Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js

CBSE Questions for Class 11 Commerce Applied Mathematics Functions Quiz 12 - MCQExams.com

If P(S) denotes the set of all subsets of a given set S, then the number of one-to-one functions from the set S={1,2,3} to he set P(S)
  • 24
  • 8
  • 336
  • 320
 If A={x|x/2Z,0x10}B={x|x is one digit prime }C={x|x/3N,x12},
Then A(BC) is equal to-


  • {2,6}
  • {3,6,12}
  • {2,6,12}
  • {6,8}
The function f:NN defined by f(x)=x5[x5], where N is the set of natural numbers and [x] denotes the greatest integer less then or equal to x is
  • One-one and onto
  • One-one but not onto
  • Onto but not one-one
  • Neigher one-one nor onto
Let f:RR is defined as f(x)={2x+α2, x2αx2+10, x<2. If f(x) is onto function then set of values of α is
  • [1,4]
  • [2,3]
  • (0,3]
  • [2,5]
The domain of the function f(x)=log2log2log2log2xntimes is
  • (,2)[4,)
  • (,2][4,)
  • (,2)(4,]
  • none of these
The domain of definition of the function y=325197[x21x1]
  • (1,)
  • [1,)
  • Set of all real numbers
  • (,1)(1,)
Let X={a1,a2,a3,a4,a5,a6} & Y={b1,b2,b3} the number of function f from X to Y such that it is onto and there are exactly three elements x in X such that f(x)=b1 is
  • 75
  • 100
  • 120
  • 90
The domain of f(x)=logxlog2(1x1/2) is 
  • (12,1)(1,32)
  • (12,32)
  • [12,32]
  • (12,32]
The number of non-bijective mappings that can be defined from A=1,2,7 to itself is
  • 21
  • 27
  • 6
  • 9
The number of linear functions which map from [1,1] onto [0,2] is 
  • 0
  • 1
  • 2
  • infinite
Let f:R(1,1) be defined as f(x)=exexex+ex then f is
  • One-one onto
  • One-one into
  • Many-one onto
  • Many-one-into
Domain of the function
f(x)=14x|x210x+9| is
  • (740,7+40)
  • (0,7+40)
  • (740,)
  • None of these
If f:ZZ,f(n)={n+1;nisevenn3;nisodd is f is ...........
  • only one one
  • only Onto
  • one one & Onto both
  • Neither one one nor Onto
The complete set of values of x for which the function f(x)=2tan1x+sin12x1+x2 behaves like a constant function with positive output is equal to
  • x[1,1]
  • [1,)
  • (,1]
  • (,1][1,)
The function f:RR defined by f(x)=x-[x],xϵRis
  • one-one
  • onto
  • Both one-one and onto
  • neither one-one nor onto
If f:RRdefinedbyf(x)=ex2ex2ex2+ex2,thenfis
  • one-one but not onto
  • not one-one but onto
  • one-one and onto
  • neither one-one noronto
f(x)=x410x3+35x250x+c is a constant. the number of real roots of . f (x) = 0 and 
f'' (x) = 0 are respectively 
  • 1 , 0
  • 3, 2
  • 1 , 2
  • 3 , 0
If y2=ax2+bx+c, then y2d2ydx2 is
  • a constant function
  • a function of x only
  • a function of y only
  • a function of both x and y
The domain of the real valued function f(x) for which 4f(x)+41f(x)=4x is 
  • (1,1)
  • (,1)
  • [1,)
  • R
The function f:RR defined by f(x)=6x+6 is
  • one-one and onto
  • many-one and onto
  • one-one and into
  • mauny-one and into
Let n(A) = 4 and n(B) =Then the number of one - one  functions from A to B is 
  • 120
  • 360
  • 24
  • none of these
f(x) is
  • One-one and onto
  • One-one and into
  • Many-one and onto
  • Many-one and into
The domain of the function f(x)=log10[1log10(x25x+16)] is
  • (2,3)
  • [2,3]
  • (2,3]
  • [2,3)
The domain of the definition of the function y(x) given by the equation 2x+2y is
  • 0<x1
  • 0x1
  • <x0
  • <x<1
If fxln(1+1x)dx=p(x)ln(1+1x)+12x12ln(1+x)+c, being arbitary costant, then
  • p(X)=12x2
  • p(x)=0
  • p(x)=1
  • none of these
The domain of x+1x25x+6 is
  • R-{2,3}
  • (3,)
  • (,)
  • (,2)(3,)
Consider the function f(x)=ex and g(x)=sin1x, then which of the following is/are necessarily true.
  • Domain of gof= Domain of f
  • Range of gof  Range of g
  • Domain of gof is (,0)
  • Range of gof is (π2,0)
If f(x)=\frac { \alpha x }{ x+1 } , where x\neq -1 and (fof) (x) = x, then \alpha =
  • \sqrt { 2 }
  • -\sqrt { 2 }
  • 1
  • -1
Let N be the set of natural numbers and two functions f and g be defined as
and g(n)=n-{ \left( -1 \right)  }^{ n } then fog is:
  • one-one but not onto
  • onto but not one-one
  • neither one-one nor into
  • both one-one and onto
let f:R\rightarrow R be a function defined by f(x)=\frac { { x }^{ 2 }-3x+4 }{ { x }^{ 2 }+3x+4 } then f is
  • one-one but not onto
  • onto but not one
  • onto as well as one-one
  • neither onto nor one-one
Let f:R\rightarrow R  defined by f\left( x \right) =\frac { { e }^{ { x }^{ 2 } }-{ e }^{ -x^{ 2 } } }{ { e }^{ x^{ 2 } }+{ e }^{ { -x }^{ 2 } } } , then
  • f(x) is one-one but not onto
  • f(x) is neither one-one nor onto
  • f(x) is many one but onto
  • f(x) is one-one and onto
The function f:R\rightarrow R defined by f\left( x \right) =\frac { { e }^{ \left| x \right|  }-{ e }^{ -x } }{ { e }^{ x }+{ e }^{ -x } } is
  • One-One and onto
  • One-one but not onto
  • Not one-one but onto
  • Neither one-one nor onto
f:N\rightarrow N\quad where\quad f\left( x \right) =x-{ (-1) }^{ x }, then 'f' is
  • one-one and into
  • many- one and into
  • one-one and onto
  • many-one and onto
Let f(x+y)=f f(x) f(y) and  f(x) =1+x g(x) G(x), where \underset { x\rightarrow 0 }{ lim } g\left( x \right) =a and \underset { x\rightarrow 0 }{ lim } G\left( x \right) =b, then f' (x) is equal to
  • 1+ab
  • ab
  • f(x)
  • ab f(x)
Let (X) be a function satisfying f' (X) = f (X) with f (0) = 1 and g (X) be a function that satisfies f (X) + g (x) = { x }^{ 2 }, Then the value of the integral \int _{ 0 }^{ 1 }{ f } (x)\quad g\quad (x)\quad dx,\quad is
  • e-\frac { { e }^{ 2 } }{ 2 } -\frac { 5 }{ 2 }
  • e+\frac { { e }^{ 2 } }{ 2 } -\frac { 3 }{ 2 }
  • e-\frac { { e }^{ 2 } }{ 2 } -\frac { 3 }{ 2 }
  • e+\frac { { e }^{ 2 } }{ 2 } +\frac { 5 }{ 2 }
l qt f(x) be a function satisfying f'(x)=f(x) with f(0)=1 and g be the function satisfying f(x)+g(x)=X^{2}, the value of the integral \int _{ 0 }^{ 1 }{ f(x)g(x)\quad dx\quad is }
  • \frac { 1 }{ 4 } (e-7)
  • \frac { 1 }{ 4 } (e-2)
  • \frac { 1 }{ 4 } (e-3)
  • none of the above
f:A\rightarrow B will be an into function if

  • f\left(A\right) \subset B
  • f\left(A\right)=B
  • B\subset f\left(A\right)
  • f\left(B\right) \subset A
If f (x) = cosx and g (x) = x^2 then (gof) (x) is ....
  • cos^2 x
  • cosx^2
  • both (a)&(b)
  • x^2 cosx
Suppose that g(x)=1+\sqrt { x } and\quad f(g(x))=3+2\sqrt { x } +x\quad then\quad f(x)\quad is
  • \quad 1+2{ x }^{ 2 }
  • \quad 2+{ x }^{ 2 }
  • 1+x
  • 2+x
Which one of the following is one-one?
  • f:R\rightarrow R given by f(x) =\left| x-1 \right| for all x\in R
  • g:\left[ -\pi /2,\pi /2 \right] \rightarrow given by g(x)=\left| sinx \right|
  • h:\left[ -\pi /2,\pi /2 \right] \in R given by h(x) =sin x for all x\in \left[ -\pi /2,\pi /2 \right]
  • \phi :R\rightarrow R given by f(x)={ x }^{ 2 }-4 for all x\in R
Let f:R\rightarrow R, be defined as f(x)={ e }^{ x^{ 2 } }+cosx then f is
  • One-one and onto
  • One-one and into
  • Many-one and onto
  • many-one and into
f : R \rightarrow R  defined by  f ( x ) = \dfrac { x } { x ^ { 2 } + 1 } , \forall x \in R  is
  • one-one
  • onto
  • bijective
  • neither one one nor onto
State which of the following defines a mapping from A to B, if A={a,b,c,} and B={x,y,z}.
  • None of these.
Choose correct answer (s) from given choice
If f(x) = x + 4, g (x) = 5x and h(x) = 12/x. Find the value of { f }^{ -1 }(g(h(6))) 
  • 10
  • 14
  • 6
  • 0
If  f ( x ) = \sqrt { x ^ { 2 } + 1 } , g ( x ) = \dfrac { x + 1 } { x ^ { 2 } + 1 }  and  h ( x ) = 2 x - 3 ,  then  f ^ { \prime } \left( h ^ { \prime } \left( g ^ { \prime } ( x ) \right) =\right.
  • 0
  • \dfrac { 1 } { \sqrt { x ^ { 2 } + 1 } }
  • \dfrac { 2 } { \sqrt { 5 } }
  • \dfrac { x } { \sqrt { x ^ { 2 } + 1 } }
{ f }:{ R }\rightarrow { R }  where  f ( x ) = \dfrac { x ^ { 2 } + a x + 1 } { x ^ { 2 } + x + 1 }.  Complete set of values of  'a'  such that  f ( x )  is onto to is :
  • ( - \infty , \infty )
  • ( - \infty , 0 )
  • ( 0 , \infty )
  • None
The domain of f(x) = \sin^{-1} log_2 (x^2/2) is
  • (0, \infty)
  • (0, \surd{2})
  • (-1, 0) \cup (0, 1)
  • [-2, -1] \cup [1, 2]
The domain of real valued function f(x) for which 4^ {f(x)}+4^ {1-f(x)}=4^ {x} is
  • (-1,1)
  • (1,\infty)
  • (\infty ,1)
  • (-\infty ,-1)
Which of the following function(s) have the same domain and range?
  • f\left( x \right) =\sqrt { 1-{ x }^{ 2 } }
  • g\left( x \right) =\dfrac { 1 }{ x }
  • h\left( x \right) =\sqrt { x }
  • l\left( x \right) =\sqrt { 4-x }
Domain of the function y=\sqrt{\dfrac{x-2}{x+2}}+\sqrt{\dfrac{1-x}{1+x}} is 
  • (-\infty, 0)
  • R
  • (-\infty, 0]
  • \phi
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers