CBSE Questions for Class 11 Commerce Applied Mathematics Functions Quiz 3 - MCQExams.com

If $$ f : R \rightarrow R$$ is defined by $$f(x)=2x-2,$$  then $$(f\circ f) (x) + 2 =$$
  • $$f(x)$$
  • $$2f(x)$$
  • $$3f(x)$$
  • $$-f(x)$$
If $$f(x) =\displaystyle \frac{x}{\sqrt{1-x^2}}, g(x)=\frac{x}{\sqrt{1+x^2}}$$ then $$(f\circ g)(x) =$$
  • $$\displaystyle \frac{x}{\sqrt{1-x^2}}$$
  • $$\displaystyle \frac{x}{\sqrt{1+x^2}}$$
  • $$\displaystyle \frac{1-x^2}{\sqrt{1-x^2}}$$
  • $$x$$
If $$f(x)=\log  x,  g(x) = x^3$$ then $$f[g(a)]+f[g(b)]= $$
  • $$f[g(a)+g(b)]$$
  • $$f[g(ab)]$$
  • $$g[f(ab)]$$
  • $$g[f(a)+f(b)]$$
Find the domain of $$x^2+2$$
  • R
  • N
  • Z
  • All of the above
The domain of $$f(x) = \displaystyle  \frac{3}{4-x^2}+\log_{10} (x^3-x)$$ is:
  • $$(1, 2)$$
  • $$[-1, 1) \cup (1, 2)$$
  • $$(1, 2) \cup (2, \infty)$$
  • $$(-1, 0) \cup (1,2) \cup (2, \infty)$$
If $$f:R \rightarrow R$$ and $$g : R \rightarrow R$$ are defined by $$f(x)=2x+3$$ and $$g(x)=x^2+7$$, then the values of $$x$$ such that $$g(f(x)) =8$$ are:
  • $$1, 2$$
  • $$-1, 2$$
  • $$-1, -2$$
  • $$1, -2$$
If $$f(x) = \dfrac{2x+5}{x^{2} + x + 5}$$, then $$f\left [ f(- 1 ) \right ]$$ is equal to
  • $$\dfrac{149}{155}$$
  • $$\dfrac{155}{147}$$
  • $$\dfrac{155}{149}$$
  • $$\dfrac{147}{155}$$
Which one of the following relation is a function
  • All of these
If $$f : R \rightarrow R$$ and $$g :R \rightarrow R$$ are defined by $$f(x) = x -[x]$$ and $$g(x) = [x]$$ for $$x \in R$$, where $$[x]$$ is the greatest integer not exceeding $$x$$, then for every $$x \in R, f(g(x)) =$$
  • $$x$$
  • $$0$$
  • $$f(x)$$
  • $$g(x)$$
If $$y=f(x) = \dfrac{2x-1}{x-2}$$, then $$f(y)=$$
  • $$x$$
  • $$y$$
  • $$2y-1$$
  • $$y-2$$
If $$f(g(x))$$ is one-one function, then
  • g(x) must be one-one
  • f(x) must be one-one
  • f(x) may not be one-one
  • g(x) may not be one-one
Which of the following functions are one-one?
  • $$f:R\rightarrow R$$ given by $$ f(x)={ 2x }^{ 2 }+1$$ for all $$\quad x\in R$$
  • $$g:Z\rightarrow Z$$ given by $$ g(x)={ x }^{ 4 }$$ for all $$\quad x\in R$$
  • $$h:R\rightarrow R$$ given by $$ h(x)={ x }^{ 3 }+4$$ for all $$\quad x\in R$$
  • $$\phi :C\rightarrow C$$ given $$ \phi (z)={ 2z }^{ 6 }+4$$ for all $$\quad x\in R$$
A mapping function $$f:X\rightarrow Y$$ is one-one, if
  • $$f({ x }_{ 1 })\neq f({ x }_{ 2 })\ $$for all $$ { x }_{ 1 },{ x }_{ 2 }\in X$$
  • $$f({ x }_{ 1 })=f({ x }_{ 2 })\Rightarrow { x }_{ 1 }={ x }_{ 2 }$$ for all $${ x }_{ 1 },{ x }_{ 2 }\in X$$
  • $${ x }_{ 1 }={ x }_{ 2 }\Rightarrow f({ x }_{ 1 })=f({ x }_{ 2 })$$ for all $${ x }_{ 1 },{ x }_{ 2 }\in X$$
  • none of these
Find the domain of $$x$$ if  $$f(x)=\sqrt {x^2-|x|-2}$$
  • $$x\in R-(-2, 2)$$
  • $$x\in R$$
  • $$x\in R-(0, 2)$$
  • None of these
If $$f:R\rightarrow R$$ given by $$f(x)={ x }^{ 3 }+({ a+2)x }^{ 2 }+3ax+5$$ is one-one, then $$a$$ belongs to the interval
  • $$(-\infty ,1)$$
  • $$(1 ,\infty)$$
  • $$(1 ,4)$$
  • $$(4 ,\infty)$$
  • Both Assertion and Reason are correct and Reason is the correct explanation for Assertion
  • Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion
  • Assertion is correct but Reason is incorrect
  • Assertion is incorrect but Reason is correct
Which of the following function is one-one?
  • $$f:R\rightarrow R$$ given by$$ f(x)=|x-1|$$ for all $$x\in R$$
  • $$g:\left[ -\dfrac{\pi }{ 2 },\dfrac{ \pi }{ 2 } \right] \rightarrow R$$ given by $$g(x)=|sinx|$$ for all $$ x\in \left[ \dfrac{ -\pi }{ 2 },\dfrac{ \pi }{ 2 } \right] $$
  • $$h:\left[ \dfrac{ -\pi }{ 2 },\dfrac{ \pi }{ 2 } \right] \in R$$ given by $$ h(x)=sinx$$ for all $$ x\in \left[ \dfrac{ -\pi }{ 2 },\dfrac{ \pi }{ 2 } \right] $$
  • $$\phi :R\rightarrow R$$ given by $$f(x)={ x }^{ 2 }-4$$ for all $$ x\in R$$
If $$f$$ and $$g$$ are one-one functions from $$R\to R$$, then
  • $$f+g$$ is one-one
  • $$fg$$ is one-one
  • $$fog$$ is one-one
  • none of these
Let $$\displaystyle f:R\rightarrow A=\left \{ y: 0\leq y< \dfrac{\pi}{2} \right \}$$ be a function such that $$\displaystyle f(x)=\tan^{-1}(x^{2}+x+k),$$ where $$k$$ is a constant. The value of $$k$$ for which $$f$$ is an onto function is 
  • $$1$$
  • $$0$$
  • $$\displaystyle \frac{1}{4}$$
  • none of these
If $$f(x) = \sqrt{| x-1|}$$ and $$g(x) = \sin x$$, then $$(fog) (x)$$ equals
  • $$\sin \sqrt{| x-1|}$$
  • $$\left|\sin\dfrac{x}{2} - \cos\dfrac{x}{2}\right|$$
  • $$\left|\sin x + \cos x\right|$$
  • $$\left|\sin\dfrac{x}{2} + \cos\dfrac{x}{2}\right|$$
The domain of the function $$\displaystyle f(x)=\sqrt{x^{2}-[x]^{2}},$$ where $$[x]=$$ the greatest integer less than or equal to $$x$$, is
  • $$R$$
  • $$[0,+\infty)$$
  • $$(-\infty,0]$$
  • none of these
If $$f(x)=ax+b$$ and $$g(x)=cx+d$$, then $$f(g(x))=g(f(x))$$ implies
  • $$f(a)=g(c)$$
  • $$f(b)=g(b)$$
  • $$f(d)=g(b)$$
  • $$f(c)=g(a)$$
If $$\displaystyle f(x)=\frac{1}{1-x},x\neq 0,1$$ then the graph of the function $$\displaystyle y=f\left \{ f(f(x)) \right \},x> 1,$$ is
  • a circle
  • an ellipse
  • a straight line
  • a pair of straight lines
Let $$\displaystyle f:\left \{ x,y,z \right \}\rightarrow \left \{ a,b,c \right \}$$ be a one-one function and only one of the conditions $$(i)f(x)\neq b, (ii)f(y)=b,(iii)f(z)\neq a$$ is true then the function $$f$$  is given by the set 
  • $$\displaystyle \left \{ (x,a),(y,b),(z,c)\right \}$$
  • $$\displaystyle \left \{ (x,a),(y,c),(z,b)\right \}$$
  • $$\displaystyle \left \{ (x,b),(y,a),(z,c)\right \}$$
  • $$\displaystyle \left \{ (x,c),(y,b),(z,a)\right \}$$
Let $$ f:R \rightarrow R$$ and $$g:R \rightarrow R$$ be defined by $$f(x)=x^2+2x-3,g(x)=3x-4$$ then $$(gof) (x)=$$
  • $$3x^2+6x-13$$
  • $$3x^2-6x-13$$
  • $$3x^2+6x+13$$
  • $$-3x^2+6x-13$$
The domain of the function $$\displaystyle f(x)=\log_{10}\log_{10}(1+x^{3})$$ is 
  • $$(-1,+\infty)$$
  • $$(0,+\infty)$$
  • $$[0,+\infty)$$
  • $$(-1,0)$$
If $$f$$ and $$g$$ are two functions such that  $$\displaystyle \left ( fg \right )\left ( x \right )=\left ( gf \right )\left ( x \right )$$ for all $$x$$. Then $$f $$ and $$g$$ may be defined as
  • $$\displaystyle f\left ( x \right )=\sqrt{x}, g\left ( x \right )=\cos x$$
  • $$\displaystyle f\left ( x \right )=x^{3}, g\left ( x \right )=x+1$$
  • $$\displaystyle f\left ( x \right )=x-1, g\left ( x \right )=x^{2}+1$$
  • $$\displaystyle f\left ( x \right )=x^{m}, g\left ( x \right )=x^{n}$$ where $$m, n$$ are unequal integers
If $$\displaystyle f(x)=x^{n},n\in N$$ and $$(gof)(x)=ng(x)$$ then $$g(x)$$ can be 
  • $$n\:|x|$$
  • $$3.\sqrt[3]{x}$$
  • $$e^{x}$$
  • $$\log\:|x|$$
The domain of $$\displaystyle f(x)=\sqrt { \log_{ x^{ 2 }-1 }(x) } $$ is
  • $$(\sqrt{2},+\infty)$$
  • $$(0,+\infty)$$
  • $$(1,+\infty)$$
  • none of these
The composite mapping $$fog$$ of the map $$f: R\rightarrow R,f(x)=\sin x$$ and $$g: R\rightarrow R, g(x)=x^2$$ is
  • $$x^2 \sin x$$
  • $$(\sin x)^2$$
  • $$\sin x^2$$
  • $$\dfrac{ \sin x}{x^2}$$
If $$\displaystyle f\left ( x \right )=\left\{\begin{matrix}
x^{2}         x \geq 0\\
x              x < 0
\end{matrix}\right.$$
then $$\displaystyle (f o f)(x)$$ is given by
  • $$x^{2}$$ for $$x\geq 0$$ and $$x$$ for $$ x< 0$$
  • $$\displaystyle x^{4}$$ for $$\displaystyle x\geq 0$$ and $$x^{2}$$ for $$x< 0$$
  • $$ \displaystyle x^{4}$$ for $$ \displaystyle x\geq 0$$ and $$-x^{2} $$ for $$x < 0$$
  • $$\displaystyle x^{4}$$ for $$ x\geq 0$$ and $$x $$ for $$ x< 0$$
Let $$\displaystyle g(x)=1+x-[x]$$ and $$\displaystyle f(x)=\left\{\begin{matrix}{-1}\quad {x< 0} \\ {0} \quad {x=0}\\{1} \quad {x> 0} \end{matrix}\right.$$ Then for all  $$\displaystyle x, f\left \{ g\left ( x \right ) \right \}$$ is equal to 
  • $$x$$
  • $$1$$
  • $$\displaystyle f(x)$$
  • $$\displaystyle g(x)$$
Let $$\displaystyle f(x)=\frac{ax}{x+1}$$, where $$\displaystyle x\neq -1$$. Then for what value of $$\displaystyle a$$ is $$\displaystyle f( f(x))=x$$ always true
  • $$\displaystyle \sqrt{2}$$
  • $$\displaystyle -\sqrt{2}$$
  • $$1$$
  • $$-1$$
If $$\displaystyle f(y)=\frac{y}{\sqrt{1-y^2}}$$; $$\displaystyle g(y)=\frac{y}{\sqrt{1+y^2}}$$ then $$(fog)y$$ is equal to
  • $$\displaystyle \frac{y}{\sqrt{1-y^2}}$$
  • $$\displaystyle \frac{y}{\sqrt{1+y^2}}$$
  • $$y$$
  • $$2f(x)$$
If $$\displaystyle f(x)= (x-1)+(x+1)$$ and
$$\displaystyle g(x)= f\left \{ f(x) \right \}$$ then $$\displaystyle {g}'(3)$$
  • equals $$1$$
  • equals $$0$$
  • equals $$3$$
  • equals $$4$$
Set $$A$$ has $$3$$ elements and set $$B$$ has $$4$$ elements. The number of injections that can be defined from $$A$$ to $$B$$ is
  • $$144$$
  • $$12$$
  • $$24$$
  • $$64$$
The total number of injective mappings from a set with $$m$$ elements to a set with $$n$$ elements,$$\displaystyle m\leq n,$$ is
  • $$\displaystyle m^{n}$$
  • $$\displaystyle n^{m}$$
  • $$\displaystyle \frac{n!}{\left ( n-m \right )!}$$
  • $$\displaystyle n!$$
Let f(x)=tan x, x$$\displaystyle \epsilon \left [ -\frac{\pi }{2},\frac{\pi }{2} \right ]$$ and $$\displaystyle g\left (x  \right )=\sqrt{1-x^{2}}$$ Determine $$g o f(1)$$.
  • 1
  • 0
  • -1
  • not defined
Find $$\displaystyle \phi \left [ \Psi \left ( x \right ) \right ]$$ and $$\displaystyle \Psi \left [ \phi \left ( x \right ) \right ]$$ if $$\displaystyle \phi \left ( x \right )=x^{2}+1$$ and $$\displaystyle \Psi \left ( x \right )=3^{x}.$$
  • $$\displaystyle \Psi \left [ \phi \left ( x \right ) \right ]=3^{x^{2}+1}.$$
  • $$\displaystyle \phi \left [ \Psi \left [ x \right ] \right ]=3^{2x}+1$$
  • $$\displaystyle \Psi \left [ \phi \left ( x \right ) \right ]=3^{x^{3}+1}.$$
  • $$\displaystyle \phi \left [ \Psi \left [ x \right ] \right ]=3^{x}+1$$
If $$\displaystyle f\left ( x \right )=\frac{ax+b}{cx+d}$$ and $$\displaystyle \left ( fof \right )x=x,$$ then d=?
  • $$a$$
  • $$-a$$
  • $$b$$
  • $$-b$$
Given $$\displaystyle f\left ( x \right )=\log \left ( \frac{1+x}{1-x} \right )$$ and $$\displaystyle g\left ( x \right )=\frac{3x+x^{3}}{1+3x^{2}}, fog (x)$$ equals
  • $$-f(x)$$
  • $$3f(x)$$
  • $$\displaystyle \left [ f\left ( x \right ) \right ]^{3}$$
  • none of these
Let $$f(x)=x^{2}-2x$$ and $$g(x)=f(f(x)-1)+f(5-f(x)),$$ then
  • $$g(x)<0,\forall x\in R$$
  • $$g(x)<0$$ for some $$x\in R$$
  • $$g(x)\leq 0$$ for some $$x\in R$$
  • $$g(x)\geq 0,\forall x\in R$$
If $$g(x)=1+\sqrt { x } $$ and $$f(g(x))=3+2\sqrt { x } +x$$, then $$f(x)=$$
  • $$1+2{ x }^{ 2 }$$
  • $$2+{ x }^{ 2 }$$
  • $$1+x$$
  • $$2+x$$
Are the following sets of ordered pairs functions? If so, examine whether the mapping is surjective or injective :
{(x, y): x is a person, y is the mother of x}
  • injective (one- one ) and surjective (into)
  • injective (one- one ) and not surjective (into)
  • not injective (one- one ) and surjective (into)
  • not injective (one- one ) and not surjective (into)
If $$f:R\rightarrow R$$ and $$g:R\rightarrow R$$ are functions defined by $$f(x)=3x-1; g(x)=\sqrt{x+6}$$, then the value of $$(g\circ f^{-1})(2009)$$ is 
  • $$26$$
  • $$29$$
  • $$16$$
  • $$15$$
Let f : {x,y,z} $$\rightarrow$$ {a,b,c} be a one-one function. It is known that only one of the following statment is true, and only one such function exists :

find the function f (as ordered pair).(i) f(x) $$\neq$$ b
(i) f(y) = b

(ii) f(z) $$\neq$$ a
  • {(x,b), (y,a), (z,c)}
  • {(x,a), (y,b), (z,c)}
  • {(x,b), (y,c), (z,a)}
  • {(x,c), (y,a), (z,b)}
If $$f_{0}(x)\, =\, \dfrac{x}{(x\, +\, 1)}$$ and $$f_{n\, +\, 1}\, =\, f_{0}\circ f_{n}(x)$$ for $$n = 0, 1, 2,\cdots$$ then $$f_{n}(x)$$ is
  • $$\displaystyle \frac{x}{(n\, +\, 1) x\, +\, 1}$$
  • $$f_{0}(x)$$
  • $$\displaystyle \frac{nx}{nx\, +\, 1}$$
  • $$\displaystyle \frac{x}{nx\, +\, 1}$$
Suppose f and g both are linear function with $$\displaystyle f(x)=-2x+1$$  and $$\displaystyle f \left ( g\left ( x \right ) \right )=6x-7$$ then slope of line $$y=g(x)$$ is
  • $$3$$
  • $$-3$$
  • $$6$$
  • $$-2$$
If the function $$f : R \rightarrow$$ A given  by $$f(x)\, =\, \displaystyle \frac{x^{2}}{x^{2}\, +\, 1}$$ is a surjection, then A is
  • $$R$$
  • $$[0, 1]$$
  • $$(0, 1]$$
  • $$[0, 1)$$
If $$f(x)=\begin{cases} 2x+3\quad \quad x\le 1 \\ a^{ 2 }x+1\quad x>1 \end{cases}$$, then the values of $$a$$ for which $$f(x)$$ is injective. 
  • $$-3$$
  • $$1$$
  • $$0$$
  • none of these
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers