Processing math: 1%

CBSE Questions for Class 11 Commerce Applied Mathematics Functions Quiz 2 - MCQExams.com

Let f(x)=Kxx+1(x1) then the value of K for which (fof)(x)=x is
  • 1
  • 1
  • 2
  • 2
If n (A) = 4 and n(B) = 6, then the number of surjections from A to B is
  • 4^{6}
  • 6^{4}
  • 0
  • 24
f:\left ( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right )\rightarrow \left ( -\infty ,\infty  \right ) defined by f(x)=1+3x is
  • one-one but not onto
  • onto but not one-one
  • neither one - one nor onto
  • bijective
Let A=\{1,2,3\}, B =\{a, b, c\} and If f=\{(1,a),(2,b),(3,c)\}, g=\{(1,b),(2,a),(3,b)\}, h=\{(1,b)(2,c),(3,a)\} then
  • g and h are injections
  • f and h are injections
  • f and g injections
  • f,g and h are injections
If f:R\rightarrow R, g:R\rightarrow R are defined by f(x)=4x-1,g(x)=x^{3}+2, then (gof)\left(\dfrac{a+1}{4}\right)= 
  • 43
  • 4a^3-1
  • a^{3}+2
  • 64a^3 - 8a^{2}-1
If f(x)=2x+1 and g(x)=x^{2}+1 then (go(fof))(2)=
  • 112
  • 122
  • 12
  • 124
If f(x)=\dfrac{1}{x}, g(x)=\sqrt{x}  and  (go\sqrt{f})(16)=
  • 2
  • 1
  • \dfrac{1}{2}
  • 4
If f(x)=x, g(x)=2x^{2}+1 and h(x)=x+1  then  (hogof)(x) is equal to
  • x^{2}+2
  • 2x^{2}+1
  • x^{2}+1
  • 2(x^{2}+1)
The number of injections possible from A=\{1,3,5,6\} to B =\{2,8,11\} is
  • 8
  • 64
  • 2^{12}
  • 0
The number of possible surjection from A=\{1,2,3,...n\} to B = \{1,2\} (where n \geq 2) is 62, then n=
  • 5
  • 6
  • 7
  • 8
If f:R\rightarrow R, g:R\rightarrow R are defined by f(x)=x^{2}, g(x)=\cos x  then (gof)(x)=
  • \cos 2x
  • x^{2}\cos x
  • \cos x^{2}
  • \cos^{2} x^{2}
If f(x)=(1-x)^{1/2} and g(x)= \ln(x)  then  the  domain  of (gof)(x) is
  • (-\infty ,2)
  • (-1,1)
  • (-\infty ,1]
  • (-\infty ,1)
If the function is f:R\rightarrow R,  g:R\rightarrow R are defined as f(x)=2x+3, g(x)=x^{2}+7  and  f[g(x)]=25  then  x=    
  • f(x)
  • \pm 2
  • \pm 3
  • \pm 4
If f(x)=\dfrac{x+1}{x-1}(x\neq 1) then fofofof(x)=
  • f(x)
  • 2\left ( \dfrac{x+1}{x-1} \right )
  • \dfrac{x-1}{x+1}
  • x
If F(n)=(-1)^{k-1}(n-1), G(n)=n-F(n) then (GoG)(n)= (where k is odd)
  • 1
  • n
  • 2
  • n-1
If f(x)=\dfrac{x}{\sqrt{1-x^{2}}}, then (fof)(x)=
  • \dfrac{x}{\sqrt{1-x^{2}}}
  • \dfrac{x}{\sqrt{1-2x^{2}}}
  • \dfrac{x}{\sqrt{1-3x^{2}}}
  • x
If f:[1,\infty )\rightarrow B  defined  by the function f(x)=x^{2}-2x+6 is a surjection, then B is equals to
  • [1,\infty )
  • [5,\infty )
  • [6,\infty )
  • [2,\infty )
If f:R\rightarrow R,f(x)=3x-2 then (fof)(x)+2=
  • f(x)
  • 2f(x)
  • 3f(x)
  • -f(x)
If f(x)=\dfrac{x}{\sqrt{1+x^{2}}} then fofof(x)=
  • \dfrac{x}{\sqrt{1+3x^{2}}}
  • \dfrac{x}{\sqrt{1-x^{2}}}
  • \dfrac{2x}{\sqrt{1+2x^{2}}}
  • \dfrac{x}{\sqrt{1+x^{2}}}
If f(n+1)=f(n) for all n\in N, f(7)=5  then  f(35)=
  • 25
  • 49
  • 35
  • 5
If f(x)=\displaystyle \dfrac{x}{\sqrt{1-x^{2}}},g(x)=\displaystyle \dfrac{x}{\sqrt{1+x^{2}}} , then (fog)(x)=       
  • x
  • \dfrac{x}{\sqrt{1+x^{2}}}
  • \sqrt{1+x^{2}}
  • 2x
The domain of \sqrt{\log_{e/3}\mathrm{x}+1} is
  • \left(0,\displaystyle \frac{3}{\mathrm{e}}\right]
  • \left(-\displaystyle \infty\frac{3}{\mathrm{e}}\right]
  • \left[\displaystyle \frac{3}{\mathrm{e}}\infty\right)
  • R
The domain of { f }({ x })=\tan ^{ -1 } (5x) is
  • (-\infty,\infty)
  • (0,\infty)
  • (-\infty,0)
  • \left(\displaystyle -\frac{1}{5},\frac{1}{5}\right)
The domain of \displaystyle f(x)= { \sin }^{ -1 }\left(\dfrac { 2x-3 }{ 5 } \right) is
  • [1,3]
  • [1,4]
  • [2, 14]
  • [-1,4]
If f:R\rightarrow R is defined by f(x)=x^{2}-10x+21 then f^{-1}(-3) is
  • \left \{ -4,6 \right \}
  • \left \{ 4,6 \right \}
  • \left \{ -4, 4, 6 \right \}
  • Not Invertible
f:[-2,2]\rightarrow  R  is defined as f(x)=\left\{\begin{array}{l}-1,-2\leq x\leq 0\\x-1,0\leq x\leq 2\end{array}\right. then
\{x\in[-2,2]:x\leq 0,\; f(|x|)=x\}=
  • \{-1\}
  • \{0\}
  • \displaystyle \left\{\frac{-1}{2}\right\}
  • \phi
The domain of {f}({x})=\log|x^{2}-9| is
  • \mathrm{R}- \{-3,3\}
  • (-\infty,-3)
  • (3,\infty)
  • (-\infty,\infty)
The domain of \displaystyle \mathrm{f}(\mathrm{x})=\cos^{-1}\left(\frac{2}{2+\sin \mathrm{x}}\right) contained in [0,2\pi] is
  • \left[0,\displaystyle \frac{\pi}{2}\right]
  • \left[\displaystyle \frac{\pi}{2},\pi \right]
  • [0, \pi]
  • \left[\displaystyle \frac{-\pi}{2},\frac{\pi}{2}\right]
The domain of f(x)=\sqrt{\log\left ( \dfrac{7x-x^{2}}{12} \right )} is
  • (-\infty ,\infty )
  • (-\infty ,4]
  • [3 ,\infty )
  • [3,4]
The domain of the function  \displaystyle \mathrm{f}({x})=\frac{1}{\sqrt{x-2}}+\frac{1}{\sqrt{5-x}} is
  • [2,5]
  • (2,5)
  • [2,5 )
  • (2,5 ]
The domain of \mathrm{f}({x})=\mathrm{c}\mathrm{o}\mathrm{t}^{-1} \left(\displaystyle \frac{x}{3}\right) is
  • (-\infty,\infty)
  • (0,\infty)
  • (1,\infty)
  • \left(\displaystyle -\frac{1}{3},\frac{1}{3}\right)
The domain of \displaystyle \mathrm{f}({x})=\frac{1}{\sqrt{9-x^{2}}}+\sqrt{x^{2}-4} is
  • (-4,-2)\cup (2,4)
  • (-3,-2]\cup [2,3)
  • (-\infty,-3)\cup (2,\infty)
  • (-\infty,\infty)
The domain of \mathrm{f}({x})=\mathrm{e}^{\sqrt{{x}}}+\cos x is
  • (-\infty,\infty)
  • [0, \infty)
  • (0, 1)
  • (1, \infty)
Let S be set of all rational numbers. The functions f:R\rightarrow R,\ g:R\rightarrow R are defined as 
f(x)=\begin{cases} 0, & x \in S \\  1, & x \notin S \end{cases}
g(x)=\begin{cases} -1 & x\in S \\   0 & x\notin S \end{cases}
then, (fog) (\pi)+(gof)(e)=
  • -1
  • 0
  • 1
  • 2
The domain of f(x)= \text{cosec}  x-\cot x is
  • (-\infty,\infty)
  • R-\{n\pi : n\in Z\}
  • R-\displaystyle \{(2n+1)\frac{\pi}{2} : n\in Z\}
  • R-\displaystyle \left\{\frac{n\pi}{2}:n\in Z\right\}
The domain of \mathrm{f}({x})=\mathrm{c}\mathrm{o}\mathrm{s}^{-1} (\sqrt{3x}) is
  • [-1, 1]
  • \left[0,\displaystyle \frac{1}{3}\right]
  • [0,1]
  • [0,3 ]
lf f:[-6,6]\rightarrow \mathbb{R} is defined by f(x)=x^{2}-3 for x\in \mathbb{R} then
(fofof)(-1)+(fofof)(0)+(fofof)(1)=
  • f(4\sqrt{2})
  • f(3\sqrt{2})
  • f(2\sqrt{2})
  • f(\sqrt{2})
The domain of \mathrm{f}({x})=\sqrt{x^{2}-9x+18} is
  • [3,6]
  • (-\infty,3]\cup[6,\infty)
  • [3,\infty)
  • [6, \infty)
The domain of \mathrm{f}({x})=\sqrt{1-2x}+\cos^{-1}(1-2x)
  • \left(-\displaystyle \infty,\frac{1}{2}\right)
  • \left(\displaystyle \frac{1}{2},\infty\right)
  • \left[0,\displaystyle \frac{1}{2}\right]
  • (0,\infty)
The domain of the function \displaystyle \mathrm{f}({x})=\dfrac{\sqrt{2+x}+\sqrt{2-x}}{x} is
  • (-2,2)
  • [-2,0)\cup (0,2]
  • [-2,2]
  • (-\infty,2)
lf {f}\left({x}\right)=\sin^{2}{x}+\sin^{2}\left({x}+\displaystyle \dfrac{\pi}{3}\right)+ \cos x \cos \left({x}+\displaystyle \dfrac{\pi}{3}\right) and {g}\left(\displaystyle\dfrac{5}{4}\right)=1, g\left(1\right) = 0 then \left({g}{o}{f}\right)\left({x}\right)=
  • 1
  • 0
  • \sin x
  • Data is insufficient
If n\geq 1 is any integer, \mathrm{d}(n) denotes the number of positive factors of n, then for any prime number \mathrm{p},\ \mathrm{d}(\mathrm{d}(\mathrm{d}(\mathrm{p}^{7})))=
  • 1
  • 2
  • 3
  • 4
Set of values of x for which the function  \displaystyle \mathrm{f}(\mathrm{x})=\frac{1}{\mathrm{x}}+2^{\sin^{-1}\mathrm{x}}+\frac{1}{\sqrt{\mathrm{x}-2}} exists is
  • R
  • \mathrm{R}-\{\mathrm{0}\}
  • \phi
  • \mathrm{R}-\{1\}
The domain of the function \displaystyle \mathrm{f}(\mathrm{x})=\frac{1}{\sqrt{|\mathrm{x}|-\mathrm{x}}} is 
  • (-\infty, \infty)
  • (0, \infty)
  • (-\infty, 0)
  • (-\infty, \infty)-\{0\}
lf f : R\rightarrow R is defined by
f(x)=\left\{\begin{array}{l}x+4 & x<-4\\3x+2 & -4\leq x<4\\x-4 & x\geq 4\end{array}\right.
then the correct matching of list I to List II is. 
List - IList - II
\mathrm{A}) f(-5)+f(-4)=\mathrm{i}) 14
\mathrm{B}) f(|f(-8)|)=ii ) 4
\mathrm{C}) f(f(-7)+f(3))=\mathrm{i}\mathrm{i}\mathrm{i})-11
\mathrm{D}) f(f(f(f(0)))+1=\mathrm{i}\mathrm{v})-1
v) 1
vi) 0
  • A-iii , B-vi , C-ii , D- v
  • A-iii , B-iv , C-ii , D- vi
  • A-iv , B-iii , C-ii , D- i
  • A-ii , B-vi , C-v , D- ii
Set A has 3 elements and set B has 4 elements. The number of injections that can be defined from A into B is :
  • 144
  • 12
  • 24
  • 64

lf g(f(x)) =|\sin \mathrm{x}|,f(g(x)) =(\sin\sqrt{\mathrm{x}})^{2}, then
  • {f}({x})=\sin^{2} {x},{g}({x})=\sqrt{{x}}
  • {f}({x})=\sin x,g({x})=|{x}|
  • {f}({x})={x}^{2},{g}({x})=\sin\sqrt{{x}}
  • {f}, {g} cannot be determined
The domain of \sqrt{(\mathrm{x}-1)(\mathrm{x}-2)(\mathrm{x}-3)} is
  • (1,2)
  • [1,2]
  • (1,2)\cup (3, \infty)
  • [1,2] \cup [3, \infty)
 Domain of definition of the function \displaystyle{ f }({ x })=\sqrt { \sin ^{ -1 } (2{ x })+\frac { \pi  }{ 6 }  }  for real valued x, is
  • [-\displaystyle \frac{1}{4}, \displaystyle \frac{1}{2}]
  • [-\displaystyle \frac{1}{2}, \displaystyle \frac{1}{2}]
  • (-\displaystyle \frac{1}{2}, \displaystyle \frac{1}{9})
  • [-\displaystyle \frac{1}{4}, \displaystyle \frac{1}{4}]
Find the domain of e^x.
  • N
  • R
  • Z
  • All of the above
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers