Processing math: 7%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Commerce Applied Mathematics Functions Quiz 3 - MCQExams.com
CBSE
Class 11 Commerce Applied Mathematics
Functions
Quiz 3
If
f
:
R
→
R
is defined by
f
(
x
)
=
2
x
−
2
,
then
(
f
∘
f
)
(
x
)
+
2
=
Report Question
0%
f
(
x
)
0%
2
f
(
x
)
0%
3
f
(
x
)
0%
−
f
(
x
)
Explanation
Let
f
:
R
→
R
is defined by
f
(
x
)
=
2
x
−
2
.
Then
(
f
∘
f
)
(
x
)
+
2
=
f
[
f
(
x
)
]
+
2
=
f
(
2
x
−
2
)
+
2
=
2
(
2
x
−
2
)
−
2
+
2
=
2
f
(
x
)
If
f
(
x
)
=
x
√
1
−
x
2
,
g
(
x
)
=
x
√
1
+
x
2
then
(
f
∘
g
)
(
x
)
=
Report Question
0%
x
√
1
−
x
2
0%
x
√
1
+
x
2
0%
1
−
x
2
√
1
−
x
2
0%
x
Explanation
Let
x
=
tan
θ
(
f
∘
g
)
(
x
)
=
f
[
g
(
x
)
]
=
f
[
g
(
tan
θ
)
]
.
Since
g
(
x
)
=
x
√
1
+
x
2
, we have
f
[
g
(
tan
θ
)
]
=
f
[
tan
θ
√
1
+
tan
2
θ
]
=
f
[
tan
θ
sec
θ
]
=
f
(
sin
θ
)
Also since
f
(
x
)
=
x
√
1
−
x
2
, we have
f
(
sin
θ
)
=
sin
θ
√
1
−
sin
2
θ
=
tan
θ
=
x
If
f
(
x
)
=
log
x
,
g
(
x
)
=
x
3
then
f
[
g
(
a
)
]
+
f
[
g
(
b
)
]
=
Report Question
0%
f
[
g
(
a
)
+
g
(
b
)
]
0%
f
[
g
(
a
b
)
]
0%
g
[
f
(
a
b
)
]
0%
g
[
f
(
a
)
+
f
(
b
)
]
Explanation
Given that
g
(
x
)
=
x
3
. Therefore,
f
[
g
(
a
)
]
+
f
[
g
(
b
)
]
=
f
(
a
3
)
+
f
(
b
3
)
.
Since
f
(
x
)
=
log
x
, we have
f
(
a
3
)
+
f
b
3
=
log
a
3
+
log
b
3
=
log
(
a
3
b
3
)
=
log
(
(
a
b
)
3
)
=
f
[
g
(
a
b
)
]
Find the domain of
x
2
+
2
Report Question
0%
R
0%
N
0%
Z
0%
All of the above
Explanation
The function is a polynomial function. Hence its domain includes all real numbers which includes the set of all integers, Z and the set of all natural numbers, N. So correct option is D.
The domain of
f
(
x
)
=
3
4
−
x
2
+
log
10
(
x
3
−
x
)
is:
Report Question
0%
(
1
,
2
)
0%
[
−
1
,
1
)
∪
(
1
,
2
)
0%
(
1
,
2
)
∪
(
2
,
∞
)
0%
(
−
1
,
0
)
∪
(
1
,
2
)
∪
(
2
,
∞
)
Explanation
f
(
x
)
is defined if
either
(1)
4
−
x
2
≠
0
⇒
x
≠
±
2
or (2)
x
3
−
x
>
0
⇒
x
(
x
2
−
1
)
>
0
⇒
x
(
x
+
1
)
(
x
−
1
)
>
0
⇒
x
>
0
,
x
>
1
,
x
>
−
1
Therefore, we have
x
>
−
1
,
x
>
0
,
x
>
1
and
x
≠
2
,
x
≠
−
2
.
∴
lies between
(-1,0), (1,2), (2,\infty )
.
\therefore
Domain is
(-1,0)\cup (1,2)\cup (2,\infty )
.
If
f:R \rightarrow R
and
g : R \rightarrow R
are defined by
f(x)=2x+3
and
g(x)=x^2+7
, then the values of
x
such that
g(f(x)) =8
are:
Report Question
0%
1, 2
0%
-1, 2
0%
-1, -2
0%
1, -2
Explanation
Since
f(x)=2x+3
,
g[f(x)]=8 \Rightarrow g(2x+3)=8
.
Also since
g(x)=x^2+7
,
g(2+3x)=8\Rightarrow (2x+3)^2+7=8
\Rightarrow 2x+3 = \pm 1
\Rightarrow x=-1
or
-2
.
If
f(x) = \dfrac{2x+5}{x^{2} + x + 5}
, then
f\left [ f(- 1 ) \right ]
is equal to
Report Question
0%
\dfrac{149}{155}
0%
\dfrac{155}{147}
0%
\dfrac{155}{149}
0%
\dfrac{147}{155}
Explanation
Given expression is
f(x)=\dfrac { 2x+5 }{ { x }^{ 2 }+x+5 }
\therefore f(-1)=\dfrac { 2\times (-1)+5 }{ (-1)^{ 2 }+(-1)+5 } =\dfrac { 3 }{ 5 }
\therefore f\left( f\left( -1 \right) \right) =\dfrac { 2\times \dfrac { 3 }{ 5 } +5 }{ \left( \dfrac { 3 }{ 5 } \right) ^{ 2 }+\dfrac { 3 }{ 5 } +5 } =\dfrac { 155 }{ 149 }
Which one of the following relation is a function
Report Question
0%
0%
0%
0%
All of these
Explanation
As in option C every element in the domain has a unique image.
If
f : R \rightarrow R
and
g :R \rightarrow R
are defined by
f(x) = x -[x]
and
g(x) = [x]
for
x \in R
, where
[x]
is the greatest integer not exceeding
x
, then for every
x \in R, f(g(x)) =
Report Question
0%
x
0%
0
0%
f(x)
0%
g(x)
Explanation
Since
f(x)=x-[x]
, we have
f[g(x)] =g(x)-[g(x)]
Also since
g(x)=[x]
,we have
g(x)-[g(x)]=[x] - [[x]]
.
Here,
[x]
is the greatest integer not exceeding
x
. Therefore,
[[x]]=[x]
and hence,
[x]-[[x]]=[x]-[x]=0
If
y=f(x) = \dfrac{2x-1}{x-2}
, then
f(y)=
Report Question
0%
x
0%
y
0%
2y-1
0%
y-2
Explanation
\displaystyle f(y) = \frac{2y-1}{y-2} = \frac{2 \left ( \dfrac{2x-1}{x-2} \right ) -1}{\left ( \dfrac{2x-1}{x-2} \right ) -2}
=\displaystyle \frac{4x-2-x+2}{2x-1-2x+4} = \frac{3x}{3} = x
If
f(g(x))
is one-one function, then
Report Question
0%
g(x) must be one-one
0%
f(x) must be one-one
0%
f(x) may not be one-one
0%
g(x) may not be one-one
Explanation
It is fundamental concept that, If
f(g(x))
is one-one function then,
f(x)
must be one-one function and
g(x)
may be one-one or many one
Which of the following functions are one-one?
Report Question
0%
f:R\rightarrow R
given by
f(x)={ 2x }^{ 2 }+1
for all
\quad x\in R
0%
g:Z\rightarrow Z
given by
g(x)={ x }^{ 4 }
for all
\quad x\in R
0%
h:R\rightarrow R
given by
h(x)={ x }^{ 3 }+4
for all
\quad x\in R
0%
\phi :C\rightarrow C
given
\phi (z)={ 2z }^{ 6 }+4
for all
\quad x\in R
Explanation
For all even powered function,
f(x_{1})=f(x_{2})
where
x_{1}=\pm(x_{2})
Hence, the only possible one-one function is
f(x)=x^3+4
f(x)
is a strictly increasing function. So, it is one-one.
A mapping function
f:X\rightarrow Y
is one-one, if
Report Question
0%
f({ x }_{ 1 })\neq f({ x }_{ 2 })\
for all
{ x }_{ 1 },{ x }_{ 2 }\in X
0%
f({ x }_{ 1 })=f({ x }_{ 2 })\Rightarrow { x }_{ 1 }={ x }_{ 2 }
for all
{ x }_{ 1 },{ x }_{ 2 }\in X
0%
{ x }_{ 1 }={ x }_{ 2 }\Rightarrow f({ x }_{ 1 })=f({ x }_{ 2 })
for all
{ x }_{ 1 },{ x }_{ 2 }\in X
0%
none of these
Explanation
For a function to be one one
f(x_{1})=f(x_{2})
Implies that
x_{1}=x_{2}
Hence the answer is
option B
Find the domain of
x
if
f(x)=\sqrt {x^2-|x|-2}
Report Question
0%
x\in R-(-2, 2)
0%
x\in R
0%
x\in R-(0, 2)
0%
None of these
Explanation
Case I
x<0
Hence
f(x)=\sqrt{x^2-(-x)-2}
=\sqrt{x^2+x-2}
=\sqrt{(x+2)(x-1)}
Therefore the domain will be
(-\infty,-2]
....
(D_{1})
Case II
x>0
Hence
f(x)=\sqrt{x^2-(x)-2}
=\sqrt{x^2-x-2}
=\sqrt{(x-2)(x+1)}
Therefore the domain will be
[2,\infty)
....
(D_{2})
Hence the domain of the function
f(x)
from
D_{1}
and
D_{2}
will be
=(-\infty,-2]\cup[2,\infty)
If
f:R\rightarrow R
given by
f(x)={ x }^{ 3 }+({ a+2)x }^{ 2 }+3ax+5
is one-one, then
a
belongs to the interval
Report Question
0%
(-\infty ,1)
0%
(1 ,\infty)
0%
(1 ,4)
0%
(4 ,\infty)
Explanation
If
f(x)
is one one then
f'\left( x \right)
should be either positive or negative for all
x
.
f'\left( x \right) = 3{ x }^{ 2 }+2(a+2)x+3a
\Rightarrow D = 4{ (a+2) }^{ 2 }-4\times3\times3a<0
\Rightarrow
{ a }^{ 2 }-5a+4<0
\Rightarrow
(a-1)(a-4)<0
Hence,
a\in \left( 1,4 \right)
Report Question
0%
Both Assertion and Reason are correct and Reason is the correct explanation for Assertion
0%
Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion
0%
Assertion is correct but Reason is incorrect
0%
Assertion is incorrect but Reason is correct
Explanation
Domain of
g(x)
:
g(x)
is defined if
3-x\ge 0
and
(x-1)(x-2)(x-2)\neq 0
\Rightarrow x\le3
and
x\neq 1,2,3
\therefore
Domain of
g(x)=(\infty,3)-{1,2,3}
Domain of
h(x):
\displaystyle h\left( x \right) =\sin ^{ -1 }{ \left[ \frac { 3x-2 }{ 2 } \right] } \Rightarrow -1\le \left[ \frac { 3x-2 }{ 2 } \right] \le 1
Case I:
If
\displaystyle \left[ \frac { 3x-2 }{ 2 } \right] =-1\Rightarrow -1\le \frac { 3x-2 }{ 2 } <0\Rightarrow -2\le 3x-2<0\Rightarrow 0\le x<\frac { 2 }{ 3 }
...(1)
Case II:
\displaystyle \left[ \frac { 3x-2 }{ 2 } \right] =0\Rightarrow 0\le \frac { 3x-2 }{ 2 } <1\Rightarrow 0\le 3x-2<2
\displaystyle \Rightarrow 2\le 3x<4\Rightarrow \frac { 2 }{ 3 } \le x<\frac { 4 }{ 3 }
...(2)
Case III:
If
\displaystyle \left[ \frac { 3x-2 }{ 2 } \right] =1\Rightarrow 1\le \frac { 3x-2 }{ 2 } <2\Rightarrow 2\le 3x-2<4\Rightarrow \frac { 4 }{ 3 } \le x<2
...(3)
Thus, from (1),(2) and (3), we have
Domain of
h(x)=[0,2)
\therefore
Domain of
f=[2,0)-{1}
Which of the following function is one-one?
Report Question
0%
f:R\rightarrow R
given by
f(x)=|x-1|
for all
x\in R
0%
g:\left[ -\dfrac{\pi }{ 2 },\dfrac{ \pi }{ 2 } \right] \rightarrow R
given by
g(x)=|sinx|
for all
x\in \left[ \dfrac{ -\pi }{ 2 },\dfrac{ \pi }{ 2 } \right]
0%
h:\left[ \dfrac{ -\pi }{ 2 },\dfrac{ \pi }{ 2 } \right] \in R
given by
h(x)=sinx
for all
x\in \left[ \dfrac{ -\pi }{ 2 },\dfrac{ \pi }{ 2 } \right]
0%
\phi :R\rightarrow R
given by
f(x)={ x }^{ 2 }-4
for all
x\in R
Explanation
Option A - Consider
x = 2
and
x =0
, the value of
f(x)
is same. Hence it is not one-one
Option B - If we replace
x
by
-x
, then the value of
g(x)
remains the same. Hence it is not one-one
Option C -
h(x)
is an increasing function for the given values of
x
. Hence it is one-one function
Option D -
f(x)
is an even function. So it is not one-one for the given values of
x
If
f
and
g
are one-one functions from
R\to R
, then
Report Question
0%
f+g
is one-one
0%
fg
is one-one
0%
fog
is one-one
0%
none of these
Explanation
Let
{x_1},{x_2} \in R
be two distinct elements, then
g\left( {{x_1}} \right) \ne g\left( {{x_2}} \right)
, as
g
is one-one function. Similarly
f\left( {g\left( {{x_1}} \right)} \right) \ne f\left( {g\left( {{x_2}} \right)} \right)
as
f
is also one-one function.
Hence,
f\circ g
is one-one function.
Note that
f+g
and
f\cdot g
may not one-one functions even if
f
and
g
are one one. For example consider
f\left( x \right) = x
and
g\left( x \right) =- x
, then
f+g
and
f\cdot g
are not one-one.
Let
\displaystyle f:R\rightarrow A=\left \{ y: 0\leq y< \dfrac{\pi}{2} \right \}
be a function such that
\displaystyle f(x)=\tan^{-1}(x^{2}+x+k),
where
k
is a constant. The value of
k
for which
f
is an onto function is
Report Question
0%
1
0%
0
0%
\displaystyle \frac{1}{4}
0%
none of these
Explanation
For
f
to be an onto function, Range and co-domain of
f
should be equal
\Rightarrow f(x)\ge 0 \forall x\in R
\Rightarrow \tan^{-1}(x^2+x+k)\ge 0
For the above equation to be valid for all
x
We must have, the discriminant of
x^2+x+k=0
, is zero
b^2-4ac=0
\Rightarrow 1-4k=0\Rightarrow k =\dfrac{1}{4}
If
f(x) = \sqrt{| x-1|}
and
g(x) = \sin x
, then
(fog) (x)
equals
Report Question
0%
\sin \sqrt{| x-1|}
0%
\left|\sin\dfrac{x}{2} - \cos\dfrac{x}{2}\right|
0%
\left|\sin x + \cos x\right|
0%
\left|\sin\dfrac{x}{2} + \cos\dfrac{x}{2}\right|
Explanation
\displaystyle fog\left( x \right) =f\left( g\left( x \right) \right) =\sqrt { \left| \sin { x } -1 \right| }
=\sqrt { \left| 1-\cos { \left( \dfrac { \pi }{ 2 } -x \right) } \right| } =\sqrt { 2 } \left| \sin { \left( \dfrac { \pi }{ 4 } -\dfrac { x }{ 2 } \right) } \right| =\left| \sin { \dfrac { x }{ 2 } } -\cos { \dfrac { x }{ 2 } } \right|
The domain of the function
\displaystyle f(x)=\sqrt{x^{2}-[x]^{2}},
where
[x]=
the greatest integer less than or equal to
x
, is
Report Question
0%
R
0%
[0,+\infty)
0%
(-\infty,0]
0%
none of these
Explanation
If
x \ge 0
, then
\left[x\right]
is an integer part of
x
.
Hence
{x^2} \ge {\left[ x \right]^2}
and
\displaystyle f\left( x \right) = \sqrt {{x^2} - {{\left[ x \right]}^2}}
is well-defined.
If
x < 0
say
x=-a
where
a
is a positive number,
then
\displaystyle \left[ x \right] =- \left( {\left[ a \right] + 1} \right)
.
Hence,
{x^2} < {\left[ x \right]^2}
and the function
\displaystyle f\left( x \right) = \sqrt {{x^2} - {{\left[ x \right]}^2}}
is not defined.
Therefore the domain of the function is
\left[ {0,\infty } \right)
.
If
f(x)=ax+b
and
g(x)=cx+d
, then
f(g(x))=g(f(x))
implies
Report Question
0%
f(a)=g(c)
0%
f(b)=g(b)
0%
f(d)=g(b)
0%
f(c)=g(a)
Explanation
f(g(x))=a(cx+d)+b
=acx+ad+b
...(i)
g(f(x))=c(ax+b)+d
=ac(x)+bc+d
...(ii)
f(g(x))=g(f(x))
From (i) and (ii)
ac(x)+bc+d=acx+ad+b
cb+d=ad+b
g(b)=f(d)
If
\displaystyle f(x)=\frac{1}{1-x},x\neq 0,1
then the graph of the function
\displaystyle y=f\left \{ f(f(x)) \right \},x> 1,
is
Report Question
0%
a circle
0%
an ellipse
0%
a straight line
0%
a pair of straight lines
Explanation
f(f(x))=\dfrac{1}{1-\dfrac{1}{1-x}}
=-\dfrac{1-x}{x} =g(x)
f(g(x))=\dfrac{1}{1+\dfrac{1-x}{x}}
=\dfrac{x}{x+1-x}
=x
y=x
is an equation of straight line.
Hence, 'C' is correct.
Let
\displaystyle f:\left \{ x,y,z \right \}\rightarrow \left \{ a,b,c \right \}
be a one-one function and only one of the conditions
(i)f(x)\neq b, (ii)f(y)=b,(iii)f(z)\neq a
is true then the function
f
is given by the set
Report Question
0%
\displaystyle \left \{ (x,a),(y,b),(z,c)\right \}
0%
\displaystyle \left \{ (x,a),(y,c),(z,b)\right \}
0%
\displaystyle \left \{ (x,b),(y,a),(z,c)\right \}
0%
\displaystyle \left \{ (x,c),(y,b),(z,a)\right \}
Explanation
f:\left\{ x,y,z \right\} \rightarrow \left\{ a,b,c \right\}
is a one-one function
\Rightarrow
each element in
\left\{ x,y,z \right\}
will have exactly one image in
\left\{ a,b,c \right\}
and no two elements of
\left\{ x,y,z \right\}
will have same image in
\left\{ a,b,c \right\}
Coming to the given 3 conditions, only one is true.
1) if
f\left( x \right) \neq b
is true then
f\left( y \right) =b
is false which makes
f\left( z \right) \neq a
true
\Longrightarrow f\left( x \right) \neq b
is false.
2) if
f\left( y \right) =b
is true then
f\left( x \right) \neq b
will also be true
\Longrightarrow f\left( y \right) =b
is false
\therefore f\left( z \right) \neq a
is the true condition and remainig two are false conditions.
\therefore f\left( x \right) =b, f\left( y \right) =a, f\left( z \right) =c
hence
f=\left\{ \left( x,b \right) ,\left( y,a \right) ,\left( z,c \right) \right\}
Let
f:R \rightarrow R
and
g:R \rightarrow R
be defined by
f(x)=x^2+2x-3,g(x)=3x-4
then
(gof) (x)=
Report Question
0%
3x^2+6x-13
0%
3x^2-6x-13
0%
3x^2+6x+13
0%
-3x^2+6x-13
Explanation
Given that,
f(x)=x^2+2x-3
and
g(x)=3x-4
(gof) (x)=g\left(f(x)\right)
=3(x^2+2x-3)-4
(gof) (x)=3x^2+6x-13
Hence, option A.
The domain of the function
\displaystyle f(x)=\log_{10}\log_{10}(1+x^{3})
is
Report Question
0%
(-1,+\infty)
0%
(0,+\infty)
0%
[0,+\infty)
0%
(-1,0)
Explanation
Given,
\displaystyle f(x)=\log_{10}\log_{10}(1+x^{3})
The value inside a log function must not be negative.
Hence
\log_{10}(1+x^3)>0
1+x^{3}>10^{0}
....(by taking anti-log).
x^{3}>0
x>0
Hence the domain for
f(x)
is
x>0
.
If
f
and
g
are two functions such that
\displaystyle \left ( fg \right )\left ( x \right )=\left ( gf \right )\left ( x \right )
for all
x
. Then
f
and
g
may be defined as
Report Question
0%
\displaystyle f\left ( x \right )=\sqrt{x}, g\left ( x \right )=\cos x
0%
\displaystyle f\left ( x \right )=x^{3}, g\left ( x \right )=x+1
0%
\displaystyle f\left ( x \right )=x-1, g\left ( x \right )=x^{2}+1
0%
\displaystyle f\left ( x \right )=x^{m}, g\left ( x \right )=x^{n}
where
m, n
are unequal integers
Explanation
A
)f(x)=
\sqrt{x},g(x)=cosx then (fg)(x) = \sqrt{\cos x} and (gf)(x) = \cos \sqrt{x}
.They are not equal.
B)
f(x)=x^{3},g(x)=x+1 then (fg)(x) = (x+1)^{3} and (gf)(x)= x^{3}+1
.They are not equal.
C)
f(x)=x1,g(x)=x^{2}+1 then (fg)(x)=x^{2} and (gf)(x)=x^{2}-2x
. They are not equal.
D)
f(x)=x^{m}, g(x)=x^{n} then (fg)(x)=x^{n+m} and (gf)(x)=x^{n+m}
.Hence
(fg)(x)= (gf)(x)
If
\displaystyle f(x)=x^{n},n\in N
and
(gof)(x)=ng(x)
then
g(x)
can be
Report Question
0%
n\:|x|
0%
3.\sqrt[3]{x}
0%
e^{x}
0%
\log\:|x|
Explanation
f(x)=x^{n}
g(f(x))=ng(x)
...
(i)
\log(f(x))=n\log(x)
...
(ii)
Taking
\log(|x|)
as
g(x)
the above expression is reduced to eq
i
.
Hence
g(x)=\log(|x|)
.
The domain of
\displaystyle f(x)=\sqrt { \log_{ x^{ 2 }-1 }(x) }
is
Report Question
0%
(\sqrt{2},+\infty)
0%
(0,+\infty)
0%
(1,+\infty)
0%
none of these
Explanation
\log_{x^{2}-1}(x)\geq 0
Hence,
x\geq 1 \quad \dots (1)
Now,
x^{2}-1>1
x^{2}>2
x<-\sqrt{2}
and
x>\sqrt{2} \quad \dots (2)
Hence from
(1)
and
(2)
,
x\in(\sqrt{2},\infty)
The composite mapping
fog
of the map
f: R\rightarrow R,f(x)=\sin x
and
g: R\rightarrow R, g(x)=x^2
is
Report Question
0%
x^2 \sin x
0%
(\sin x)^2
0%
\sin x^2
0%
\dfrac{ \sin x}{x^2}
Explanation
Composite mapping will be
f(g(x))
=f(x^2)
=\sin(x^2)
Hence option
'C'
is the answer.
If
\displaystyle f\left ( x \right )=\left\{\begin{matrix} x^{2} x \geq 0\\ x x < 0 \end{matrix}\right.
then
\displaystyle (f o f)(x)
is given by
Report Question
0%
x^{2}
for
x\geq 0
and
x
for
x< 0
0%
\displaystyle x^{4}
for
\displaystyle x\geq 0
and
x^{2}
for
x< 0
0%
\displaystyle x^{4}
for
\displaystyle x\geq 0
and
-x^{2}
for
x < 0
0%
\displaystyle x^{4}
for
x\geq 0
and
x
for
x< 0
Explanation
For
x\ge0
,we have
\displaystyle f \circ f\left( x \right)= {\left( {{x^2}} \right)^2}=\left( {{x^4}} \right)
For
x<0
,we have
\displaystyle f \circ f\left( x \right)=x
Let
\displaystyle g(x)=1+x-[x]
and
\displaystyle f(x)=\left\{\begin{matrix}{-1}\quad {x< 0} \\ {0} \quad {x=0}\\{1} \quad {x> 0} \end{matrix}\right.
Then for all
\displaystyle x, f\left \{ g\left ( x \right ) \right \}
is equal to
Report Question
0%
x
0%
1
0%
\displaystyle f(x)
0%
\displaystyle g(x)
Explanation
Let
g(x) = 1+x-[x] = 1+\{x\}> 0
since
\{x\}\in [0,1) \forall x\in R
Hence
f\{g(x)\} = 1
Let
\displaystyle f(x)=\frac{ax}{x+1}
, where
\displaystyle x\neq -1
. Then for what value of
\displaystyle a
is
\displaystyle f( f(x))=x
always true
Report Question
0%
\displaystyle \sqrt{2}
0%
\displaystyle -\sqrt{2}
0%
1
0%
-1
Explanation
\displaystyle f\left( {f\left( x \right)} \right) = \dfrac{{a\dfrac{{ax}}{{x + 1}}}}{{\dfrac{{ax}}{{x + 1}} + 1}} = \dfrac{{\dfrac{{{a^2}x}}{{x + 1}}}}{{\dfrac{{ax + x + 1}}{{x + 1}}}} = \dfrac{{{a^2}x}}{{ax + x + 1}}
Since,
\displaystyle f\left( {f\left( x \right)} \right) =x
, we have,
\displaystyle\dfrac{{{a^2}x}}{{ax + x + 1}}=x
.
Simplifying the equation we get,
{a^2}x = \left( {a + 1} \right){x^2} + x
\therefore \left( {a + 1} \right){x^2} + \left( {1 - {a^2}} \right)x = 0
or
\left( {a + 1} \right)x\left( {x + 1 - a} \right) = 0
Hence the only possible value is
a=-1
If
\displaystyle f(y)=\frac{y}{\sqrt{1-y^2}}
;
\displaystyle g(y)=\frac{y}{\sqrt{1+y^2}}
then
(fog)y
is equal to
Report Question
0%
\displaystyle \frac{y}{\sqrt{1-y^2}}
0%
\displaystyle \frac{y}{\sqrt{1+y^2}}
0%
y
0%
2f(x)
Explanation
Given
\displaystyle f(y)=\frac{y}{\sqrt{1-y^2}}
and
\displaystyle g(y)=\frac{y}{\sqrt{1+y^2}}
\therefore \displaystyle (fog)y = f(g(y))=\dfrac{\dfrac{y}{\sqrt{1+y^2}}}{\sqrt{1-\dfrac{y^2}{1+y^2}}}=y
If
\displaystyle f(x)= (x-1)+(x+1)
and
\displaystyle g(x)= f\left \{ f(x) \right \}
then
\displaystyle {g}'(3)
Report Question
0%
equals
1
0%
equals
0
0%
equals
3
0%
equals
4
Explanation
Simplifying,
f(x)
we get
f(x)=2x
Hence
f(f(x))=2(f(x))
=2(2x)
=4x
Hence
g(x)=f(f(x))
=4x
Thus
g'(x)=4
Hence
g'(3)=4
.
Set
A
has
3
elements and set
B
has
4
elements. The number of injections that can be defined from
A
to
B
is
Report Question
0%
144
0%
12
0%
24
0%
64
Explanation
The total number of injective mappings from a set with
m
elements to a set with
n
elements,
\displaystyle m\leq n,
is
Report Question
0%
\displaystyle m^{n}
0%
\displaystyle n^{m}
0%
\displaystyle \frac{n!}{\left ( n-m \right )!}
0%
\displaystyle n!
Explanation
Let
A=\{a_1,a_2, a_3.....a_m\}
and
B=\{b_1,b_2, b_3.....b_n\}
where
m \le n
Given
f:A\rightarrow B
be an injective mapping.
So, for
a_1 \in A
, there are
n
possible choices for
f(a_1)\in B
.
For
a_2 \in A
, there are
(n-1)
possible choices for
f(a_2)\in B
.
Similarly for
a_m \in A
, there are
(n-m-1)
choices for
f(a_m)\in B
So, there are
n(n-1)(n-2).....(n-m-1)=\dfrac{n!}{(n-m)!}
injective mapping from
A
to
B.
Let f(x)=tan x, x
\displaystyle \epsilon \left [ -\frac{\pi }{2},\frac{\pi }{2} \right ]
and
\displaystyle g\left (x \right )=\sqrt{1-x^{2}}
Determine
g o f(1)
.
Report Question
0%
1
0%
0
0%
-1
0%
not defined
Find
\displaystyle \phi \left [ \Psi \left ( x \right ) \right ]
and
\displaystyle \Psi \left [ \phi \left ( x \right ) \right ]
if
\displaystyle \phi \left ( x \right )=x^{2}+1
and
\displaystyle \Psi \left ( x \right )=3^{x}.
Report Question
0%
\displaystyle \Psi \left [ \phi \left ( x \right ) \right ]=3^{x^{2}+1}.
0%
\displaystyle \phi \left [ \Psi \left [ x \right ] \right ]=3^{2x}+1
0%
\displaystyle \Psi \left [ \phi \left ( x \right ) \right ]=3^{x^{3}+1}.
0%
\displaystyle \phi \left [ \Psi \left [ x \right ] \right ]=3^{x}+1
Explanation
\displaystyle \phi \left [ \Psi \left [ x \right ] \right ]=\phi \left ( 3^{x} \right )=\left ( 3^{x} \right )^{2}+1=3^{2x}+1
and
\displaystyle \Psi \left [ \phi \left ( x \right ) \right ]=\Psi \left ( x^{2} +1\right )=3^{x^{2}+1}.
If
\displaystyle f\left ( x \right )=\frac{ax+b}{cx+d}
and
\displaystyle \left ( fof \right )x=x,
then d=?
Report Question
0%
a
0%
-a
0%
b
0%
-b
Explanation
\displaystyle \left ( fof \right )x=x\Rightarrow f\left [ f\left ( x \right ) \right ]=x
or
\displaystyle f\left [ \frac{ax+b}{cx+d} \right ]=x
or
\displaystyle\frac{a\left [ \frac{ax+b}{cx+d}\right ]+b}{c\left [\frac{ax+b}{cx+d} \right ]+d}=x
\displaystyle \therefore \frac{x\left ( a^{2}+bc \right )+b\left ( a+d \right )}{cx\left ( a+d \right )+\left ( bc+d^{2} \right )}=x
Clearly if
\displaystyle a+d=0
or
\displaystyle d=-a
then in that case
\displaystyle L.H.S.=\frac{x\left ( a^{2}+bc \right )+0}{0+\left ( bc+a^{2} \right )}=x
\displaystyle \because d=-a
Given
\displaystyle f\left ( x \right )=\log \left ( \frac{1+x}{1-x} \right )
and
\displaystyle g\left ( x \right )=\frac{3x+x^{3}}{1+3x^{2}}, fog (x)
equals
Report Question
0%
-f(x)
0%
3f(x)
0%
\displaystyle \left [ f\left ( x \right ) \right ]^{3}
0%
none of these
Explanation
Given
f(x)\, =\, \log\, \left( \displaystyle \dfrac{1\, +\, x}{1\, -\, x} \right)
and
g(x)\, =\, \displaystyle \dfrac{3x\, +\, x^{3}}{1\, +\, 3x^{2}}
\therefore fog (x)\, =\, \log \left( \displaystyle \dfrac{1\, +\, \dfrac{3x\, +\, x^{3}}{1\, +\, 3x^{2}}}{1\, -\,\displaystyle \dfrac{3x\, +\, x^{3}}{1\, +\, 3x^{2}}} \right)
=\, \log\, \left(\displaystyle \dfrac{(1\, +\, x)^{3}}{(1\, -\, x)^{3}} \right)\, =\, 3\, \log\, \left(\displaystyle \dfrac{1\, +\, x}{1\, -\, x} \right)\, =\, 3\, f(x)
Let
f(x)=x^{2}-2x
and
g(x)=f(f(x)-1)+f(5-f(x)),
then
Report Question
0%
g(x)<0,\forall x\in R
0%
g(x)<0
for some
x\in R
0%
g(x)\leq 0
for some
x\in R
0%
g(x)\geq 0,\forall x\in R
Explanation
Given,
f(x) = x^2 - 2x
Now,
f(f(x) - 1) \\ = f(x^2 - 2x - 1 ) \\ = (x^2 - 2x - 1 )^2 - 2 (x^2 - 2x - 1 )
And,
f(5 - f(x) ) \\ = f(5 - x^2 + 2x ) \\ = (5 - x^2 + 2x )^2 - 2 (5 - x^2 + 2x )
Hence,
g(x) = f(f(x) - 1) + f (5 - f(x)) \\ \therefore g(x) = (x^2 - 2x - 1)^2 - 2 (x^2 - 2x -1 ) + (5 - x^2 + 2x )^2 - 2(5 - x^2 + 2x ) \\ \Rightarrow g(x) = (x^2 - 2x - 1)^2 + (5- x^2 + 2x)^2 - 2(x^2 - 2x - 1 + 5 - x^2 + 2x) \\ \therefore g(x) = (x^2 + 2x - 1 )^2 + ( 5 - 2x ^2 + 2 x^2)^2 - 8
Since the first two terms are in square,
\therefore
it can not be negative and if x = 9 then we also get positive value.
\therefore g(x) \geq 0 \, \, \forall x \in R
\therefore
option D is
correct
If
g(x)=1+\sqrt { x }
and
f(g(x))=3+2\sqrt { x } +x
, then
f(x)=
Report Question
0%
1+2{ x }^{ 2 }
0%
2+{ x }^{ 2 }
0%
1+x
0%
2+x
Explanation
We have
g\left( x \right)=1+\sqrt { x }
and
f(g(x))=3+2\sqrt { x } +x
...(1)
Also,
f\left( g\left( x \right) \right) =f\left( 1+\sqrt { x } \right)
...(2)
From (1) and (2), we get
f\left( 1+\sqrt { x } \right) =3+2\sqrt { x } +x
Let
1+\sqrt { x } =y\Rightarrow x={ \left( y-1 \right) }^{ 2 }
\therefore f\left( y \right) =3+2\left( y-1 \right) +{ \left( y-1 \right) }^{ 2 }\\ =3+3y-2+{ y }^{ 2 }-2y+1=2+{ y }^{ 2 }\\ \therefore f\left( x \right) =2+{ x }^{ 2 }
Are the following sets of ordered pairs functions? If so, examine whether the mapping is surjective or injective :
{(x, y): x is a person, y is the mother of x}
Report Question
0%
injective (one- one ) and surjective (into)
0%
injective (one- one ) and not surjective (into)
0%
not injective (one- one ) and surjective (into)
0%
not injective (one- one ) and not surjective (into)
Explanation
We have {(x, y) : x is a person, y is the mother of x}. Clearly each person 'x' has only one biological mother. So above set of ordered pair is a function. Now more than one person may have same mother. So function is many-one and surjective.
If
f:R\rightarrow R
and
g:R\rightarrow R
are functions defined by
f(x)=3x-1; g(x)=\sqrt{x+6}
, then the value of
(g\circ f^{-1})(2009)
is
Report Question
0%
26
0%
29
0%
16
0%
15
Explanation
Given
f(x)=3x-1, g(x)=\sqrt{x+6}
Let
f(x)=y
\Rightarrow y=3x-1\Rightarrow y+1-3x\Rightarrow x=\cfrac{y+1}{3}
Now,
f^{-1}(y)=x=\cfrac{y+1}{3}
\Rightarrow f^{-1}(x)=\cfrac{x+1}{3}
and
g(x)=\sqrt {x+6}
Consider,
(g\circ f^{-1})(2009)=g[{f^{-1}(2009)}]
=g\left(\cfrac{2009+1}{3}\right)=g\left(\cfrac{2010}{3}\right)
=\sqrt{\cfrac{2010}{3}+6}=\sqrt{\cfrac{2028}{3}}=\sqrt{676}=26
Hence, option
A
is correct.
Let f : {x,y,z}
\rightarrow
{a,b,c} be a one-one function. It is known that only one of the following statment is true, and only one such function exists :
find the function f (as ordered pair).
(i) f(x)
\neq
b
(i) f(y) = b
(ii) f(z)
\neq
a
Report Question
0%
{(x,b), (y,a), (z,c)}
0%
{(x,a), (y,b), (z,c)}
0%
{(x,b), (y,c), (z,a)}
0%
{(x,c), (y,a), (z,b)}
Explanation
When (i) is true, then
f(x) \neq b, f(y) \neq b , f(z) = a,b,c
\Rightarrow
Two ordered pair function is possible
f(x) = a, f(y) = c, f(z) = b
or
f(x) = c, f(y) = a, f(z) = b
But given
f
is one-one and only one such function is possible. Hence (i) can't be true.
When (ii) is true, then
f(y) = b, f(z) =c , f(x) = a\Rightarrow f(x) = a, f(y) = b, f(z) = c
Clearly if (ii) is true then it is satisfying every condition.
Hence ordered pair of
f
is
\{(x,a), (y,b), (z,c)\}
If
f_{0}(x)\, =\, \dfrac{x}{(x\, +\, 1)}
and
f_{n\, +\, 1}\, =\, f_{0}\circ f_{n}(x)
for
n = 0, 1, 2,\cdots
then
f_{n}(x)
is
Report Question
0%
\displaystyle \frac{x}{(n\, +\, 1) x\, +\, 1}
0%
f_{0}(x)
0%
\displaystyle \frac{nx}{nx\, +\, 1}
0%
\displaystyle \frac{x}{nx\, +\, 1}
Explanation
Given
f_{0}\left(x\right)=\dfrac{x}{ \left(x\, +\, 1\right)}\cdots\cdots\left(1\right)
Also given
f_{n\, +\, 1}\, =\, f_{0}\, o\, f_{n}
for
(n = 0, 1, 2,\cdots)\ldots\left(2\right)
Put
n=0
in eqn (2)
f_1=f_{0} o f_0
f_1\left(x\right)=f_{0}[f_{0}\left(x\right)]
\Rightarrow f_{1}\left(x\right)=f_{0}\left(\dfrac{x}{x+1}\right)
=\dfrac{\dfrac{x}{x+1}}{\dfrac{x}{x+1}+1}
=\dfrac{x}{2x+1}
\Rightarrow f_1\left(x\right)=\dfrac{x}{2x+1}
Put
n=1
in eqn
(2)
f_2=f_{0} o f_1
f_2\left(x\right)=f_{0}[f_{1}\left(x\right)]
\Rightarrow f_{2}\left(x\right)=f_{0}\left(\dfrac{x}{2x+1}\right)
=\dfrac{\dfrac{x}{2x+1}}{\dfrac{x}{2x+1}+1}
=\dfrac{x}{3x+1}
\Rightarrow f_2\left(x\right)=\dfrac{x}{3x+1}
Hence,
f_n\left(x\right)=\dfrac{x}{\left(n+1\right)x+1}
Suppose f and g both are linear function with
\displaystyle f(x)=-2x+1
and
\displaystyle f \left ( g\left ( x \right ) \right )=6x-7
then slope of line
y=g(x)
is
Report Question
0%
3
0%
-3
0%
6
0%
-2
Explanation
Given,
f(x)=-2x+1
\therefore f(g(x))=-2g(x)+1=6x-7
\Rightarrow g(x)=-3x+4
\Rightarrow g'(x)=-3
Hence slope of
g(x)
is
-3
If the function
f : R \rightarrow
A given by
f(x)\, =\, \displaystyle \frac{x^{2}}{x^{2}\, +\, 1}
is a surjection, then A is
Report Question
0%
R
0%
[0, 1]
0%
(0, 1]
0%
[0, 1)
Explanation
As 'f' is surjective,
Range of
f
= co-domain of '
f
'
\implies
A = range of 'f'
Since,
f(x)=\dfrac{x^2}{x^2+1}
\implies
y=\dfrac{x^2}{x^2+1}
\implies
y(x^2+1)=x^2
\implies
(y-1)x^2+y=0
\implies
x^2=\dfrac{-y}{y-1}
\implies
x=\sqrt{\dfrac{y}{1-y}}
\implies
\dfrac{y}{1-y} \geq 0
\implies
y \epsilon [0,1)
\implies
A=[0,1)
If
f(x)=\begin{cases} 2x+3\quad \quad x\le 1 \\ a^{ 2 }x+1\quad x>1 \end{cases}
, then the values of
a
for which
f(x)
is injective.
Report Question
0%
-3
0%
1
0%
0
0%
none of these
Explanation
A function is called injective (one-one) if it is monontonic.
Clearly for
x<1
f is increasing and it's maximum values is
2(1)+3=5
Hence for f to be monotonic
(x>1)
,
f(1) \geq 5
\Rightarrow a^2(1)+1\geq 5 \Rightarrow a^2\geq 2 \Rightarrow a\in R-(-2,2)
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
0
Answered
1
Not Answered
49
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page