Processing math: 7%

CBSE Questions for Class 11 Commerce Applied Mathematics Functions Quiz 3 - MCQExams.com

If f:RR is defined by f(x)=2x2,  then (ff)(x)+2=
  • f(x)
  • 2f(x)
  • 3f(x)
  • f(x)
If f(x)=x1x2,g(x)=x1+x2 then (fg)(x)=
  • x1x2
  • x1+x2
  • 1x21x2
  • x
If f(x)=logx,g(x)=x3 then f[g(a)]+f[g(b)]=
  • f[g(a)+g(b)]
  • f[g(ab)]
  • g[f(ab)]
  • g[f(a)+f(b)]
Find the domain of x2+2
  • R
  • N
  • Z
  • All of the above
The domain of f(x)=34x2+log10(x3x) is:
  • (1,2)
  • [1,1)(1,2)
  • (1,2)(2,)
  • (1,0)(1,2)(2,)
If f:R \rightarrow R and g : R \rightarrow R are defined by f(x)=2x+3 and g(x)=x^2+7, then the values of x such that g(f(x)) =8 are:
  • 1, 2
  • -1, 2
  • -1, -2
  • 1, -2
If f(x) = \dfrac{2x+5}{x^{2} + x + 5}, then f\left [ f(- 1 ) \right ] is equal to
  • \dfrac{149}{155}
  • \dfrac{155}{147}
  • \dfrac{155}{149}
  • \dfrac{147}{155}
Which one of the following relation is a function
  • All of these
If f : R \rightarrow R and g :R \rightarrow R are defined by f(x) = x -[x] and g(x) = [x] for x \in R, where [x] is the greatest integer not exceeding x, then for every x \in R, f(g(x)) =
  • x
  • 0
  • f(x)
  • g(x)
If y=f(x) = \dfrac{2x-1}{x-2}, then f(y)=
  • x
  • y
  • 2y-1
  • y-2
If f(g(x)) is one-one function, then
  • g(x) must be one-one
  • f(x) must be one-one
  • f(x) may not be one-one
  • g(x) may not be one-one
Which of the following functions are one-one?
  • f:R\rightarrow R given by f(x)={ 2x }^{ 2 }+1 for all \quad x\in R
  • g:Z\rightarrow Z given by g(x)={ x }^{ 4 } for all \quad x\in R
  • h:R\rightarrow R given by h(x)={ x }^{ 3 }+4 for all \quad x\in R
  • \phi :C\rightarrow C given \phi (z)={ 2z }^{ 6 }+4 for all \quad x\in R
A mapping function f:X\rightarrow Y is one-one, if
  • f({ x }_{ 1 })\neq f({ x }_{ 2 })\ for all { x }_{ 1 },{ x }_{ 2 }\in X
  • f({ x }_{ 1 })=f({ x }_{ 2 })\Rightarrow { x }_{ 1 }={ x }_{ 2 } for all { x }_{ 1 },{ x }_{ 2 }\in X
  • { x }_{ 1 }={ x }_{ 2 }\Rightarrow f({ x }_{ 1 })=f({ x }_{ 2 }) for all { x }_{ 1 },{ x }_{ 2 }\in X
  • none of these
Find the domain of x if  f(x)=\sqrt {x^2-|x|-2}
  • x\in R-(-2, 2)
  • x\in R
  • x\in R-(0, 2)
  • None of these
If f:R\rightarrow R given by f(x)={ x }^{ 3 }+({ a+2)x }^{ 2 }+3ax+5 is one-one, then a belongs to the interval
  • (-\infty ,1)
  • (1 ,\infty)
  • (1 ,4)
  • (4 ,\infty)
  • Both Assertion and Reason are correct and Reason is the correct explanation for Assertion
  • Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion
  • Assertion is correct but Reason is incorrect
  • Assertion is incorrect but Reason is correct
Which of the following function is one-one?
  • f:R\rightarrow R given by f(x)=|x-1| for all x\in R
  • g:\left[ -\dfrac{\pi }{ 2 },\dfrac{ \pi }{ 2 } \right] \rightarrow R given by g(x)=|sinx| for all x\in \left[ \dfrac{ -\pi }{ 2 },\dfrac{ \pi }{ 2 } \right]
  • h:\left[ \dfrac{ -\pi }{ 2 },\dfrac{ \pi }{ 2 } \right] \in R given by h(x)=sinx for all x\in \left[ \dfrac{ -\pi }{ 2 },\dfrac{ \pi }{ 2 } \right]
  • \phi :R\rightarrow R given by f(x)={ x }^{ 2 }-4 for all x\in R
If f and g are one-one functions from R\to R, then
  • f+g is one-one
  • fg is one-one
  • fog is one-one
  • none of these
Let \displaystyle f:R\rightarrow A=\left \{ y: 0\leq y< \dfrac{\pi}{2} \right \} be a function such that \displaystyle f(x)=\tan^{-1}(x^{2}+x+k), where k is a constant. The value of k for which f is an onto function is 
  • 1
  • 0
  • \displaystyle \frac{1}{4}
  • none of these
If f(x) = \sqrt{| x-1|} and g(x) = \sin x, then (fog) (x) equals
  • \sin \sqrt{| x-1|}
  • \left|\sin\dfrac{x}{2} - \cos\dfrac{x}{2}\right|
  • \left|\sin x + \cos x\right|
  • \left|\sin\dfrac{x}{2} + \cos\dfrac{x}{2}\right|
The domain of the function \displaystyle f(x)=\sqrt{x^{2}-[x]^{2}}, where [x]= the greatest integer less than or equal to x, is
  • R
  • [0,+\infty)
  • (-\infty,0]
  • none of these
If f(x)=ax+b and g(x)=cx+d, then f(g(x))=g(f(x)) implies
  • f(a)=g(c)
  • f(b)=g(b)
  • f(d)=g(b)
  • f(c)=g(a)
If \displaystyle f(x)=\frac{1}{1-x},x\neq 0,1 then the graph of the function \displaystyle y=f\left \{ f(f(x)) \right \},x> 1, is
  • a circle
  • an ellipse
  • a straight line
  • a pair of straight lines
Let \displaystyle f:\left \{ x,y,z \right \}\rightarrow \left \{ a,b,c \right \} be a one-one function and only one of the conditions (i)f(x)\neq b, (ii)f(y)=b,(iii)f(z)\neq a is true then the function f  is given by the set 
  • \displaystyle \left \{ (x,a),(y,b),(z,c)\right \}
  • \displaystyle \left \{ (x,a),(y,c),(z,b)\right \}
  • \displaystyle \left \{ (x,b),(y,a),(z,c)\right \}
  • \displaystyle \left \{ (x,c),(y,b),(z,a)\right \}
Let f:R \rightarrow R and g:R \rightarrow R be defined by f(x)=x^2+2x-3,g(x)=3x-4 then (gof) (x)=
  • 3x^2+6x-13
  • 3x^2-6x-13
  • 3x^2+6x+13
  • -3x^2+6x-13
The domain of the function \displaystyle f(x)=\log_{10}\log_{10}(1+x^{3}) is 
  • (-1,+\infty)
  • (0,+\infty)
  • [0,+\infty)
  • (-1,0)
If f and g are two functions such that  \displaystyle \left ( fg \right )\left ( x \right )=\left ( gf \right )\left ( x \right ) for all x. Then f and g may be defined as
  • \displaystyle f\left ( x \right )=\sqrt{x}, g\left ( x \right )=\cos x
  • \displaystyle f\left ( x \right )=x^{3}, g\left ( x \right )=x+1
  • \displaystyle f\left ( x \right )=x-1, g\left ( x \right )=x^{2}+1
  • \displaystyle f\left ( x \right )=x^{m}, g\left ( x \right )=x^{n} where m, n are unequal integers
If \displaystyle f(x)=x^{n},n\in N and (gof)(x)=ng(x) then g(x) can be 
  • n\:|x|
  • 3.\sqrt[3]{x}
  • e^{x}
  • \log\:|x|
The domain of \displaystyle f(x)=\sqrt { \log_{ x^{ 2 }-1 }(x) } is
  • (\sqrt{2},+\infty)
  • (0,+\infty)
  • (1,+\infty)
  • none of these
The composite mapping fog of the map f: R\rightarrow R,f(x)=\sin x and g: R\rightarrow R, g(x)=x^2 is
  • x^2 \sin x
  • (\sin x)^2
  • \sin x^2
  • \dfrac{ \sin x}{x^2}
If \displaystyle f\left ( x \right )=\left\{\begin{matrix} x^{2}         x \geq 0\\ x              x < 0 \end{matrix}\right.
then \displaystyle (f o f)(x) is given by
  • x^{2} for x\geq 0 and x for x< 0
  • \displaystyle x^{4} for \displaystyle x\geq 0 and x^{2} for x< 0
  • \displaystyle x^{4} for \displaystyle x\geq 0 and -x^{2} for x < 0
  • \displaystyle x^{4} for x\geq 0 and x for x< 0
Let \displaystyle g(x)=1+x-[x] and \displaystyle f(x)=\left\{\begin{matrix}{-1}\quad {x< 0} \\ {0} \quad {x=0}\\{1} \quad {x> 0} \end{matrix}\right. Then for all  \displaystyle x, f\left \{ g\left ( x \right ) \right \} is equal to 
  • x
  • 1
  • \displaystyle f(x)
  • \displaystyle g(x)
Let \displaystyle f(x)=\frac{ax}{x+1}, where \displaystyle x\neq -1. Then for what value of \displaystyle a is \displaystyle f( f(x))=x always true
  • \displaystyle \sqrt{2}
  • \displaystyle -\sqrt{2}
  • 1
  • -1
If \displaystyle f(y)=\frac{y}{\sqrt{1-y^2}}; \displaystyle g(y)=\frac{y}{\sqrt{1+y^2}} then (fog)y is equal to
  • \displaystyle \frac{y}{\sqrt{1-y^2}}
  • \displaystyle \frac{y}{\sqrt{1+y^2}}
  • y
  • 2f(x)
If \displaystyle f(x)= (x-1)+(x+1) and
\displaystyle g(x)= f\left \{ f(x) \right \} then \displaystyle {g}'(3)
  • equals 1
  • equals 0
  • equals 3
  • equals 4
Set A has 3 elements and set B has 4 elements. The number of injections that can be defined from A to B is
  • 144
  • 12
  • 24
  • 64
The total number of injective mappings from a set with m elements to a set with n elements,\displaystyle m\leq n, is
  • \displaystyle m^{n}
  • \displaystyle n^{m}
  • \displaystyle \frac{n!}{\left ( n-m \right )!}
  • \displaystyle n!
Let f(x)=tan x, x\displaystyle \epsilon \left [ -\frac{\pi }{2},\frac{\pi }{2} \right ] and \displaystyle g\left (x  \right )=\sqrt{1-x^{2}} Determine g o f(1).
  • 1
  • 0
  • -1
  • not defined
Find \displaystyle \phi \left [ \Psi \left ( x \right ) \right ] and \displaystyle \Psi \left [ \phi \left ( x \right ) \right ] if \displaystyle \phi \left ( x \right )=x^{2}+1 and \displaystyle \Psi \left ( x \right )=3^{x}.
  • \displaystyle \Psi \left [ \phi \left ( x \right ) \right ]=3^{x^{2}+1}.
  • \displaystyle \phi \left [ \Psi \left [ x \right ] \right ]=3^{2x}+1
  • \displaystyle \Psi \left [ \phi \left ( x \right ) \right ]=3^{x^{3}+1}.
  • \displaystyle \phi \left [ \Psi \left [ x \right ] \right ]=3^{x}+1
If \displaystyle f\left ( x \right )=\frac{ax+b}{cx+d} and \displaystyle \left ( fof \right )x=x, then d=?
  • a
  • -a
  • b
  • -b
Given \displaystyle f\left ( x \right )=\log \left ( \frac{1+x}{1-x} \right ) and \displaystyle g\left ( x \right )=\frac{3x+x^{3}}{1+3x^{2}}, fog (x) equals
  • -f(x)
  • 3f(x)
  • \displaystyle \left [ f\left ( x \right ) \right ]^{3}
  • none of these
Let f(x)=x^{2}-2x and g(x)=f(f(x)-1)+f(5-f(x)), then
  • g(x)<0,\forall x\in R
  • g(x)<0 for some x\in R
  • g(x)\leq 0 for some x\in R
  • g(x)\geq 0,\forall x\in R
If g(x)=1+\sqrt { x } and f(g(x))=3+2\sqrt { x } +x, then f(x)=
  • 1+2{ x }^{ 2 }
  • 2+{ x }^{ 2 }
  • 1+x
  • 2+x
Are the following sets of ordered pairs functions? If so, examine whether the mapping is surjective or injective :
{(x, y): x is a person, y is the mother of x}
  • injective (one- one ) and surjective (into)
  • injective (one- one ) and not surjective (into)
  • not injective (one- one ) and surjective (into)
  • not injective (one- one ) and not surjective (into)
If f:R\rightarrow R and g:R\rightarrow R are functions defined by f(x)=3x-1; g(x)=\sqrt{x+6}, then the value of (g\circ f^{-1})(2009) is 
  • 26
  • 29
  • 16
  • 15
Let f : {x,y,z} \rightarrow {a,b,c} be a one-one function. It is known that only one of the following statment is true, and only one such function exists :

find the function f (as ordered pair).(i) f(x) \neq b
(i) f(y) = b

(ii) f(z) \neq a
  • {(x,b), (y,a), (z,c)}
  • {(x,a), (y,b), (z,c)}
  • {(x,b), (y,c), (z,a)}
  • {(x,c), (y,a), (z,b)}
If f_{0}(x)\, =\, \dfrac{x}{(x\, +\, 1)} and f_{n\, +\, 1}\, =\, f_{0}\circ f_{n}(x) for n = 0, 1, 2,\cdots then f_{n}(x) is
  • \displaystyle \frac{x}{(n\, +\, 1) x\, +\, 1}
  • f_{0}(x)
  • \displaystyle \frac{nx}{nx\, +\, 1}
  • \displaystyle \frac{x}{nx\, +\, 1}
Suppose f and g both are linear function with \displaystyle f(x)=-2x+1  and \displaystyle f \left ( g\left ( x \right ) \right )=6x-7 then slope of line y=g(x) is
  • 3
  • -3
  • 6
  • -2
If the function f : R \rightarrow A given  by f(x)\, =\, \displaystyle \frac{x^{2}}{x^{2}\, +\, 1} is a surjection, then A is
  • R
  • [0, 1]
  • (0, 1]
  • [0, 1)
If f(x)=\begin{cases} 2x+3\quad \quad x\le 1 \\ a^{ 2 }x+1\quad x>1 \end{cases}, then the values of a for which f(x) is injective. 
  • -3
  • 1
  • 0
  • none of these
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers