MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Commerce Applied Mathematics Functions Quiz 4 - MCQExams.com
CBSE
Class 11 Commerce Applied Mathematics
Functions
Quiz 4
If
$$f(x)=\begin{cases} x+1,\quad \quad if\quad x\, \leq \, 1 \\ 5-x^{ 2 }\quad \quad if\quad x>1 \end{cases},g(x)=\begin{cases} x\quad \quad if\quad x\leq 1 \\ 2-x\quad if\quad x>1 \end{cases}$$
and $$x\, \in\, (1, 2)$$, then $$g(f(x))$$ is equal to
Report Question
0%
$$x^{2}\, +\, 3$$
0%
$$x^{2}\, -\, 3$$
0%
$$5\, -\, x^{2}$$
0%
$$1 - x$$
Explanation
$$x\, \epsilon\, (1, 2)$$
Hence for x >1, $$f(x) = 5-x^2$$and $$f(x) \epsilon (1,4) $$
$$f(x) >1$$
$$g(f(x)) = 2 - f(x)= 2-5+x^2 = x^2-3$$
Which of the functions defined below are NOT one-one function(s)
Report Question
0%
$$f(x)\, =\, 5(x^{2}\, +\, 4),\, (x\, \in\, R)$$
0%
$$g(x)\, =\, 2x\, +\, \dfrac1x$$
0%
$$h(x)\, =\, ln(x^{2}\, +\, x\, +\, 1)\,, (x\, \in\, R)$$
0%
$$f(x)\, =\, e^{-x}$$
If $$g(x) = 2x + 1$$ and $$h(x) = 4x^{2} + 4x + 7$$, find a function $$f$$ such that $$f o g = h$$
Report Question
0%
$$f(x) = x^{3} - 6$$
0%
$$f(x) = x^{2} + 6$$
0%
$$f(x) = x^{2} - 6$$
0%
$$f(x) = (2x+1)^2 + 6$$
Explanation
$$f(g(x)) = h = 4x^2+4x+7=(2x+1)^2+6=(g(x))^2+6$$
$$\Rightarrow f(x) =x^2+6$$
Which of the following are two distinct linear functions which map the interval $$[-1, 1]$$ onto $$[0, 2]$$
Report Question
0%
$$f(x) = 1 + x$$ or $$1 - x$$
0%
$$f(x) = 1 + 2x$$ or $$1 - x$$
0%
$$f(x) = 1 + x$$ or $$1 - 2x$$
0%
$$f(x) = 1 + x$$ or $$2 - x$$
Explanation
Out of two linear functions one will be increasing and other will be decreasing.
Let $$f(x) = ax+b$$
For increasing: $$f(-1)=0=> b-a=0\Rightarrow b=a$$ and $$f(1) = 2\Rightarrow a+b=2\Rightarrow a=b=1\therefore f(x) = 1+x$$
For decreasing: $$f(-1)=2=> b-a=2$$ and $$f(1) = 0\Rightarrow a+b=2\Rightarrow b=1, a=-1\therefore f(x) = 1-x$$
Which of the following is an onto function
Report Question
0%
$$f\, :\, [0,\, \pi]\, \rightarrow\, [-\, 1\, 1], f(x)\, =\, \sin\, x$$
0%
$$f\, :\, [0, \pi]\, \rightarrow\, [-1, 1],\, f(x)\, =\, \cos\, x$$
0%
$$f\, :\, R\, \rightarrow\, R,\, f(x)\, =\, e^{x}$$
0%
$$f\, :\, Q\, \rightarrow\, R, f(x)\, =\, x^{3}$$
Explanation
A function is called onto iff, Range$$=$$ co-domain.
A.
In $$[0,\pi]$$, Range of $$\sin x$$ is $$[0,1]\Rightarrow$$ Not onto.
B.
In $$[0,\pi]$$, Range of $$\cos x$$ is $$[-1,1] =$$co-domain $$\Rightarrow $$onto function.
C.
Range of $$e^x$$ is $$(0, \infty)\neq$$ co-domain.
D.
Range of
$$x^3$$
is not R, since $$x\in Q$$
If $$ f : R \rightarrow R, f(x) = (x + 1)^2$$ and $$g : R \rightarrow R, g(x) = x^2 + 1 $$ then $$(fog)(3)$$ is equal to
Report Question
0%
$$121$$
0%
$$144$$
0%
$$112$$
0%
$$11$$
Explanation
Given,
$$ f : R \rightarrow R, f(x) = (x + 1)^2$$ and $$g : R \rightarrow R,g(x) = x^2 + 1 $$
$$g(3)=3^2+1=10$$
$$f(10)=(10+1)^2=121$$
$$\therefore fog(3)=f\left(g(3)\right)=f(10)=121$$
Hence, option A.
If $$f(x) = \log x$$, $$g(x) = x^3$$, then $$f[g(a)] + f[g(b)]$$ equals
Report Question
0%
$$f[g(a) + g(b)]$$
0%
$$3f(ab)$$
0%
$$g[f(ab)]$$
0%
$$g[f(a) + f(b)]$$
Explanation
We have $$f(x) = \log x$$
$$g(x) = x^3$$
$$g(a) = a^3 $$
$$f(g(a)) = \log (a^3) $$
$$f(g(a)) =3 \log a $$
Similarly,
$$f(g(b)) = 3 \log b $$
$$\Rightarrow f(g(a)) + f(g(b)) = 3 \log a + 3 \log b $$
$$\Rightarrow f(g(a)) + f(g(b)) = 3 \log ab $$
$$\Rightarrow f(g(a)) + f(g(b)) = 3 f(ab)$$
If $$f(x) = x^3 $$ and $$g(x) = sin2x$$, then
Report Question
0%
$$g[f(1)] = 1$$
0%
$$f(g(\pi/12) = 1/8$$
0%
$$g{f(2)} = \sin 2$$
0%
none of these
Explanation
Given,
$$ f(x)=x^3 $$ and $$g(x)=\sin 2x$$
Clearly,
$$ f(1)=1 \Rightarrow g[f(1)]=\sin 2 $$
$$ g(\cfrac{\pi}{12}) =\dfrac{1} {2} \Rightarrow f[g(\dfrac{\pi}{12})]=\dfrac{1}{8}$$
and,$$ f(2)=8 \Rightarrow g[f(2)]= \sin 16 $$
So, the correct option is (B).
If $$f(x) = (a x^n)^{1/n},$$ where $$\ n \in N$$, then $$f\{f(x)\}$$ equals
Report Question
0%
$$0$$
0%
$$x$$
0%
$$x^n$$
0%
none of these
Explanation
We have, $$f(x) = (a x^n)^{1/n}=a^{1/n}x=kx$$ where $$k = a^{1/n}$$
$$\therefore f\{f(x)\} = kf(x) = k^2x =a^{2/n} x$$
The domain of the function $$\ln (x-1)$$ is.
Report Question
0%
$$[0, 1)$$
0%
$$R$$
0%
$$R -Z$$
0%
$$(1, \infty )$$
Explanation
$$\log(x-1)$$
where $$ (x-1)>0$$
$$x>1$$
Domain of $$\log(x-1)$$ $$=(1,\infty)$$
If $$f(x) =\ln {\displaystyle \frac { 1+x }{ 1-x } } $$ and $$g(x)=\displaystyle \frac {3x+x^3}{1+3x^2}$$, then $$f[g(x)]$$ equals.
Report Question
0%
$$f(x)$$
0%
$$[f(x)]^3$$
0%
$$3f(x)$$
0%
$${f(x)}^2$$
Explanation
Given $$f(x)=\ln {\displaystyle \frac { 1+x }{ 1-x } } $$ and $$g(x)=\displaystyle \frac {3x+x^3}{1+3x^2}$$
then $$f[g(x)]=\ln {\displaystyle \frac { 1+\displaystyle\frac { 3x+x^{ 3 } }{ 1+3x^{ 2 } } }{ 1-\displaystyle\frac { 3x+x^{ 3 } }{ 1+3x^{ 2 } } } } $$
$$=\ln {\displaystyle \frac { 1+3x^{ 2 }+3x+x^{ 3 } }{ 1+3x^{ 2 }-3x-x^{ 3 } } } $$
$$=\ln\left[ {\displaystyle \frac { 1+x }{ 1-x } }\right]^3 $$
$$=3\ln {\displaystyle \frac { 1+x }{ 1-x } } $$
$$\Rightarrow f[g(x)]=3f(x)$$
Hence, option C.
If $$f(x) = \left\{\begin{matrix} 1&x \in Q \\ 0 &x \notin Q\end{matrix}\right.$$ then $$fof(\sqrt 3 )$$ is equal to
Report Question
0%
$$0$$
0%
$$1$$
0%
$$\sqrt 3$$
0%
none of these
Explanation
We know $$\sqrt{3}$$ is an irrational number
Thus $$f(\sqrt{3}) =0$$ and $$0$$ is a rational number
Hence $$fof(\sqrt 3 )= f(0) = 1$$
Let $$f(x) = e^{3x}, g(x) = \log_ex, x > 0$$, then $$fog (x)$$ is
Report Question
0%
$$3x$$
0%
$$x^3$$
0%
$$\log_{10}3x$$
0%
$$\log3x$$
Explanation
Given $$f(x) = e^{3x}, g(x) = \log_ex, x > 0$$
$$fog(x)=f(\log_ex)=e^{3\log_ex}=x^3$$
Hence, option B.
$$f(x)\, >\, x;\, \forall\, x\, \epsilon\, R.$$ The equation $$f (f(x)) -x = 0$$ has
Report Question
0%
Atleast one real root
0%
More than one real root
0%
No real root if f(x) is a polynomial & one real root if f(x) is not a polynomial
0%
No real root at all
Explanation
Given $$f(x) > x $$ $$\forall x \epsilon R$$
Hence, $$ f(x)-x$$ has no real roots, because $$f(x)-x >0$$
Since, $$x \epsilon R \implies f(x) \epsilon R$$
$$f(f(x))>x$$
$$\implies f(f(x))-x>0$$
Hence it will have no real root.
If functions $$f\left ( x \right )$$ and $$g\left ( x \right )$$ are defined on $$R\rightarrow R$$ such that
$$f(x)=x+3, x$$ $$\in $$ rational
$$ =4x, x$$ $$\in $$ irrational
$$g(x)=x+\sqrt{5}$$, x$$\in $$ irrational
$$ =-x, x$$ $$\in $$ rational
then $$\left ( f-g \right )\left ( x \right )$$ is
Report Question
0%
one-one & onto
0%
neither one-one nor onto
0%
one-one but not onto
0%
onto but not one-one
Explanation
$$f\left( x \right) =x+3, x\epsilon$$ rational
$$=4x, x\epsilon$$ irrational
$$g\left( x \right) =x+\sqrt { 5 } , x \epsilon$$ irrational
$$= -x,x\epsilon$$ rational
$$(f-g)(x)=2x+3, x\ \epsilon$$ rational
$$+3x-\sqrt { 5\quad } x\quad \epsilon$$ irrational
For one-one;
We know that one one function is a $${ f }^{ \underline { n } }$$ for which every element of the range of the function corresponds to exactly one element of the domain.
But in this case this is not true as for all rational nos. the$$ { f }^{ \underline { n } }$$ is one one but for irrational $${ f}^{ \underline { n } }$$, every elements of the range does not corresponds to exactly one element of the domain.
$$(f-g)(x)\neq (f-g)({ x }^{ \prime })$$ when $$x \epsilon$$ rational and
$$x \epsilon$$ irrational
for onto:
The $${ f }^{ \underline { n } }(f-g)(x)$$ does not cover the whole range of the function.
The domain of the function, $$\displaystyle y=f(x)=\sqrt {\log_{10} \left ( \frac {5x-x^2}{4} \right )}$$ is
Report Question
0%
$$[1, 4]$$
0%
$$(1, 4)$$
0%
$$[1, 4)$$
0%
$$(1, 4]$$
Explanation
Given,
$$\displaystyle y=f(x)=\sqrt {\log_{10} \left ( \frac {5x-x^2}{4} \right )}$$
For given function to be defined,
$$\displaystyle \log_{10} \left ( \frac {5x-x^2}{4} \right )\geq 0 \Rightarrow \left ( \frac {5x-x^2}{4} \right ) \geq 10^0=1$$
$$\Rightarrow 5x-x^2\geq 4\Rightarrow x^2-5x+4\leq 0$$
$$\Rightarrow (x-1)(x-4) \leq 0\Rightarrow x \in [1,4]$$
Let $$f(x) =\frac {ax+b} {cx+d}$$. Then fof(x) = x provided that.
Report Question
0%
d =- a
0%
d = a
0%
a = b = c = d = 1
0%
a = b = 1
Explanation
$$f(f(x))=\dfrac{af(x) + b}{cf(x)+d}$$
$$f(f(x))=\dfrac{a\dfrac{ax+b}{cx+d} + b}{c\dfrac{ax+b}{cx+d}+d}$$
$$f(f(x))=\dfrac{a^2x + ab+bcx+bd}{acx+bc+d^2+dcx}=x$$
$$\Rightarrow a^2x+ab+bcx+bd=acx^2+bcx+d^2x+dcx^2$$
Given $$a=-d$$, the above equation can also be verified
If $$f(x) =\dfrac {1}{1-x}, x \neq 0, 1$$ then the graph of the function $$y = f[f\{f(x)\}]$$ for $$x > 1 $$ is
Report Question
0%
a straight line
0%
a circle
0%
an ellipse
0%
a pair of straight lines
Explanation
Given $$f(x) = \cfrac{1}{1-x}$$
$$\displaystyle \Rightarrow f\{f(x)\} = \frac{1}{1-f(x)} = \frac{1}{1-\frac{1}{1-x}}=\frac{1-x}{1-x-1}=1-\frac{1}{x}$$
$$\displaystyle \therefore f[f\{f(x)\}] = \frac{1}{1- f\{f(x)\}}=\frac{1}{1-1+\frac{1}{x}}=x$$, which is a straight line.
Let $$\displaystyle f\left ( x \right )=\frac{3}{2}+\sqrt{x-\frac{3}{4}}$$ be a function and $$g\left ( x \right )$$ be another function such that $$g\left ( f\left ( x \right ) \right )=x,$$ then the value of $$g\left ( 20 \right )$$ will be
Report Question
0%
$$333$$
0%
$$335$$
0%
$$338$$
0%
$$343$$
Explanation
$$g\left ( x \right )$$ is inverse of $$f\left ( x \right )$$
$$\Rightarrow $$ $$\displaystyle x=\frac{3}{2}+\sqrt{y-\frac{3}{4}}$$
$$\Rightarrow $$ $$\displaystyle y=\left ( x-\frac{3}{2} \right )^2+\frac{3}{4}=f^{-1}(x)=g(x)$$
$$\therefore $$ $$\displaystyle g\left ( 20 \right )=\left ( 20-\frac{3}{2} \right )^{2}+\frac{3}{4}=343$$
Let $$f : R \rightarrow R, g : R \rightarrow R$$ be two function such that
$$f(x) = 2x- 3, g(x) = x^3 + 5$$
The function $$(fog)^{1}(x)$$ is equal to.
Report Question
0%
$$\left ( \dfrac {x+7}{2} \right )^{1/3}$$
0%
$$\left (x- \dfrac {7}{2} \right )^{1/3}$$
0%
$$\left ( \dfrac {x-2}{7} \right )^{1/3}$$
0%
$$\left ( \dfrac {x-7}{2} \right )^{1/3}$$
Explanation
Given $$f(x) = 2x-3$$ and $$g(x) = x^3+ 5$$
$$(fog)(x) = fg(x) = f(x^3+5) = 2(x^3+5) -3 = 2x^3 +7$$
Let $$(fog)(x) = y = 2x^3+7$$
$$y-7 = 2x^3$$
$$x = (\dfrac{y-7}{2})^{\dfrac{1}{3}}$$
$$\therefore (fog)^{-1}(x) = (\dfrac{x-7}{2})^{\dfrac{1}{3}}$$
The domain of the function, $$f(x) = \displaystyle \dfrac {1}{\sqrt{[x]^2-[x]-6}}$$ is
Report Question
0%
$$(-\infty , -3] \cup [4, \infty )$$
0%
$$(\infty , 2) \cup [4, \infty )$$
0%
$$(\infty , 2) \cup (4, \infty )$$
0%
none of these
Explanation
Given : $$f(x) = \displaystyle \frac {1}{\sqrt{[x]^2-[x]-6}}$$
$$f(x)$$ is real if
$${\sqrt{[x]^2-[x]-6}}\in R$$
i.e.
$$[x]^{ 2 }-[x]-6>0$$
$$\implies [x]^{ 2 }-3[x]+2[x]-6>0$$
$$\implies [x]([x]-3)+2([x]-3)>0$$
$$\implies ([x]-3)([x]+2)>0$$
$$ \implies \left[ x \right] <-2 $$ and $$\left[ x \right] >3$$
Therefore, $$x \in (-\infty , -3] \cup [4, \infty )$$
The domain of the function f(x)=$$\displaystyle \frac{\sqrt{-\log_{0.3}(x-1)}} {\sqrt{-x^2+2x+8}}$$ is
Report Question
0%
$$(1, 4)$$
0%
$$(2, 4)$$
0%
$$[2, 4)$$
0%
none of these
Explanation
Given,
f(x)=$$\displaystyle \frac{\sqrt{-\log_{0.3}(x-1)}} {\sqrt{-x^2+2x+8}}$$
For given function to be defined,
$$-\log_{0.3}(x-1) \geq 0\Rightarrow \log_{10/3}(x-1) \geq 0\Rightarrow x-1\geq 1\Rightarrow x\geq 2$$
and,
$$-x^2+2x+8> 0\Rightarrow x^2-2x-8< 0\Rightarrow (x+2)(x-4) < 0\Rightarrow -2 < x< 4$$
Combining above two we get required domain $$[2,4)$$
If $$f : [0, \Pi ] \rightarrow [-1, 1]$$, f(x) = cosx, then f is.
Report Question
0%
one-one
0%
onto
0%
one-one onto
0%
none of these
Explanation
f takes all values from $$[-1,1]$$ while travelling from $$[0,\pi]$$. None of the values are repeated either.
Hence it is one-one and onto.
The domain of the function $$f(x)=\sqrt {1-{\sqrt{1-\sqrt{1-x^2}}}}$$ is .
Report Question
0%
$$(\infty , 1) $$
0%
$$(1, \infty) $$
0%
$$[0, 1]$$
0%
$$[-1, 1]$$
Explanation
For given function to be defined,
$$(1-x^2) > 0\Rightarrow x^2-1\leq 0 \Rightarrow x \in [-1,1]$$
If X = {2,3,5,7,11} and Y = {4,6,8,9,10} then find the number of one-one functions from X to Y
Report Question
0%
720
0%
120
0%
24
0%
12
Explanation
Both sets X and Y have the same number of elements.
When two sets have same number of $$ n $$ elements, then the number of one to one functions from one set to the other is $$ n! $$
So, number of one to one functions from X to Y $$ = 5 ! = 5 \times 4 \times 3 \times 2 \times 1 = 120 $$
If $$\displaystyle f\left ( x \right )=\left ( 1-x^{3} \right )^{\frac{1}{3}}$$, then find $$fof(x)$$
Report Question
0%
$$\dfrac1x$$
0%
$$x$$
0%
$$x^2$$
0%
$$x^3$$
Explanation
Given, $$\displaystyle f\left ( x \right )=\left ( 1-x^{3} \right )^{\frac{1}{3}}$$
Therefore, $$\displaystyle fof\left ( x \right )=f\left [ f\left ( x \right ) \right ]$$
$$\displaystyle =f\left ( \left ( 1-x^{3} \right )^{\frac{1}{3}} \right )=\left [ 1-\left \{ \left ( 1-x^{3} \right )^{\frac{1}{3}} \right \}^{3} \right ]^{\frac{1}{3}}$$
$$\displaystyle =\left [ 1-\left ( 1-x \right )^{3} \right ]^{\frac{1}{3}}=\left ( x^{3} \right )^{\frac{1}{3}}=x$$
$$\displaystyle f:A\rightarrow B$$ defined by f(x) = 2x+3 and if A = {-2,-1,0,1,2} B = {-1,1,3,5,7} then which type of function is f?
Report Question
0%
One-one
0%
Onto
0%
Bijection
0%
Constant
Explanation
As the function is from set A to set B, let us find the range of the elements of A.
$$ f(x) = 2x + 3 $$
$$ => f(-2) = 2(-2) + 3 = -1 $$
$$ => f(-1) = 2(-1) + 3 = 1 $$
$$ => f(0) = 2(0) + 3 = 3 $$
$$ => f(1) = 2(1) + 3 = 5 $$
$$ => f(2) = 2(2) + 3 = 7 $$
We can see that each element of A is mapped to only one and different element of B
Hence, the function is a Bijection function.
The domain of the function $$\displaystyle f\left ( x \right )=\frac{1}{\sqrt{x-3}}$$ is
Report Question
0%
$$\displaystyle x< 3$$
0%
$$\displaystyle x> 3$$
0%
$$\displaystyle x\geq -3$$
0%
$$\displaystyle x\leq 3$$
Explanation
The function will have a value or range only when the denominator $$ \neq 0 $$
$$ => x \neq 3 $$ --- (1)
And since the denominator $$ \sqrt {x=3} $$ is under a square root, $$ x - 3 $$ should always be $$ > 0 $$
This means, $$ x > 3 $$ --- (2)
From 1, and 2, we understand that the domain of the function is $$ x > 3 $$
If f(x) + f(1-x) = 10 then the value of $$\displaystyle f\left ( \frac{1}{10} \right )+f\left ( \frac{2}{10} \right )+.........+f\left ( \frac{9}{10} \right )$$
Report Question
0%
is 45
0%
is 50
0%
is 90
0%
Cannot be determined
Explanation
$$ f(\dfrac {1}{10}) + f(\dfrac {2}{10}) + f(\dfrac {3}{10}) + f(\dfrac {4}{10}) + f(\dfrac {5}{10}) + f(\dfrac {6}{10}) + f(\dfrac {7}{10}) + f(\dfrac {8}{10}) + f(\dfrac {9}{10}) $$
$$ = [f(\dfrac {1}{10}) + f(\dfrac {9}{10}) ] + [ f(\dfrac {2}{10}) + + f(\dfrac {8}{10}) ] + [ f(\dfrac {3}{10}) + + f(\dfrac {7}{10}) ] + [ f(\dfrac {4}{10}) + f(\dfrac {6}{10}) ] + f(\dfrac {5}{10}) ] $$
$$ = 10 + 10 + 10 + 10 + 5 = 45 $$
If $$f (x) = 2x - 1$$ and $$g (x) = 3x + 2$$, then find $$(fog) (x)$$ :
Report Question
0%
$$2 (3x + 1)$$
0%
$$2 ( 3x + 2)$$
0%
$$3 (2x + 1 )$$
0%
$$3 ( 3x + 1 )$$
Explanation
$$fog(x)=2(3x+2)-1=6x+4-1=6x+3=3(2x+1)$$
The domain of the function f(x) = log [x-1] is_______
Report Question
0%
R - {1,-1}
0%
R - {1}
0%
R - {-1}
0%
R - {0}
Explanation
The function will have a value or range only when $$ log [x-1] $$ is defined.
We know that logarithm of all numbers is defined except for $$ log 0 $$ is not defined. This means, $$ x - 1 \neq 0 $$
$$ => x \neq 1 $$
Thus the domain of the given function is $$R - $$ { $$ 1 $$} $$
If f = {(1,3) (2,1) (3,4) (4,2)} and g = {(1,2) (2,3) (3,4) (4,1)} then find n(fog)
Report Question
0%
12
0%
16
0%
4
0%
5
Explanation
we can find $$ n(fog) $$ by finding the range of the domain of $$f $$
In $$ (1,3) $$ as the range $$ 3 $$ is mapped to $$ 4$$ in $$g $$, the ordered pair here for $$fog $$ is $$ (1,4) $$
In $$ (2,1) $$ as the range $$ 1 $$ is mapped to $$2 $$ in $$g $$, the ordered pair here for $$fog $$ is $$ (2,2) $$
In $$ (3,4) $$ as the range $$ 4 $$ is mapped to $$ 1 $$ in $$g $$, the ordered pair here for $$fog $$ is $$ (3,1) $$
In $$ (4,2) $$ as the range $$ 2 $$ is mapped to $$ 3 $$ in $$g $$, the ordered pair here for $$fog $$ is $$ (4,3) $$
As we have $$ 4 $$ ordered pairs for $$ fog $$ , we have $$ n(fog) = 4 $$
If $$f(x) = -x^2+1, g(x) = -\sqrt[3]{x}$$ then (gofogofogogog) (x) is.
Report Question
0%
an odd function
0%
an even function
0%
a polynomial function
0%
an identity function
Explanation
If $$f(x) = -x^2+1$$......
$$f(x) = -x^2+1, g(x) = -\sqrt[3]{x}$$........
$$\Rightarrow$$ $$f$$ is even and $$g$$ is odd
$$\therefore$$ $$gogog$$ is even
$$\Rightarrow$$ $$fogogog$$ is even
$$\Rightarrow$$ $$gofogofogogog$$ is even.
The domain of the function, $$\displaystyle f(x) = \frac{\left | x \right |\,-2}{\left | x \right |\,-3}$$ is ..........
Report Question
0%
$$R$$
0%
$$R - \{2, 3\}$$
0%
$$R - \{2, -2\}$$
0%
$$R - \{-3, 3\}$$
Explanation
In $$f(x)$$ the only cause for function to be undefined will be if the denominator becomes 0.
Hence $$x\in R-\{-3,3\}$$
If f(x)=2x-1 and g(x)=3x+2 then find (fog) (x)
Report Question
0%
2(3x+1)
0%
2(3x+2)
0%
3(2x+1)
0%
3(3x+1)
Explanation
$$(fog)(x) = f(g(x)) = 2(3x+2) -1 = 6x+4-1 = 6x+3 = 3(2x+1) $$
If f(x) = 2x+1 and g(x) = 3x-5 then find $$\left ( fog \right )^{-1}\left ( 0 \right )$$
Report Question
0%
5/3
0%
3/2
0%
2/3
0%
3/5
Explanation
$$ (fog)(x) = f(g(x)) = 2(3x-5) + 1 = 6x-10 + 1 = 6x-9 $$
Let $$ (fog)(x)= y $$
Then, to find $$ (fog)^{-1} (x)$$, we find $$ x $$ in terms of $$y $$
So, $$ 6x-9 = y $$
$$ => x = \dfrac {y+9}{6} $$
$$ => (fog)^{-1} (x)= \dfrac {y+9}{6} $$
$$ => (fog)^{-1} (0)= \dfrac {0+9}{6} = \dfrac {3}{2} $$
Find $$\left( f\circ g \right) \left( 3 \right) $$ when $$f\left( x \right) =7x-6$$ and $$g\left( x \right) =5{ x }^{ 2 }-7x-6$$.
Report Question
0%
$$-36$$
0%
$$1014$$
0%
$$-90$$
0%
$$120$$
Explanation
We have, $$f(x)=7x-6$$ and $$g(x)=5x^2-7x-6$$
Then,$$(f\circ g)(x)$$
$$=f(g(x))$$
$$=f(5x^2-7x-6)$$
$$=7(5x^2-7x-6)-6$$
$$=35x^2-49x-42-6$$
$$=35x^2-49x-48$$
$$\therefore (f\circ g)(3)$$
$$=35(3)^2-49(3)-48$$
$$=315-147-48$$
$$=120$$
So, $$\text{D}$$ is the correct option.
If f is a constant function and f(100)=100 then f(2007)=_____
Report Question
0%
2007
0%
100
0%
0
0%
None of these
Explanation
A constant function $$ f(x) $$ will have the result as a constant for any value of $$ x $$
So, if $$ f(100) = 100 $$
then $$ f(2007 ) $$ is also $$ 100 $$
If $$f(x)\, =\, (p\, -\, x^n)^{1/n},\, p\, >\, 0$$ and $$n$$ is a positive integer, then $$f(f(x)) =$$
Report Question
0%
$$x$$
0%
$$x^n$$
0%
$$p^{1/n}$$
0%
$$p\, -\, x^n$$
Explanation
Given, $$f(x)=(p-x^{n})^{\dfrac{1}{n}}$$
$$\therefore f(f(x))=(p-((p-x^{n})^{\dfrac{1}{n}})^{n})^{\dfrac{1}{n}}$$
$$=(p-(p-x^{n}))^{\dfrac{1}{n}}$$
$$=(x^{n})^{\dfrac{1}{n}}$$
$$=x$$
If $$f:R\rightarrow R$$ and $$g:R\rightarrow R$$ are defined by $$f\left( x \right) =\left| x \right| $$ and $$g\left( x \right) =\left[ x-3 \right] $$ for $$x\in R$$, then
$$g\left( f\left( x \right) \right) :\left\{ -\dfrac { 8 }{ 5 } < x < \dfrac { 8 }{ 5 } \right\} $$ is equal to
[.] is Greatest integer function
Report Question
0%
$$\left\{ 0,1 \right\} $$
0%
$$\left\{ 1,2 \right\} $$
0%
$$\left\{ -3,-2 \right\} $$
0%
$$\left\{ 2,3 \right\} $$
Explanation
Given that, $$f\left( x \right) =\left| x \right| $$ and $$g\left( x \right) =\left[ x-3 \right] $$
For $$-\dfrac { 8 }{ 5 } < x < \dfrac { 8 }{ 5 } , 0\le f\left( x \right) < \dfrac { 8 }{ 5 } $$
Now, for $$0 < f \left( x \right) < 1$$,
$$g\left( f\left( x \right) \right) = \left[ f\left( x \right) -3 \right] $$
$$=-3\quad \because -3\le f\left( x \right) -3 < -2$$
Again, for $$1 < f\left( x \right) < 1.6$$
$$g\left( f\left( x \right) \right) =-2$$
$$\because -2\le f\left( x \right) -3 < -1.4$$
Hence, required set is $$\left\{ -3,-2 \right\} $$
Let $$R$$ be the set of real numbers and the functions $$f: R \rightarrow R$$ and $$g: R\rightarrow R$$ be defined by $$f(x) = x^{2} + 2x - 3$$ and $$g(x) = x + 1$$. Then the value of $$x$$ for which $$f(g(x)) = g(f(x))$$ is
Report Question
0%
$$-1$$
0%
$$0$$
0%
$$1$$
0%
$$2$$
Explanation
According to the question,
$$f(g(x)) = g(f(x))$$
$$\Rightarrow f(x + 1) = g(x^{2} + 2x - 3)$$
$$\Rightarrow (x + 1)^{2} + 2 (x + 1) - 3 = x^{2} + 2x - 3 + 1$$
$$\Rightarrow x^{2} + 1 + 2x + 2x + 2 - 3 = x^{2} + 2x - 2$$
$$\Rightarrow x^{2} + 4x = x^{2} + 2x - 2$$
$$\Rightarrow x^{2} + 4x - x^{2} - 2x + 2 = 0$$
$$\Rightarrow 2x + 2 = 0$$
$$\Rightarrow 2x = -2$$
$$\Rightarrow x = -1$$
Let $$f:R\rightarrow R$$ be such that $$f$$ is injective and $$f(x)f(y)=f(x+y)$$ for all $$x,y\in R$$, if $$f(x), f(y)$$ and $$f(z)$$ are in GP, then $$x,y$$ and $$z$$ are in
Report Question
0%
AP always
0%
GP always
0%
AP depending on the values of $$x,y$$ and $$z$$
0%
GP depending on the values of $$x,y$$ and $$z$$
Explanation
Let the funtion $$f(x)={a}^{kx}$$
which define in $$f:R\rightarrow R$$ and injective also.
Now, we have
$$f(x)f(y)=f(x+y)$$
$$\Rightarrow$$ $${a}^{kx}.{a}^{ky}={a}^{k(x+y)}$$
$$\Rightarrow$$ $${a}^{k(x+y)}={a}^{k(x+y)}$$
$$\because$$ $$f(x), f(y)$$ and $$f(z)$$ are in GP
$$\therefore$$ $$f({y}^{2})=f(x).f(z)$$
$$\Rightarrow$$ $${a}^{2ky}={a}^{kx}.{a}^{kz}$$
$$\Rightarrow$$ $${e}^{2ky}={e}^{k(x+z)}$$
On comparing, we get
$$2ky=k(x+z)$$ $$\Rightarrow$$ $$2y=x+z$$
$$\Rightarrow$$ $$x,y$$ and $$z$$ are in AP
Let Q be the set of all rational numbers in [0, 1] and $$f : [0, 1]\rightarrow [0, 1]$$ be defined by $$f(x)=\begin{cases}x&for&x\in Q\\ 1-x&for&x\notin Q\end{cases}$$
Then the set $$S=\{x\in [0, 1]: (f\, o \, f)(x)=x\}$$ is equal to
Report Question
0%
[0, 1]
0%
Q
0%
[0, 1] - Q
0%
(0, 1)
Explanation
Let $$x\in Q$$, then,
$$f(x)=x$$ where $$x\in Q$$
So, $$fof(x)=f(f(x))=f(x)=x$$ as $$x\in Q$$
$$\therefore fof(x)=x$$ when $$x \in Q$$
Now,
Let $$x\notin Q$$ then
$$f(x) =1-x$$
$$\therefore fof(x)=1-(1-x) = x$$
as $$1-x\notin Q$$ as $$x\notin Q$$
where $$x\notin Q$$
$$fof(x)=\begin{cases}x \,where\, x\in Q \,\&\, x\in [0, 1] \\ x\, where x\notin Q\, \&\, x\in [0, 1] \end{cases}$$
$$\therefore$$ the set $$S = [0, 1]$$
If $$f(x)={2}^{100}x+1, g(x)={3}^{100}x+1$$, then the set of real numbers $$x$$ such that $$f\left\{ g(x) \right\} =x$$ is
Report Question
0%
empty
0%
a singleton
0%
a finite set with more than one element
0%
infinite
Explanation
Given $$f(x)={2}^{100}x+1, g(x)={3}^{100}x+1$$
Now $$fo{g(x)}=x$$
$$\Rightarrow$$ $$f({3}^{100}.x+1)=x\\$$
$$\Rightarrow$$ $${2}^{100}({3}^{100}.x+1)+1=x\\$$
$$\Rightarrow$$ $${6}^{100}.x+{2}^{100}+1=x\\$$
$$\Rightarrow$$ $$x(1-{6}^{100})=(1+{2}^{100})$$
$$\Rightarrow$$ $$x=\cfrac{1+{2}^{100}}{1-{6}^{100}}$$
Hence $$fog(x)=x$$ represent a singleton set.
If $$f: R\rightarrow R^{+}$$ and $$g: R^{+} \rightarrow R$$ are such that $$g(f(x)) = |\sin x|$$ and $$f(g(x)) = (\sin \sqrt {x})^{2}$$, then a possible choice for f and g is
Report Question
0%
$$f(x) = x^{2} , g(x) = \sin \sqrt {x}$$
0%
$$f(x) = \sin x, g(x) = |x|$$
0%
$$f(x) = \sin^{2}x, g(x) = \sqrt {x}$$
0%
$$f(x) = x^{2}, g(x) = \sqrt {x}$$
Explanation
As f returns only positive values and takes any real number it can be mod or square hence option 2 is eliminated
For g only positive values has to be given and it will return any real number
so on trying the option only option $$A$$ and $$C$$ results in the given equation ie $$g(f(x)) = |sin x|$$
Now function g should take positive values and return real values which is satisfied by only option $$A$$ as in option $$C$$ square root of positive number will always result in positive number while $$sin\sqrt{x}$$ will give -ve real numbers as well.
The domain of the function $$f(x) = \log (1 - x) + \sqrt {x^{2} - 1}$$
Report Question
0%
$$(-\infty, -1)$$
0%
$$(-\infty, -1]$$
0%
$$(-\infty, 2]$$
0%
$$(-\infty, 0)$$
Explanation
$$\log(1 - x)$$ is defined if $$1 - x > 0\Rightarrow x < 1 \Rightarrow x\epsilon (-\infty, 1) ..... (1)$$
$$\sqrt {x^{2} - 1}$$ is defined if $$x^{2} - 1 \geq 0\Rightarrow x^{2} \geq 1$$
$$\Rightarrow x \geq 1$$ or $$ x \leq -1 ..... (2)$$
$$\therefore$$ Required domain is the instruction of $$(1)$$ and $$(2)$$
i.e. $$(-\infty, -1]$$
If $$h(x)={x}^{3}+x$$ and $$g(x)=2x+3$$, then calculate $$g(h(2))$$.
Report Question
0%
$$7$$
0%
$$10$$
0%
$$17$$
0%
$$19$$
0%
$$23$$
Explanation
Given, $$h(x)=x^3+x$$
$$\therefore h(2)=2^3+2$$
$$\Rightarrow h(2)=8+2=10$$
Also given, $$g(x)=2x+3$$
$$\Rightarrow g(h(2))=g(10)$$
$$\because h(2)=10$$
Then the value of $$g(10)=2\times 10+3$$
$$\Rightarrow g(10)=20+3=23$$
$$f(x) = x^{2} + d$$ and $$g(x) = 2x^{2}$$, where d is a constant. If $$\dfrac {f(g(2))}{f(2)} = 4$$, find the value of $$d$$.
Report Question
0%
$$16$$
0%
5
0%
22
0%
18
Explanation
Given, $$f(x)=x^2+d$$ and $$g(x)=2x^2$$
$$g(2)=2(2^{2})=8$$
Hence, $$f(g(2))=f(8)=64+d$$
Therefore $$\dfrac{f(g(2))}{f(2)}=\dfrac{64+d}{4+d}=4$$
Hence, $$64+d=16+4d$$
$$\Rightarrow 48=3d$$
$$\Rightarrow d=16$$
Find the correct
expression for $$\displaystyle f\left( g\left( x \right) \right) $$
if $$\displaystyle f(x)=4x+1$$ and $$\displaystyle g\left( x \right) ={ x }^{ 2 }-2$$
Report Question
0%
$$\displaystyle -{ x }^{ 2 }+4x+1$$
0%
$$\displaystyle { x }^{ 2 }+4x-1$$
0%
$$\displaystyle 4{ x }^{ 2 }-7$$
0%
$$\displaystyle 4{ x }^{ 2 }-1$$
0%
$$\displaystyle 16{ x }^{ 2 }+8x-1$$
Explanation
$$f(x)=4x+1$$ and $$g(x)=x^2-2$$
$$\Rightarrow f(g(x))=f(x^2-2)$$
$$\Rightarrow (4(x^2-2)+1$$
$$\Rightarrow 4x^2-8+1$$
$$\Rightarrow 4x^2-7$$
If $$f(g(a)) = 0$$ where $$ g(x) = \dfrac {x}{4} + 2$$ and $$f(x) = |x^{2} - 3|$$, find the possible value of $$a.$$
Report Question
0%
$$-8+4\sqrt{3}$$
0%
$$-(8+4\sqrt{3})$$
0%
$$6$$
0%
$$18$$
Explanation
Given $$g(a)=\dfrac{a}{4}+2,f(x)=|x^2|-3$$ and $$f(g(a))=0$$
Now, $$f(g(a))=|g(a)^{2}-3|=|(\dfrac{a}{4}+2)^{2}-3|$$
$$=|\dfrac{a^{2}}{16}+a+4-3|=|\dfrac{a^{2}}{16}+a+1|=\dfrac{|a^{2}+16a+16|}{16}$$
but
$$f(g(a))=0$$
$$\Rightarrow\dfrac{|a^2+16a+16|}{16}=0$$
$$\Rightarrow a^{2}+16a+16=0$$ $$[\because |x|=0\Rightarrow x=0]$$
$$\Rightarrow a= \dfrac{-16\pm\sqrt{16^2-4(1)(64)}}{2}$$
$$\Rightarrow a=\dfrac{-16\pm\sqrt{256-64}}{2}=\dfrac{-16\pm8\sqrt{3}}{2}$$
Hence,
$$a=-(8+4\sqrt{3})$$ and $$a=-8+4\sqrt{3}$$.
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
0
Answered
0
Not Answered
0
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page