa10, f(x)=ax2+bx+c, g(x)=a1x2+b1x+c1 and p(x)=f(x)g(x). If p(x)=0 only for x=1 and p(2)=2, then the value of p(2) is
  • 6
  • 18
  • 3
  • 9
Let f(2,2)(2,2) be a continuous function given f(x)=f(x2). Given f(0)=12 then the 4f(12)
  • 4
  • 2
  • 2
  • 1
The domain of the function f(x)=cot1xx2[x2] where [x] denotes the greatest integer not greater than x, is :
  • R
  • R{0}
  • R{±n:nI+{0}}
  • R{n:nI}
What percent of the domain of the function f(x)=9x249|2x+5| consists of non-negative integers.
  • 40%
  • 50%
  • 30%
  • 65%
If ϕ(x)=3f(x23)+f(3x2)x(3,4) where  f(x)>0x(3,4) then ϕ(x) is ____________.
  • (a) increasing in (32,4)
  • (b) decreasing in (3,32)
  • (c) increasing (32,0)
  • decreasing in (0,32)
Let the function f:DRf(x)log5(log13(log8(2x+1))) where D is the maximum domain of f(x). If S represents the sum of the absolute values of all integers form D. Then the value of S, is
  • 15
  • 10
  • 6
  • 3
The domain of f(x)=11[|x|1]|5   (where [.] G.I.F)  is
  • [7,7]
  • (,7)
  • (,7]
  • [7,)
Let f(x) and g(x) be the differentiable functions for 1x3 such that f(1)=2=g(1) and f(3)=Let there exist exactly one real number cE(1,3) such that 3f'(c)=g'(c), then the value of g(3) must be
  • 12
  • 13
  • 16
  • 26
Let f(x)=210x+1 and g(x)=310x1 , If (fog)(x)=x , then x is equal to
  • 3101310210
  • 2101210310
  • 1310210310
  • 1210310210
f:R+R defined by f(x)=2x,x(0,1),f(x)=3x,x[1,) is 
  • onto
  • one-one
  • neither one-one nor onto
  • one one onto
A real valued function f(x) satisfies the function equation f(xy)=f(x)f(y)f(ax)f(a+y) where a is a given constant and f(0)=1,f(2ax) is equal to?
  • f(a)+f(ax)
  • f(x)
  • f(x)
  • f(x)
The domain of the function f(x)=1|x||x|2 is 
  • x(,1)(1,)
  • x(,2)(2,)
  • x(2,1)(1,2)
  • none of these
If f(x)=|x| and g(x)=[x], then value of fog(14)+gof(14) is  ?
  • 0
  • 1
  • 1
  • 1/4
The function f:RR given by, then f(x)=32sinx is
  • one-one
  • onto
  • bijective
  • None of these
The domain of the function f(x)=sin1(log2(x22)) is
  • [2,2]
  • [2,1]
  • [2,2]
  • [2,1][1,2]
Let f(x)=\dfrac{x^{2}-4}{x^{2}+4} for |x|>2, then the function f:(-\infty, -2)\cup [2,\infty)\rightarrow (-1,1) is
  • One-one into
  • One-one onto
  • Many one into
  • Many one onto
If f(x)=ax+b and f(f(f(x)))=27x+13 where a and b are real numbers, then-
  • a+b=3
  • a+b=4
  • f'(x)=3
  • f'(x)=-3
If f\left( x \right)  = \sin ^{ 2 }{ x } + \sin ^{ 2 }({ { x }+\frac { \pi  }{ 3 })  + \cos { x\cos { \left( { x } + \frac { \pi  }{ 3 }  \right),  ~g(\frac { 5 }{ 4 })  = 1, \text{then} \left( gof \right)\left( x \right)  }  }\ \text{ is}\  \text{equal}\  \text{to}  }
  • 1
  • 0
  • \frac{1}{4}
  • \frac{1}{2}
f:A \rightarrow A,A=\left\{a_{1},a_{2},a_{3},a_{4},a_{5}\right\}, then the number of one one function so that f(x_{i})\neq x_{i},x_{i}\ \in\ A is
  • 44
  • 88
  • 22
  • 20
If f(x)=x-\cfrac{1}{x} then number of solutions of f(f(f(x)))=1 is
  • 1
  • 2
  • 3
  • 4
Domain of the functon f\left( x \right) = {\sqrt {{{\sec }^{ - 1}}\left( {\frac{{2 - \left| x \right|}}{4}} \right)} ^{}}
  • (-6,6)
  • (-6,6)
  • (-\infty , - 6) \cup [6,\infty )
  • none
Show that the function f:[0, \infty)\rightarrow [0, \infty) defined by f(x)=\dfrac{2x}{1+2x} is?
  • One-one and onto
  • One-one but not onto
  • Not one-one but onto
  • Neither one-one nor onto
If f(x)=1+|x-1|,-1 \le x \le 3 and g(x)=2-|x+1|,-2 \le x \le 2 then choose the appropriate option.
  • fog(x)=x-1 for x\ \in\ (0,1)
  • fog(x)=x for x\ \in\ (-1,1)
  • gog(x)=x for x\ \in\ (-1,2)
  • all\ of\ these
The domain of f(x)=|x-2|-|x-5| is 
  • R-(2, 5)
  • R-\left\{0\right\}
  • (0, \infty)
  • R
The domain of f(x)=\dfrac{1}{\sqrt{(x-1)(x-2)(x-3)}} is 
  • (1, 2)
  • (3, \infty)
  • (2, 3)
  • (-\infty, 1)
Let f:R\rightarrow R be defined by f(x)=\dfrac {x|x|}{2}+\cos x+1 then f(x) is
  • One-one only
  • Onto only
  • Neither one-one nor onto
  • Bijection
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers