CBSE Questions for Class 11 Commerce Applied Mathematics Functions Quiz 2 - MCQExams.com

Let $$f(x)=\dfrac{Kx}{x+1}(x\neq -1)$$ then the value of $$K$$ for which $$(fof)(x)=x$$ is
  • $$1$$
  • $$-1$$
  • $$2$$
  • $$\sqrt{2}$$
If $$n (A) = 4$$ and $$n(B) = 6$$, then the number of surjections from $$A$$ to $$B$$ is
  • $$4^{6}$$
  • $$6^{4}$$
  • $$0$$
  • $$24$$
$$f:\left ( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right )\rightarrow \left ( -\infty ,\infty  \right )$$ defined by $$f(x)=1+3x$$ is
  • one-one but not onto
  • onto but not one-one
  • neither one - one nor onto
  • bijective
Let $$A=\{1,2,3\}, B =\{a, b, c\}$$ and If $$f=\{(1,a),(2,b),(3,c)\}, g=\{(1,b),(2,a),(3,b)\}, h=\{(1,b)(2,c),(3,a)\}$$ then
  • $$g$$ and $$h$$ are injections
  • $$f$$ and $$h$$ are injections
  • $$f$$ and $$g$$ injections
  • $$f,g$$ and $$h$$ are injections
If $$f:R\rightarrow R, g:R\rightarrow R$$ are defined by $$f(x)=4x-1,g(x)=x^{3}+2,$$ then $$(gof)\left(\dfrac{a+1}{4}\right)=$$ 
  • $$43$$
  • $$4a^3-1$$
  • $$a^{3}+2$$
  • $$64a^3 - 8a^{2}-1$$
If $$f(x)=2x+1$$ and $$g(x)=x^{2}+1$$ then $$ (go(fof))(2)=$$
  • $$112$$
  • $$122$$
  • $$12$$
  • $$124$$
If $$f(x)=\dfrac{1}{x}, g(x)=\sqrt{x}$$  and $$ (go\sqrt{f})(16)=$$
  • $$2$$
  • $$1$$
  • $$\dfrac{1}{2}$$
  • $$4$$
If $$f(x)=x, g(x)=2x^{2}+1$$ and $$h(x)=x+1$$  then  $$(hogof)(x)$$ is equal to
  • $$x^{2}+2$$
  • $$2x^{2}+1$$
  • $$x^{2}+1$$
  • $$2(x^{2}+1)$$
The number of injections possible from $$A=\{1,3,5,6\}$$ to $$B =\{2,8,11\}$$ is
  • $$8$$
  • $$64$$
  • $$2^{12}$$
  • $$0$$
The number of possible surjection from $$A=\{1,2,3,...n\}$$ to $$B = \{1,2\}$$ (where $$n \geq 2)$$ is $$62$$, then $$n=$$
  • $$5$$
  • $$6$$
  • $$7$$
  • $$8$$
If $$f:R\rightarrow R, g:R\rightarrow R$$ are defined by $$f(x)=x^{2}, g(x)=\cos x$$  then $$(gof)(x)=$$
  • $$\cos 2x$$
  • $$x^{2}\cos x$$
  • $$\cos x^{2}$$
  • $$\cos^{2} x^{2}$$
If $$f(x)=(1-x)^{1/2}$$ and $$g(x)= \ln(x)$$  then  the  domain  of $$(gof)(x)$$ is
  • $$(-\infty ,2)$$
  • $$(-1,1)$$
  • $$(-\infty ,1]$$
  • $$(-\infty ,1)$$
If the function is $$f:R\rightarrow R,  g:R\rightarrow R$$ are defined as $$f(x)=2x+3, g(x)=x^{2}+7$$  and  $$f[g(x)]=25$$  then  $$x=$$    
  • $$f(x)$$
  • $$\pm 2$$
  • $$\pm 3$$
  • $$\pm 4$$
If $$f(x)=\dfrac{x+1}{x-1}(x\neq 1)$$ then $$fofofof(x)=$$
  • $$f(x)$$
  • $$2\left ( \dfrac{x+1}{x-1} \right )$$
  • $$\dfrac{x-1}{x+1}$$
  • $$x$$
If $$F(n)=(-1)^{k-1}(n-1), G(n)=n-F(n)$$ then $$ (GoG)(n)=$$ (where $$k$$ is odd)
  • $$1$$
  • $$n$$
  • $$2$$
  • $$n-1$$
If $$f(x)=\dfrac{x}{\sqrt{1-x^{2}}}$$, then $$ (fof)(x)=$$
  • $$\dfrac{x}{\sqrt{1-x^{2}}}$$
  • $$\dfrac{x}{\sqrt{1-2x^{2}}}$$
  • $$\dfrac{x}{\sqrt{1-3x^{2}}}$$
  • $$x$$
If $$f:[1,\infty )\rightarrow B$$  defined  by the function $$ f(x)=x^{2}-2x+6$$ is a surjection, then $$B$$ is equals to
  • $$[1,\infty )$$
  • $$[5,\infty )$$
  • $$[6,\infty )$$
  • $$[2,\infty )$$
If $$f:R\rightarrow R,f(x)=3x-2$$ then $$ (fof)(x)+2=$$
  • $$f(x)$$
  • $$2f(x)$$
  • $$3f(x)$$
  • $$-f(x)$$
If $$f(x)=\dfrac{x}{\sqrt{1+x^{2}}}$$ then $$fofof(x)=$$
  • $$\dfrac{x}{\sqrt{1+3x^{2}}}$$
  • $$\dfrac{x}{\sqrt{1-x^{2}}}$$
  • $$\dfrac{2x}{\sqrt{1+2x^{2}}}$$
  • $$\dfrac{x}{\sqrt{1+x^{2}}}$$
If $$f(n+1)=f(n)$$ for all $$n\in N, f(7)=5$$  then  $$f(35)=$$
  • $$25$$
  • $$49$$
  • $$35$$
  • $$5$$
If $$f(x)=\displaystyle \dfrac{x}{\sqrt{1-x^{2}}},g(x)=\displaystyle \dfrac{x}{\sqrt{1+x^{2}}} $$, then $$(fog)(x)=$$       
  • $$x$$
  • $$\dfrac{x}{\sqrt{1+x^{2}}}$$
  • $$\sqrt{1+x^{2}}$$
  • $$2x$$
The domain of $$\sqrt{\log_{e/3}\mathrm{x}+1}$$ is
  • $$\left(0,\displaystyle \frac{3}{\mathrm{e}}\right]$$
  • $$\left(-\displaystyle \infty\frac{3}{\mathrm{e}}\right]$$
  • $$\left[\displaystyle \frac{3}{\mathrm{e}}\infty\right)$$
  • $$R$$
The domain of $${ f }({ x })=\tan ^{ -1 } (5x) $$ is
  • $$(-\infty,\infty)$$
  • $$(0,\infty)$$
  • $$(-\infty,0)$$
  • $$\left(\displaystyle -\frac{1}{5},\frac{1}{5}\right)$$
The domain of $$ \displaystyle f(x)= { \sin }^{ -1 }\left(\dfrac { 2x-3 }{ 5 } \right)$$ is
  • $$[1,3]$$
  • $$[1,4]$$
  • $$[2, 14]$$
  • $$[-1,4]$$
If $$f:R\rightarrow R$$ is defined by $$f(x)=x^{2}-10x+21 $$ then $$ f^{-1}(-3)$$ is
  • $$\left \{ -4,6 \right \}$$
  • $$\left \{ 4,6 \right \}$$
  • $$\left \{ -4, 4, 6 \right \}$$
  • Not Invertible
$$f:[-2,2]\rightarrow  R $$ is defined as $$f(x)=\left\{\begin{array}{l}-1,-2\leq x\leq 0\\x-1,0\leq x\leq 2\end{array}\right.$$ then
$$\{x\in[-2,2]:x\leq 0,\; f(|x|)=x\}=$$
  • $$\{-1\}$$
  • $$\{0\}$$
  • $$\displaystyle \left\{\frac{-1}{2}\right\}$$
  • $$\phi$$
The domain of $${f}({x})=\log|x^{2}-9|$$ is
  • $$\mathrm{R}- \{-3,3\}$$
  • $$(-\infty,-3)$$
  • $$(3,\infty)$$
  • $$(-\infty,\infty)$$
The domain of $$\displaystyle \mathrm{f}(\mathrm{x})=\cos^{-1}\left(\frac{2}{2+\sin \mathrm{x}}\right)$$ contained in $$[0,2\pi]$$ is
  • $$\left[0,\displaystyle \frac{\pi}{2}\right]$$
  • $$\left[\displaystyle \frac{\pi}{2},\pi \right]$$
  • $$[0, \pi]$$
  • $$\left[\displaystyle \frac{-\pi}{2},\frac{\pi}{2}\right]$$
The domain of $$f(x)=\sqrt{\log\left ( \dfrac{7x-x^{2}}{12} \right )}$$ is
  • $$(-\infty ,\infty )$$
  • $$(-\infty ,4]$$
  • $$[3 ,\infty )$$
  • $$[3,4]$$
The domain of the function  $$\displaystyle \mathrm{f}({x})=\frac{1}{\sqrt{x-2}}+\frac{1}{\sqrt{5-x}}$$ is
  • $$[2,5]$$
  • $$(2,5)$$
  • $$[2,5 )$$
  • $$(2,5 ]$$
The domain of $$\mathrm{f}({x})=\mathrm{c}\mathrm{o}\mathrm{t}^{-1} \left(\displaystyle \frac{x}{3}\right)$$ is
  • $$(-\infty,\infty)$$
  • $$(0,\infty)$$
  • $$(1,\infty)$$
  • $$\left(\displaystyle -\frac{1}{3},\frac{1}{3}\right)$$
The domain of $$\displaystyle \mathrm{f}({x})=\frac{1}{\sqrt{9-x^{2}}}+\sqrt{x^{2}-4}$$ is
  • $$(-4,-2)\cup (2,4)$$
  • $$(-3,-2]\cup [2,3)$$
  • $$(-\infty,-3)\cup (2,\infty)$$
  • $$(-\infty,\infty)$$
The domain of $$\mathrm{f}({x})=\mathrm{e}^{\sqrt{{x}}}+\cos x$$ is
  • $$(-\infty,\infty)$$
  • $$[0, \infty)$$
  • $$(0, 1)$$
  • $$(1, \infty)$$
Let $$S$$ be set of all rational numbers. The functions $$f:R\rightarrow R,\ g:R\rightarrow R$$ are defined as 
$$f(x)=\begin{cases}
0, & x \in S \\ 
1, & x \notin S
\end{cases}$$
$$g(x)=\begin{cases}
-1 & x\in S \\ 
 0 & x\notin S
\end{cases}$$
then, $$(fog) (\pi)+(gof)(e)=$$
  • $$-1$$
  • $$0$$
  • $$1$$
  • $$2$$
The domain of $$f(x)= \text{cosec}  x-\cot x$$ is
  • $$(-\infty,\infty)$$
  • $$ R-\{n\pi$$ : $$n\in Z\}$$
  • $$R-\displaystyle \{(2n+1)\frac{\pi}{2}$$ : $$n\in Z\}$$
  • $$R-\displaystyle \left\{\frac{n\pi}{2}:n\in Z\right\}$$
The domain of $$\mathrm{f}({x})=\mathrm{c}\mathrm{o}\mathrm{s}^{-1} (\sqrt{3x})$$ is
  • $$[-1, 1]$$
  • $$\left[0,\displaystyle \frac{1}{3}\right]$$
  • $$[0,1]$$
  • $$[0,3 ]$$
lf $$f:[-6,6]\rightarrow \mathbb{R}$$ is defined by $$f(x)=x^{2}-3$$ for $$x\in \mathbb{R}$$ then
$$(fofof)(-1)+(fofof)(0)+(fofof)(1)=$$
  • $$f(4\sqrt{2})$$
  • $$f(3\sqrt{2})$$
  • $$f(2\sqrt{2})$$
  • $$f(\sqrt{2})$$
The domain of $$\mathrm{f}({x})=\sqrt{x^{2}-9x+18}$$ is
  • $$[3,6]$$
  • $$(-\infty,3]\cup[6,\infty)$$
  • $$[3,\infty)$$
  • $$[6, \infty)$$
The domain of $$\mathrm{f}({x})=\sqrt{1-2x}+\cos^{-1}(1-2x)$$
  • $$\left(-\displaystyle \infty,\frac{1}{2}\right)$$
  • $$\left(\displaystyle \frac{1}{2},\infty\right)$$
  • $$\left[0,\displaystyle \frac{1}{2}\right]$$
  • $$(0,\infty)$$
The domain of the function $$\displaystyle \mathrm{f}({x})=\dfrac{\sqrt{2+x}+\sqrt{2-x}}{x}$$ is
  • $$(-2,2)$$
  • $$[-2,0)\cup (0,2]$$
  • $$[-2,2]$$
  • $$(-\infty,2)$$
lf $${f}\left({x}\right)=\sin^{2}{x}+\sin^{2}\left({x}+\displaystyle \dfrac{\pi}{3}\right)+ \cos x \cos \left({x}+\displaystyle \dfrac{\pi}{3}\right)$$ and $${g}\left(\displaystyle\dfrac{5}{4}\right)=1$$, $$g\left(1\right) = 0 $$ then $$\left({g}{o}{f}\right)\left({x}\right)=$$
  • $$1$$
  • $$0$$
  • $$\sin x$$
  • Data is insufficient
If $$n\geq 1$$ is any integer, $$\mathrm{d}(n)$$ denotes the number of positive factors of $$n$$, then for any prime number $$\mathrm{p},\ \mathrm{d}(\mathrm{d}(\mathrm{d}(\mathrm{p}^{7})))=$$
  • $$1$$
  • $$2$$
  • $$3$$
  • $$4$$
Set of values of $$x$$ for which the function  $$\displaystyle \mathrm{f}(\mathrm{x})=\frac{1}{\mathrm{x}}+2^{\sin^{-1}\mathrm{x}}+\frac{1}{\sqrt{\mathrm{x}-2}}$$ exists is
  • $$R$$
  • $$\mathrm{R}-\{\mathrm{0}\}$$
  • $$\phi$$
  • $$\mathrm{R}-\{1\}$$
The domain of the function $$\displaystyle \mathrm{f}(\mathrm{x})=\frac{1}{\sqrt{|\mathrm{x}|-\mathrm{x}}}$$ is 
  • $$(-\infty, \infty)$$
  • $$(0, \infty)$$
  • $$(-\infty, 0)$$
  • $$(-\infty, \infty)-\{0\}$$
lf $$f$$ : $$R\rightarrow R$$ is defined by
$$f(x)=\left\{\begin{array}{l}x+4 & x<-4\\3x+2 & -4\leq x<4\\x-4 & x\geq 4\end{array}\right.$$
then the correct matching of list I to List II is. 
List - IList - II
$$\mathrm{A}) f(-5)+f(-4)=$$$$\mathrm{i}) 14$$
$$\mathrm{B}) f(|f(-8)|)=$$ii $$) 4$$
$$\mathrm{C}) f(f(-7)+f(3))=$$$$\mathrm{i}\mathrm{i}\mathrm{i})-11$$
$$\mathrm{D}) f(f(f(f(0)))+1=$$$$\mathrm{i}\mathrm{v})-1$$
v) $$1$$
vi) $$0$$
  • A-iii , B-vi , C-ii , D- v
  • A-iii , B-iv , C-ii , D- vi
  • A-iv , B-iii , C-ii , D- i
  • A-ii , B-vi , C-v , D- ii
Set A has 3 elements and set B has 4 elements. The number of injections that can be defined from A into B is :
  • 144
  • 12
  • 24
  • 64

lf $$g(f(x)) =|\sin \mathrm{x}|,f(g(x)) =(\sin\sqrt{\mathrm{x}})^{2}$$, then
  • $${f}({x})=\sin^{2} {x},{g}({x})=\sqrt{{x}}$$
  • $${f}({x})=\sin x,g({x})=|{x}|$$
  • $${f}({x})={x}^{2},{g}({x})=\sin\sqrt{{x}}$$
  • $${f}, {g}$$ cannot be determined
The domain of $$\sqrt{(\mathrm{x}-1)(\mathrm{x}-2)(\mathrm{x}-3)}$$ is
  • $$(1,2)$$
  • $$[1,2]$$
  • $$(1,2)\cup (3, \infty)$$
  • $$[1,2] \cup [3, \infty)$$
 Domain of definition of the function $$\displaystyle{ f }({ x })=\sqrt { \sin ^{ -1 } (2{ x })+\frac { \pi  }{ 6 }  } $$ for real valued $$x$$, is
  • $$[-\displaystyle \frac{1}{4}, \displaystyle \frac{1}{2}]$$
  • $$[-\displaystyle \frac{1}{2}, \displaystyle \frac{1}{2}]$$
  • $$(-\displaystyle \frac{1}{2}, \displaystyle \frac{1}{9})$$
  • $$[-\displaystyle \frac{1}{4}, \displaystyle \frac{1}{4}]$$
Find the domain of $$ e^x$$.
  • N
  • R
  • Z
  • All of the above
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers