Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Commerce Applied Mathematics Functions Quiz 2 - MCQExams.com
CBSE
Class 11 Commerce Applied Mathematics
Functions
Quiz 2
Let
f
(
x
)
=
K
x
x
+
1
(
x
≠
−
1
)
then the value of
K
for which
(
f
o
f
)
(
x
)
=
x
is
Report Question
0%
1
0%
−
1
0%
2
0%
√
2
Explanation
f
(
f
(
x
)
)
=
f
(
k
x
x
+
1
)
=
k
(
k
x
x
+
1
)
k
x
x
+
1
=
1
=
k
2
x
(
k
+
1
)
x
+
1
∴
for
f
(
f
(
x
)
)
=
x
⇒
k
+
1
=
0
k
2
=
1
∴
k
=
−
1
If
n
(
A
)
=
4
and
n
(
B
)
=
6
, then the number of surjections from
A
to
B
is
Report Question
0%
4
6
0%
6
4
0%
0
0%
24
Explanation
n
(
A
)
<
n
(
B
)
∴
Co-domain can never be equal to range.
∴
No of surjections is zero
f
:
(
−
π
2
,
π
2
)
→
(
−
∞
,
∞
)
defined by
f
(
x
)
=
1
+
3
x
is
Report Question
0%
one-one but not onto
0%
onto but not one-one
0%
neither one - one nor onto
0%
bijective
Explanation
f
(
x
1
)
=
f
(
x
2
)
⇒
1
+
3
x
1
=
1
+
3
x
x
1
=
x
2
∴
f
(
x
1
)
=
f
(
x
2
)
⇒
x
1
=
x
2
∴
f is one-one.
f
lies b/w
(
1
−
3
π
2
,
1
+
3
π
2
)
∴
co-domain
(
−
∞
,
∞
)
is not equal to range
(
1
−
3
π
2
,
1
+
3
π
2
)
⇒
f is not onto.
∴
f is one-one but not onto.
Let
A
=
{
1
,
2
,
3
}
,
B
=
{
a
,
b
,
c
}
and If
f
=
{
(
1
,
a
)
,
(
2
,
b
)
,
(
3
,
c
)
}
,
g
=
{
(
1
,
b
)
,
(
2
,
a
)
,
(
3
,
b
)
}
,
h
=
{
(
1
,
b
)
(
2
,
c
)
,
(
3
,
a
)
}
then
Report Question
0%
g
and
h
are injections
0%
f
and
h
are injections
0%
f
and
g
injections
0%
f
,
g
and
h
are injections
Explanation
g
(
1
)
=
g
(
3
)
=
b
⇒
g is not one-one.
domain of
f
=
domain of
h
=
A
.
range of
f
=
range of
h
=
B
n
(
A
)
=
n
(
B
)
=
3
∴
f
and
h
are injections.
If
f
:
R
→
R
,
g
:
R
→
R
are defined by
f
(
x
)
=
4
x
−
1
,
g
(
x
)
=
x
3
+
2
,
then
(
g
o
f
)
(
a
+
1
4
)
=
Report Question
0%
43
0%
4
a
3
−
1
0%
a
3
+
2
0%
64
a
3
−
8
a
2
−
1
Explanation
g
(
f
(
a
+
1
4
)
)
=
g
(
4
(
a
+
1
4
)
−
1
)
=
g
(
a
)
=
a
3
+
2
If
f
(
x
)
=
2
x
+
1
and
g
(
x
)
=
x
2
+
1
then
(
g
o
(
f
o
f
)
)
(
2
)
=
Report Question
0%
112
0%
122
0%
12
0%
124
Explanation
(
g
o
(
f
o
f
)
)
(
x
)
=
g
(
f
(
f
(
x
)
)
)
=
g
(
f
(
2
x
+
1
)
)
=
g
(
2
(
2
x
+
1
)
+
1
)
=
g
(
4
x
+
3
)
=
(
4
x
+
3
)
2
+
1
(
g
o
(
f
o
f
)
)
(
2
)
=
(
11
)
2
+
1
=
122
If
f
(
x
)
=
1
x
,
g
(
x
)
=
√
x
and
(
g
o
√
f
)
(
16
)
=
Report Question
0%
2
0%
1
0%
1
2
0%
4
Explanation
√
f
(
x
)
=
1
√
x
g
(
√
f
(
x
)
)
=
g
(
1
√
x
)
=
1
√
√
x
=
1
x
1
4
(
g
o
√
f
)
(
16
)
=
1
(
16
)
1
4
=
1
2
If
f
(
x
)
=
x
,
g
(
x
)
=
2
x
2
+
1
and
h
(
x
)
=
x
+
1
then
(
h
o
g
o
f
)
(
x
)
is equal to
Report Question
0%
x
2
+
2
0%
2
x
2
+
1
0%
x
2
+
1
0%
2
(
x
2
+
1
)
Explanation
Given
f
(
x
)
=
x
,
g
(
x
)
=
2
x
2
+
1
and
h
(
x
)
=
x
+
1
h
o
g
o
f
(
x
)
=
h
(
g
(
f
(
x
)
)
)
=
h
(
g
(
x
)
)
…
…
[
∵
f
(
x
)
=
x
]
=
h
(
2
x
2
+
1
)
…
…
[
∵
g
(
x
)
=
2
x
2
+
1
]
=
2
x
2
+
1
+
1
=
2
x
2
+
2
=
2
(
x
2
+
1
)
∴
h
o
g
o
f
(
x
)
=
2
(
x
2
+
1
)
The number of injections possible from
A
=
{
1
,
3
,
5
,
6
}
to
B
=
{
2
,
8
,
11
}
is
Report Question
0%
8
0%
64
0%
2
12
0%
0
Explanation
co-domain
n
(
B
)
<
domain
n
(
A
)
There can't be any one-one function from
A
to
B
.
The number of possible surjection from
A
=
{
1
,
2
,
3
,
.
.
.
n
}
to
B
=
{
1
,
2
}
(where
n
≥
2
)
is
62
, then
n
=
Report Question
0%
5
0%
6
0%
7
0%
8
Explanation
Each element in
A
can be mapped onto any of two elements of
B
∴
Total possible functions are
2
n
For the
f
n
′
s
to be surjections , they shouldn't be mapped alone to any of the two elements.
∴
Total no of surjections
=
2
n
−
2
2
n
−
2
=
62
⇒
n
=
6
If
f
:
R
→
R
,
g
:
R
→
R
are defined by
f
(
x
)
=
x
2
,
g
(
x
)
=
cos
x
then
(
g
o
f
)
(
x
)
=
Report Question
0%
cos
2
x
0%
x
2
cos
x
0%
cos
x
2
0%
cos
2
x
2
Explanation
g
o
f
(
x
)
=
g
(
f
(
x
)
)
=
g
(
x
2
)
=
cos
x
2
If
f
(
x
)
=
(
1
−
x
)
1
/
2
and
g
(
x
)
=
ln
(
x
)
then the domain of
(
g
o
f
)
(
x
)
is
Report Question
0%
(
−
∞
,
2
)
0%
(
−
1
,
1
)
0%
(
−
∞
,
1
]
0%
(
−
∞
,
1
)
Explanation
Given
f
(
x
)
=
(
1
−
x
)
1
2
and
g
(
x
)
=
l
n
(
x
)
g
o
f
(
x
)
=
g
(
f
(
x
)
)
=
ln
(
1
−
x
)
1
/
2
=
1
2
ln
(
1
−
x
)
∴
For the composite function to be defined
1
−
x
>
0
x
<
1
∴
Domain is
(
−
∞
,
1
)
If the function is
f
:
R
→
R
,
g
:
R
→
R
are defined as
f
(
x
)
=
2
x
+
3
,
g
(
x
)
=
x
2
+
7
and
f
[
g
(
x
)
]
=
25
then
x
=
Report Question
0%
f
(
x
)
0%
±
2
0%
±
3
0%
±
4
Explanation
f
(
g
(
x
)
)
=
f
(
x
2
+
7
)
=
25
=
2
(
x
2
+
7
)
+
3
=
2
x
2
+
17
⇒
2
x
2
=
8
x
2
=
4
⇒
x
=
±
2
If
f
(
x
)
=
x
+
1
x
−
1
(
x
≠
1
)
then
f
o
f
o
f
o
f
(
x
)
=
Report Question
0%
f
(
x
)
0%
2
(
x
+
1
x
−
1
)
0%
x
−
1
x
+
1
0%
x
Explanation
f
o
f
o
f
o
f
(
x
)
=
f
o
f
o
f
(
x
+
1
x
−
1
)
=
f
o
f
(
x
+
1
x
−
1
+
1
x
+
1
x
−
1
−
1
)
=
f
o
f
(
2
x
2
)
=
f
o
f
(
x
)
=
f
(
x
+
1
x
−
1
)
=
x
If
F
(
n
)
=
(
−
1
)
k
−
1
(
n
−
1
)
,
G
(
n
)
=
n
−
F
(
n
)
then
(
G
o
G
)
(
n
)
=
(where
k
is odd)
Report Question
0%
1
0%
n
0%
2
0%
n
−
1
Explanation
G
(
n
)
=
n
−
(
−
1
)
k
−
1
(
n
−
1
)
G
o
G
(
n
)
=
G
(
n
−
(
−
1
)
k
−
1
(
n
−
1
)
)
=
n
−
(
−
1
)
k
−
1
(
n
−
1
)
−
(
−
1
)
k
−
1
(
(
n
−
1
)
−
(
−
1
)
k
−
1
(
n
−
1
)
)
=
n
−
(
n
−
1
)
=
1
If
f
(
x
)
=
x
√
1
−
x
2
, then
(
f
o
f
)
(
x
)
=
Report Question
0%
x
√
1
−
x
2
0%
x
√
1
−
2
x
2
0%
x
√
1
−
3
x
2
0%
x
Explanation
f
o
f
(
x
)
=
f
(
f
(
x
)
)
=
(
x
/
√
1
−
x
2
)
/
(
√
1
−
(
x
2
/
(
1
−
x
2
)
)
)
=
(
x
/
√
1
−
x
2
)
/
√
(
1
−
x
2
−
x
2
)
/
(
1
−
x
2
)
=
(
x
/
√
1
−
x
2
)
/
(
√
1
−
2
x
2
/
√
1
−
x
2
)
=
x
/
√
1
−
2
x
2
If
f
:
[
1
,
∞
)
→
B
defined by the function
f
(
x
)
=
x
2
−
2
x
+
6
is a surjection, then
B
is equals to
Report Question
0%
[
1
,
∞
)
0%
[
5
,
∞
)
0%
[
6
,
∞
)
0%
[
2
,
∞
)
Explanation
f
(
x
)
=
x
2
−
2
x
+
6
is a surjection.
So the range of
f
(
x
)
will be equal to its codomain.
f
(
x
)
=
x
2
−
2
x
+
6
f
1
(
x
)
=
2
x
−
2
=
2
(
x
−
1
)
f
(
x
)
will be increasing when
x
⩾
.
\therefore f(1)=1-2+6
=5
\therefore B=[5, \infty)
If
f:R\rightarrow R,f(x)=3x-2
then
(fof)(x)+2=
Report Question
0%
f(x)
0%
2f(x)
0%
3f(x)
0%
-f(x)
Explanation
fof (x)=f(f(x))
=f(3x-2)
=3(3x-2)-2
=9x-8
fof(x)+2=9x-6=3(3x-2)
=3f(x)
If
f(x)=\dfrac{x}{\sqrt{1+x^{2}}}
then
fofof(x)=
Report Question
0%
\dfrac{x}{\sqrt{1+3x^{2}}}
0%
\dfrac{x}{\sqrt{1-x^{2}}}
0%
\dfrac{2x}{\sqrt{1+2x^{2}}}
0%
\dfrac{x}{\sqrt{1+x^{2}}}
Explanation
fofof\left(x\right)=fof\left(\dfrac{x}{\sqrt{1+x^{2}}}\right)
=f\left(\dfrac{\dfrac{x}{\sqrt{1+x^{2}}}}{\sqrt{1+\dfrac{x^{2}}{1+x^{2}}}}\right)
=f\left(\dfrac{x}{\sqrt{1+2x^{2}}}\right)
=\left(\dfrac{\dfrac{x}{\sqrt{1+2x^{2}}}}{\sqrt{1+\dfrac{x^{2}}{1+2x^{2}}}}\right)
=\dfrac{x}{\sqrt{1+3x^{2}}}
If
f(n+1)=f(n)
for all
n\in N, f(7)=5
then
f(35)=
Report Question
0%
25
0%
49
0%
35
0%
5
If
f(x)=\displaystyle \dfrac{x}{\sqrt{1-x^{2}}},g(x)=\displaystyle \dfrac{x}{\sqrt{1+x^{2}}}
, then
(fog)(x)=
Report Question
0%
x
0%
\dfrac{x}{\sqrt{1+x^{2}}}
0%
\sqrt{1+x^{2}}
0%
2x
Explanation
fog\left(x\right)=f\left(g\left(x\right)\right)
\displaystyle =f\left(\dfrac{x}{\sqrt{1+x^{2}}}\right)
\displaystyle =\dfrac{\dfrac{x}{\sqrt{1+x^{2}}}}{\sqrt{1-\dfrac{x^{2}}{1+x^{2}}}}=x
The domain of
\sqrt{\log_{e/3}\mathrm{x}+1}
is
Report Question
0%
\left(0,\displaystyle \frac{3}{\mathrm{e}}\right]
0%
\left(-\displaystyle \infty\frac{3}{\mathrm{e}}\right]
0%
\left[\displaystyle \frac{3}{\mathrm{e}}\infty\right)
0%
R
Explanation
\log_{e/3}{x}+1\geq 0
and
{x}>0
\log_{e/3}x\geq-1
\Rightarrow x\leq \left(\dfrac{e}{3}\right)^{-1}= \dfrac{3}{e}
\Rightarrow x\in \left(0, \dfrac{3}{e}\right]
Hence, option 'A' is correct.
The domain of
{ f }({ x })=\tan ^{ -1 } (5x)
is
Report Question
0%
(-\infty,\infty)
0%
(0,\infty)
0%
(-\infty,0)
0%
\left(\displaystyle -\frac{1}{5},\frac{1}{5}\right)
Explanation
\tan^{-1}x
is defined for all
x
as range of
\tan x
is from
(-\infty ,\infty )
.
\therefore
domain of
\tan^{-1}5x
is
(-\infty ,\infty )
.
Hence, option 'A' is correct.
The domain of
\displaystyle f(x)= { \sin }^{ -1 }\left(\dfrac { 2x-3 }{ 5 } \right)
is
Report Question
0%
[1,3]
0%
[1,4]
0%
[2, 14]
0%
[-1,4]
Explanation
\sin^{-1}x
is defined if
x\in [-1,1]
\Rightarrow -1\leq \dfrac{2x-3}{5}\leq 1
-5\leq 2x-3\leq 5
-2\leq 2x\leq 8
-1\leq x\leq 4
If
f:R\rightarrow R
is defined by
f(x)=x^{2}-10x+21
then
f^{-1}(-3)
is
Report Question
0%
\left \{ -4,6 \right \}
0%
\left \{ 4,6 \right \}
0%
\left \{ -4, 4, 6 \right \}
0%
Not Invertible
Explanation
Let
f^{-1}(-3)=t
\Rightarrow f(t)=-3
t^{2}-10t+21=-3
t^{2}-10t+24=0
t^{2}-6t-4t+24=0
t(t-6)-4(t-6)=0
\Rightarrow t=6,4 = f^{-1}(-3)
f:[-2,2]\rightarrow R
is defined as
f(x)=\left\{\begin{array}{l}-1,-2\leq x\leq 0\\x-1,0\leq x\leq 2\end{array}\right.
then
\{x\in[-2,2]:x\leq 0,\; f(|x|)=x\}=
Report Question
0%
\{-1\}
0%
\{0\}
0%
\displaystyle \left\{\frac{-1}{2}\right\}
0%
\phi
The domain of
{f}({x})=\log|x^{2}-9|
is
Report Question
0%
\mathrm{R}- \{-3,3\}
0%
(-\infty,-3)
0%
(3,\infty)
0%
(-\infty,\infty)
Explanation
f
is defined for all
[x^{2}-9]>0 \Rightarrow x\neq \pm 3
\therefore
domain of
f
is
R-\left \{ -3,3 \right \}
Hence, option 'A' is correct.
The domain of
\displaystyle \mathrm{f}(\mathrm{x})=\cos^{-1}\left(\frac{2}{2+\sin \mathrm{x}}\right)
contained in
[0,2\pi]
is
Report Question
0%
\left[0,\displaystyle \frac{\pi}{2}\right]
0%
\left[\displaystyle \frac{\pi}{2},\pi \right]
0%
[0, \pi]
0%
\left[\displaystyle \frac{-\pi}{2},\frac{\pi}{2}\right]
Explanation
Domain of the function is value of
x
in
\displaystyle {f}({x})=\cos^{-1}\left(\frac{2}{2+\sin {x}}\right)
Since value of
\cos x
is between
-1
to
1
thus
-1\displaystyle \leq\frac{2}{2+\sin{x}}\leq 1
\Rightarrow \sin x\geq0
\Rightarrow x\in[0, \pi]
Hence, option 'C' is correct.
The domain of
f(x)=\sqrt{\log\left ( \dfrac{7x-x^{2}}{12} \right )}
is
Report Question
0%
(-\infty ,\infty )
0%
(-\infty ,4]
0%
[3 ,\infty )
0%
[3,4]
Explanation
Domain of a function is value of
x
for which function is defined
f(x)=\sqrt{\log\left ( \dfrac{7x-x^{2}}{12} \right )}
For log to be always positive, value into log should be greater than
1
so
\displaystyle \frac{7{x}-{x}^{2}}{12}\geq 1
x^2-7x+12=0
So solving the inequality, we get
x\in[3,4]
Hence, option 'D' is correct.
The domain of the function
\displaystyle \mathrm{f}({x})=\frac{1}{\sqrt{x-2}}+\frac{1}{\sqrt{5-x}}
is
Report Question
0%
[2,5]
0%
(2,5)
0%
[2,5 )
0%
(2,5 ]
Explanation
Given,
\displaystyle \mathrm{f}({x})=\frac{1}{\sqrt{x-2}}+\frac{1}{\sqrt{5-x}}
For the
f(x)
to be defined.
x-2>0 \Rightarrow x>2
5-x>0 \Rightarrow x<5
\Rightarrow x\in (2,5)
The domain of
\mathrm{f}({x})=\mathrm{c}\mathrm{o}\mathrm{t}^{-1} \left(\displaystyle \frac{x}{3}\right)
is
Report Question
0%
(-\infty,\infty)
0%
(0,\infty)
0%
(1,\infty)
0%
\left(\displaystyle -\frac{1}{3},\frac{1}{3}\right)
Explanation
\cot^{-1}
is defined for all
x
\therefore
Domain of
f
is
(-\infty ,\infty )
The domain of
\displaystyle \mathrm{f}({x})=\frac{1}{\sqrt{9-x^{2}}}+\sqrt{x^{2}-4}
is
Report Question
0%
(-4,-2)\cup (2,4)
0%
(-3,-2]\cup [2,3)
0%
(-\infty,-3)\cup (2,\infty)
0%
(-\infty,\infty)
Explanation
f
is defined if both terms under square root exist.
\Rightarrow 9-x^{2}> 0
and
x^{2}-4\geq 0
\Rightarrow (3-x)(3+x)>0
and
(x-2)(x+2)\geq 0
\Rightarrow (x-3)(3+x)<0
and
(x-2)(x+2)\geq 0
\Rightarrow -3<x<3
and
x<-2
and
x>2
x\in (-3,3)
and
x\in [-\infty ,-2]\cup [2,\infty ]
Intersection of both gives the following solution
\Rightarrow x\in (-3,-2]\cup [2,3)
The domain of
\mathrm{f}({x})=\mathrm{e}^{\sqrt{{x}}}+\cos x
is
Report Question
0%
(-\infty,\infty)
0%
[0, \infty)
0%
(0, 1)
0%
(1, \infty)
Explanation
\cos x
is defined for all
x
\therefore
For
f(x)
to be defined.
\sqrt{x}\geq 0
\Rightarrow x\geq 0 \Rightarrow x\in [0,\infty )
Let
S
be set of all rational numbers. The functions
f:R\rightarrow R,\ g:R\rightarrow R
are
defined as
f(x)=\begin{cases} 0, & x \in S \\ 1, & x \notin S \end{cases}
g(x)=\begin{cases} -1 & x\in S \\ 0 & x\notin S \end{cases}
then,
(fog) (\pi)+(gof)(e)=
Report Question
0%
-1
0%
0
0%
1
0%
2
Explanation
f(x)=\begin{cases} 0, & x \text{ is rational} \\ 1, & x \text{ is irrational} \end{cases}
g(x)=\begin{cases} -1 & x\text { is rational} \\ 0& x\text { is irrational } \end{cases}
fog(\pi )=f(g(\pi ))=f(0)=0
so
gof(e)=g(f(e))=g(1)=-1
\therefore fog(\pi )+gof(e)=-1
The domain of
f(x)= \text{cosec} x-\cot x
is
Report Question
0%
(-\infty,\infty)
0%
R-\{n\pi
:
n\in Z\}
0%
R-\displaystyle \{(2n+1)\frac{\pi}{2}
:
n\in Z\}
0%
R-\displaystyle \left\{\frac{n\pi}{2}:n\in Z\right\}
Explanation
\text{cosec} x
&
\cot x
are not defined at
x=n\pi \ \ \forall n\in Z
\therefore
Domain of
f
is
R- \{ n\pi\} , n\in Z
The domain of
\mathrm{f}({x})=\mathrm{c}\mathrm{o}\mathrm{s}^{-1} (\sqrt{3x})
is
Report Question
0%
[-1, 1]
0%
\left[0,\displaystyle \frac{1}{3}\right]
0%
[0,1]
0%
[0,3 ]
Explanation
For
f
to be defined
\sqrt{3x}
has to exist.
\Rightarrow 3x\geq 0
x\geq 0
\cos^{-1}
is defined only if
-1\leq \sqrt{3x}\leq 1
As
x\geq 0
\Rightarrow \sqrt{3x}\leq 1
\Rightarrow x\leq \dfrac{1}{3}
\therefore x\in \left[0,\dfrac{1}{3}\right]
lf
f:[-6,6]\rightarrow \mathbb{R}
is defined by
f(x)=x^{2}-3
for
x\in \mathbb{R}
then
(fofof)(-1)+(fofof)(0)+(fofof)(1)=
Report Question
0%
f(4\sqrt{2})
0%
f(3\sqrt{2})
0%
f(2\sqrt{2})
0%
f(\sqrt{2})
Explanation
fofof(-1)=fof(-2)=f(1)=-2
fofof(1)=fof(-2)=f(1)=-2
fofof(0)=fof(-3)=f(0)=33
\therefore fofof(-1)+fofof(1)+fofof(0)=29
=32-3
=(4\sqrt{2})^{2}-3
\Rightarrow f(4\sqrt{2})=(4\sqrt{2})^{2}-3
The domain of
\mathrm{f}({x})=\sqrt{x^{2}-9x+18}
is
Report Question
0%
[3,6]
0%
(-\infty,3]\cup[6,\infty)
0%
[3,\infty)
0%
[6, \infty)
Explanation
For given function to be defined,
x^2-9x+18\ge 0
\Rightarrow (x-6)(x-3)\ge 0\Rightarrow x\in (-\infty,3]\cup [6,\infty) =
required domain
Hence option 'B' is correct
The domain of
\mathrm{f}({x})=\sqrt{1-2x}+\cos^{-1}(1-2x)
Report Question
0%
\left(-\displaystyle \infty,\frac{1}{2}\right)
0%
\left(\displaystyle \frac{1}{2},\infty\right)
0%
\left[0,\displaystyle \frac{1}{2}\right]
0%
(0,\infty)
Explanation
f
is defined if
\sqrt{1-2x}
exist
\sum cos^{-1}(1-2x)
is define.
\Rightarrow 1-2x\geq 0 -1\leq 1-2x\leq 1
\Rightarrow x\leq \dfrac{1}{2} -2\leq -2x\leq 0
0\leq 2x\leq 2
\Rightarrow 0\leq x\leq 1
\therefore
For
x\in [0,\dfrac{1}{2}],
f
is defined.
The domain of the function
\displaystyle \mathrm{f}({x})=\dfrac{\sqrt{2+x}+\sqrt{2-x}}{x}
is
Report Question
0%
(-2,2)
0%
[-2,0)\cup (0,2]
0%
[-2,2]
0%
(-\infty,2)
Explanation
Given,
\displaystyle \mathrm{f}({x})=\dfrac{\sqrt{2+x}+\sqrt{2-x}}{x}
For
f(x)
to be defined
x\neq 0
2+x\geq 0 \Rightarrow x\geq -2
2-x\geq 0 \Rightarrow x\leq 2
\therefore x\in [-2,0)\cup (0,2]
lf
{f}\left({x}\right)=\sin^{2}{x}+\sin^{2}\left({x}+\displaystyle \dfrac{\pi}{3}\right)+ \cos x \cos \left({x}+\displaystyle \dfrac{\pi}{3}\right)
and
{g}\left(\displaystyle\dfrac{5}{4}\right)=1
,
g\left(1\right) = 0
then
\left({g}{o}{f}\right)\left({x}\right)=
Report Question
0%
1
0%
0
0%
\sin x
0%
Data is insufficient
Explanation
\displaystyle {f}\left({x}\right)=\sin^{2}{x}+\left(\sin{x}\cos\frac{\pi}{3}+ \cos{x} \displaystyle \sin\frac{\pi}{3}\right)^{2}+ {c}{o}{s} {x}\left(\displaystyle \cos {x}\cos\frac{\pi}{3}-\sin {x}\sin\frac{\pi}{3}\right)
\displaystyle =\sin ^{ 2 }{ x } +{ \left[ \frac { \sin{ x } }{ 2 } +\frac { \sqrt { 3 } \cos{ x } }{ 2 } \right] }^{ 2 }+\frac { \cos^{ 2 }{ x } }{ 2 } -\frac { \sqrt { 3 } }{ 2 } \cos x \sin x
\displaystyle =\sin ^{ 2 }{ x } +\frac { \sin ^{ 2 }{ x } }{ 4 } +\frac { 3 }{ 4 } \cos ^{ 2 }{ x } +\frac { \sqrt { 3 } }{ 2 } \sin x\cos{ x }+\frac { \cos ^{ 2 }{ x } }{ 2 } -\frac { \sqrt { 3 } }{ 2 } \sin { x\cos { x } }
=\displaystyle \frac{5}{4}\left(\sin^{2}{x}+\cos^{2}{x}\right)=\frac{5}{4}
\displaystyle \therefore
[{g}{o}{f}]\left({x}\right)={g}[{f}\left({x}\right)]={g}\left(\displaystyle \frac{5}{4}\right)=1
If
n\geq 1
is any integer,
\mathrm{d}(n)
denotes the number of positive factors of
n
, then for any prime number
\mathrm{p},\ \mathrm{d}(\mathrm{d}(\mathrm{d}(\mathrm{p}^{7})))=
Report Question
0%
1
0%
2
0%
3
0%
4
Explanation
For a number being
p^{n}
the total number of positive factors excluding
1
and the number itself will be
n-1
.
Therefore total number of positive factors will be
n-1+2
=n+1
Hence for
p^{7}
we will have
8
factors.
Now for
8=2^{3}
.
Hence
8
will have
4
factors.
Now
4=2^{2}
, hence the number of factors will be
3
.
Set of values of
x
for which the function
\displaystyle \mathrm{f}(\mathrm{x})=\frac{1}{\mathrm{x}}+2^{\sin^{-1}\mathrm{x}}+\frac{1}{\sqrt{\mathrm{x}-2}}
exists is
Report Question
0%
R
0%
\mathrm{R}-\{\mathrm{0}\}
0%
\phi
0%
\mathrm{R}-\{1\}
Explanation
f(x)=2 \sin^{-1}x+\dfrac{1}{\sqrt{x-2}}+\dfrac{1}{x}
x\neq 0
for
\dfrac{1}{x}
-1\leqslant x\leqslant1
for
\sin^{-1}x
\sqrt{x-2}\neq 0
and
x-2>0
for
\dfrac{1}{\sqrt {x-2}}
x>2
n combining, we get domain of
f(x)
is
\phi
.
The domain of the function
\displaystyle \mathrm{f}(\mathrm{x})=\frac{1}{\sqrt{|\mathrm{x}|-\mathrm{x}}}
is
Report Question
0%
(-\infty, \infty)
0%
(0, \infty)
0%
(-\infty, 0)
0%
(-\infty, \infty)-\{0\}
Explanation
Given function is
\displaystyle \mathrm{f}(\mathrm{x})=\frac{1}{\sqrt{|\mathrm{x}|-\mathrm{x}}}
\Rightarrow
\mathrm{f}(\mathrm{x})
is defined if
|x| > x
= |\mathrm{x}|>\mathrm{x}
= \mathrm{x}<0
So domain of
\mathrm{f}(\mathrm{x})
is
(-\infty, 0)
.
lf
f
:
R\rightarrow R
is defined by
f(x)=\left\{\begin{array}{l}x+4 & x<-4\\3x+2 & -4\leq x<4\\x-4 & x\geq 4\end{array}\right.
then the correct matching of list I to List II is.
List - I
List - II
\mathrm{A}) f(-5)+f(-4)=
\mathrm{i}) 14
\mathrm{B}) f(|f(-8)|)=
ii
) 4
\mathrm{C}) f(f(-7)+f(3))=
\mathrm{i}\mathrm{i}\mathrm{i})-11
\mathrm{D}) f(f(f(f(0)))+1=
\mathrm{i}\mathrm{v})-1
v)
1
vi)
0
Report Question
0%
A-iii , B-vi , C-ii , D- v
0%
A-iii , B-iv , C-ii , D- vi
0%
A-iv , B-iii , C-ii , D- i
0%
A-ii , B-vi , C-v , D- ii
Explanation
f(-5)=-5+4=-1 ; f(-4)=3(-4)+2=-10
\therefore f(-5)+f(4)=-11
f(|f(-8)|)=f((-8+4))=f(4)=4-4=0
f(f(-7)) tf(3) = f(-7+4)+3(3)+2
=3(-3)+2+3(3)+2
=4
f(f(f(f(0))))+1=f(f(f(2)))+1=f(f(8))+1
=f(4)+1=0+1=1
Set A has 3 elements and set B has 4 elements. The number of injections that can be defined from A into B is :
Report Question
0%
144
0%
12
0%
24
0%
64
Explanation
lf
g(f(x)) =|\sin \mathrm{x}|,f(g(x)) =(\sin\sqrt{\mathrm{x}})^{2}
, then
Report Question
0%
{f}({x})=\sin^{2} {x},{g}({x})=\sqrt{{x}}
0%
{f}({x})=\sin x,g({x})=|{x}|
0%
{f}({x})={x}^{2},{g}({x})=\sin\sqrt{{x}}
0%
{f}, {g}
cannot be determined
Explanation
g(f(x))=|\sin x|=\sqrt{\sin^{2}x}
.......(i)
f(g(x))=\sin^{2}\sqrt{x}
.......(ii)
Comparing
i
and
ii
\Rightarrow
g(f(x))=|\sin x|=\sqrt{\sin^{2}x}
\Rightarrow
g(\sin^{2}x)=\sqrt{\sin^{2}x}=g(f(x))
And
\Rightarrow
f(g(x))=\sin^{2}\sqrt{x}
\Rightarrow
f(\sqrt{x})=\sin^{2}\sqrt{x}=f(g(x))
Therefore
\Rightarrow
g(x)=\sqrt{x}
\Rightarrow
f(x)=\sin^{2}x
The domain of
\sqrt{(\mathrm{x}-1)(\mathrm{x}-2)(\mathrm{x}-3)}
is
Report Question
0%
(1,2)
0%
[1,2]
0%
(1,2)\cup (3, \infty)
0%
[1,2] \cup [3, \infty)
Domain of definition of the function
\displaystyle{ f }({ x })=\sqrt { \sin ^{ -1 } (2{ x })+\frac { \pi }{ 6 } }
for real valued
x
, is
Report Question
0%
[-\displaystyle \frac{1}{4}, \displaystyle \frac{1}{2}]
0%
[-\displaystyle \frac{1}{2}, \displaystyle \frac{1}{2}]
0%
(-\displaystyle \frac{1}{2}, \displaystyle \frac{1}{9})
0%
[-\displaystyle \frac{1}{4}, \displaystyle \frac{1}{4}]
Explanation
Here
\displaystyle f\left( x \right) =\sqrt { \sin ^{ -1 }{ \left( 2x \right) } +\frac { \pi }{ 6 } }
to find domain we must have
\displaystyle \sin ^{ -1 }{ \left( 2x \right) } +\frac { \pi }{ 6 } \ge 0
( but
\displaystyle -\frac { \pi }{ 2 } \le \sin ^{ -1 }{ \theta } \le \frac { \pi }{ 2 }
)
As
\displaystyle -\frac { \pi }{ 6 } \le \sin ^{ -1 }{ \left( 2x \right) } \le \frac { \pi }{ 2 } \\\Rightarrow \sin { \left( -\cfrac { \pi }{ 6 } \right) } \le 2x\le \sin { \left( \cfrac { \pi }{ 2 } \right) }
\displaystyle \Rightarrow -\cfrac { 1 }{ 2 } \le 2x\le 1\\\Rightarrow -\cfrac { 1 }{ 4 } \le x\le \cfrac { 1 }{ 2 } \\\Rightarrow x\in \left[ -\cfrac { 1 }{ 4 } ,\cfrac { 1 }{ 2 } \right]
Find the domain of
e^x
.
Report Question
0%
N
0%
R
0%
Z
0%
All of the above
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
0
Answered
1
Not Answered
49
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page