CBSE Questions for Class 11 Commerce Applied Mathematics Functions Quiz 4 - MCQExams.com

If $$f(x)=\begin{cases} x+1,\quad \quad if\quad x\, \leq \, 1 \\ 5-x^{ 2 }\quad \quad if\quad x>1 \end{cases},g(x)=\begin{cases} x\quad \quad if\quad x\leq 1 \\ 2-x\quad if\quad x>1 \end{cases}$$

and $$x\, \in\, (1, 2)$$, then $$g(f(x))$$ is equal to
  • $$x^{2}\, +\, 3$$
  • $$x^{2}\, -\, 3$$
  • $$5\, -\, x^{2}$$
  • $$1 - x$$
Which of the functions defined below are NOT one-one function(s) 
  • $$f(x)\, =\, 5(x^{2}\, +\, 4),\, (x\, \in\, R)$$
  • $$g(x)\, =\, 2x\, +\, \dfrac1x$$
  • $$h(x)\, =\, ln(x^{2}\, +\, x\, +\, 1)\,, (x\, \in\, R)$$
  • $$f(x)\, =\, e^{-x}$$
If $$g(x) = 2x + 1$$ and $$h(x) = 4x^{2} + 4x + 7$$, find a function $$f$$ such that $$f o g = h$$
  • $$f(x) = x^{3} - 6$$
  • $$f(x) = x^{2} + 6$$
  • $$f(x) = x^{2} - 6$$
  • $$f(x) = (2x+1)^2 + 6$$
Which of the following are two distinct linear functions which map the interval $$[-1, 1]$$ onto $$[0, 2]$$
  • $$f(x) = 1 + x$$ or $$1 - x$$
  • $$f(x) = 1 + 2x$$ or $$1 - x$$
  • $$f(x) = 1 + x$$ or $$1 - 2x$$
  • $$f(x) = 1 + x$$ or $$2 - x$$
Which of the following is an onto function
  • $$f\, :\, [0,\, \pi]\, \rightarrow\, [-\, 1\, 1], f(x)\, =\, \sin\, x$$
  • $$f\, :\, [0, \pi]\, \rightarrow\, [-1, 1],\, f(x)\, =\, \cos\, x$$
  • $$f\, :\, R\, \rightarrow\, R,\, f(x)\, =\, e^{x}$$
  • $$f\, :\, Q\, \rightarrow\, R, f(x)\, =\, x^{3}$$
If $$ f : R \rightarrow R, f(x) = (x + 1)^2$$ and $$g : R \rightarrow  R, g(x) = x^2 + 1 $$ then $$(fog)(3)$$ is equal to
  • $$121$$
  • $$144$$
  • $$112$$
  • $$11$$
If $$f(x) = \log x$$, $$g(x) = x^3$$, then $$f[g(a)] + f[g(b)]$$ equals
  • $$f[g(a) + g(b)]$$
  • $$3f(ab)$$
  • $$g[f(ab)]$$
  • $$g[f(a) + f(b)]$$
If $$f(x) = x^3 $$ and $$g(x) = sin2x$$, then
  • $$g[f(1)] = 1$$
  • $$f(g(\pi/12) = 1/8$$
  • $$g{f(2)} = \sin 2$$
  • none of these
If $$f(x) = (a x^n)^{1/n},$$ where $$\ n \in N$$, then $$f\{f(x)\}$$ equals
  • $$0$$
  • $$x$$
  • $$x^n$$
  • none of these
The domain of the function $$\ln (x-1)$$ is.
  • $$[0, 1)$$
  • $$R$$
  • $$R -Z$$
  • $$(1, \infty )$$
If $$f(x) =\ln {\displaystyle \frac { 1+x }{ 1-x }  } $$ and $$g(x)=\displaystyle \frac {3x+x^3}{1+3x^2}$$, then $$f[g(x)]$$ equals.

  • $$f(x)$$
  • $$[f(x)]^3$$
  • $$3f(x)$$
  • $${f(x)}^2$$
If $$f(x) = \left\{\begin{matrix} 1&x \in Q \\ 0 &x \notin  Q\end{matrix}\right.$$ then $$fof(\sqrt 3 )$$ is equal to
  • $$0$$
  • $$1$$
  • $$\sqrt 3$$
  • none of these
Let $$f(x) = e^{3x}, g(x) = \log_ex, x > 0$$, then $$fog (x)$$ is
  • $$3x$$
  • $$x^3$$
  • $$\log_{10}3x$$
  • $$\log3x$$
$$f(x)\, >\, x;\, \forall\, x\, \epsilon\, R.$$ The equation $$f (f(x)) -x = 0$$ has
  • Atleast one real root
  • More than one real root
  • No real root if f(x) is a polynomial & one real root if f(x) is not a polynomial
  • No real root at all
If functions $$f\left ( x \right )$$ and $$g\left ( x \right )$$ are defined on $$R\rightarrow R$$ such that
$$f(x)=x+3, x$$ $$\in  $$ rational
         $$ =4x, x$$ $$\in $$ irrational
$$g(x)=x+\sqrt{5}$$, x$$\in $$ irrational
      $$  =-x, x$$ $$\in $$ rational
then $$\left ( f-g \right )\left ( x \right )$$ is
  • one-one & onto
  • neither one-one nor onto
  • one-one but not onto
  • onto but not one-one
The domain of the function,  $$\displaystyle y=f(x)=\sqrt {\log_{10} \left ( \frac {5x-x^2}{4} \right )}$$ is
  • $$[1, 4]$$
  • $$(1, 4)$$
  • $$[1, 4)$$
  • $$(1, 4]$$
Let $$f(x) =\frac {ax+b} {cx+d}$$. Then fof(x) = x provided that.
  • d =- a
  • d = a
  • a = b = c = d = 1
  • a = b = 1
If $$f(x) =\dfrac {1}{1-x}, x \neq 0, 1$$ then the graph of the function $$y = f[f\{f(x)\}]$$ for $$x > 1 $$  is
  • a straight line
  • a circle
  • an ellipse
  • a pair of straight lines
Let $$\displaystyle f\left ( x \right )=\frac{3}{2}+\sqrt{x-\frac{3}{4}}$$ be a function and $$g\left ( x \right )$$ be another function such that $$g\left ( f\left ( x \right ) \right )=x,$$ then the value of $$g\left ( 20 \right )$$ will be
  • $$333$$
  • $$335$$
  • $$338$$
  • $$343$$
Let $$f : R \rightarrow  R, g : R \rightarrow R$$ be two function such that
$$f(x) = 2x-  3, g(x) = x^3 + 5$$
The function $$(fog)^{1}(x)$$ is equal to.
  • $$\left ( \dfrac {x+7}{2} \right )^{1/3}$$
  • $$\left (x- \dfrac {7}{2} \right )^{1/3}$$
  • $$\left ( \dfrac {x-2}{7} \right )^{1/3}$$
  • $$\left ( \dfrac {x-7}{2} \right )^{1/3}$$
The domain of the function, $$f(x) = \displaystyle \dfrac {1}{\sqrt{[x]^2-[x]-6}}$$  is
  • $$(-\infty , -3] \cup [4, \infty )$$
  • $$(\infty , 2) \cup [4, \infty )$$
  • $$(\infty , 2) \cup (4, \infty )$$
  • none of these
The domain of the function f(x)=$$\displaystyle \frac{\sqrt{-\log_{0.3}(x-1)}} {\sqrt{-x^2+2x+8}}$$ is
  • $$(1, 4)$$
  • $$(2, 4)$$
  • $$[2, 4)$$
  • none of these
If $$f : [0, \Pi ] \rightarrow  [-1, 1]$$, f(x) = cosx, then f is.
  • one-one
  • onto
  • one-one onto
  • none of these
The domain of the function $$f(x)=\sqrt {1-{\sqrt{1-\sqrt{1-x^2}}}}$$ is .
  • $$(\infty , 1) $$
  • $$(1, \infty) $$
  • $$[0, 1]$$
  • $$[-1, 1]$$
If X = {2,3,5,7,11} and Y = {4,6,8,9,10} then find the number of one-one functions from X to Y
  • 720
  • 120
  • 24
  • 12
If $$\displaystyle f\left ( x \right )=\left ( 1-x^{3} \right )^{\frac{1}{3}}$$, then find $$fof(x)$$
  • $$\dfrac1x$$
  • $$x$$
  • $$x^2$$
  • $$x^3$$
$$\displaystyle f:A\rightarrow B$$ defined by f(x) = 2x+3 and if A = {-2,-1,0,1,2} B = {-1,1,3,5,7} then which type of function is f?
  • One-one
  • Onto
  • Bijection
  • Constant
The domain of the function $$\displaystyle f\left ( x \right )=\frac{1}{\sqrt{x-3}}$$ is
  • $$\displaystyle x< 3$$
  • $$\displaystyle x> 3$$
  • $$\displaystyle x\geq -3$$
  • $$\displaystyle x\leq 3$$
If f(x) + f(1-x) = 10 then the value of $$\displaystyle f\left ( \frac{1}{10} \right )+f\left ( \frac{2}{10} \right )+.........+f\left ( \frac{9}{10} \right )$$
  • is 45
  • is 50
  • is 90
  • Cannot be determined
If $$f (x) = 2x - 1$$ and $$g (x) = 3x + 2$$, then find $$(fog) (x)$$ :
  • $$2 (3x + 1)$$
  • $$2 ( 3x + 2)$$
  • $$3 (2x + 1 )$$
  • $$3 ( 3x + 1 )$$
The domain of the function f(x) = log [x-1] is_______
  • R - {1,-1}
  • R - {1}
  • R - {-1}
  • R - {0}
If f = {(1,3) (2,1) (3,4) (4,2)} and g = {(1,2) (2,3) (3,4) (4,1)} then find n(fog)
  • 12
  • 16
  • 4
  • 5
If $$f(x) = -x^2+1, g(x) = -\sqrt[3]{x}$$ then (gofogofogogog) (x) is.
  • an odd function
  • an even function
  • a polynomial function
  • an identity function
The domain of the function, $$\displaystyle f(x) = \frac{\left | x \right |\,-2}{\left | x \right |\,-3}$$ is ..........
  • $$R$$
  • $$R - \{2, 3\}$$
  • $$R - \{2, -2\}$$
  • $$R - \{-3, 3\}$$
If f(x)=2x-1 and g(x)=3x+2  then find (fog) (x)
  • 2(3x+1)
  • 2(3x+2)
  • 3(2x+1)
  • 3(3x+1)
If f(x) = 2x+1 and g(x) = 3x-5 then find $$\left ( fog \right )^{-1}\left ( 0 \right )$$
  • 5/3
  • 3/2
  • 2/3
  • 3/5
Find $$\left( f\circ g \right) \left( 3 \right) $$ when $$f\left( x \right) =7x-6$$ and $$g\left( x \right) =5{ x }^{ 2 }-7x-6$$.
  • $$-36$$
  • $$1014$$
  • $$-90$$
  • $$120$$
If f is a constant function and f(100)=100  then f(2007)=_____
  • 2007
  • 100
  • 0
  • None of these
If $$f(x)\, =\, (p\, -\, x^n)^{1/n},\, p\, >\, 0$$ and $$n$$ is a positive integer, then $$f(f(x)) =$$
  • $$x$$
  • $$x^n$$
  • $$p^{1/n}$$
  • $$p\, -\, x^n$$
If $$f:R\rightarrow R$$ and $$g:R\rightarrow R$$ are defined by $$f\left( x \right) =\left| x \right| $$ and $$g\left( x \right) =\left[ x-3 \right] $$ for $$x\in R$$, then
$$g\left( f\left( x \right)  \right) :\left\{ -\dfrac { 8 }{ 5 } < x < \dfrac { 8 }{ 5 }  \right\} $$ is equal to
[.] is Greatest integer function
  • $$\left\{ 0,1 \right\} $$
  • $$\left\{ 1,2 \right\} $$
  • $$\left\{ -3,-2 \right\} $$
  • $$\left\{ 2,3 \right\} $$
Let $$R$$ be the set of real numbers and the functions $$f: R \rightarrow R$$ and $$g: R\rightarrow R$$ be defined by $$f(x) = x^{2} + 2x - 3$$ and $$g(x) = x + 1$$. Then the value of $$x$$ for which $$f(g(x)) = g(f(x))$$ is
  • $$-1$$
  • $$0$$
  • $$1$$
  • $$2$$
Let $$f:R\rightarrow R$$ be such that $$f$$ is injective and $$f(x)f(y)=f(x+y)$$ for all $$x,y\in R$$, if $$f(x), f(y)$$ and $$f(z)$$ are in GP, then $$x,y$$ and $$z$$ are in
  • AP always
  • GP always
  • AP depending on the values of $$x,y$$ and $$z$$
  • GP depending on the values of $$x,y$$ and $$z$$
Let Q be the set of all rational numbers in [0, 1] and $$f : [0, 1]\rightarrow [0, 1]$$ be defined by $$f(x)=\begin{cases}x&for&x\in Q\\ 1-x&for&x\notin Q\end{cases}$$
Then the set $$S=\{x\in [0, 1]: (f\, o \, f)(x)=x\}$$ is equal to
  • [0, 1]
  • Q
  • [0, 1] - Q
  • (0, 1)
If $$f(x)={2}^{100}x+1, g(x)={3}^{100}x+1$$, then the set of real numbers $$x$$ such that $$f\left\{ g(x) \right\} =x$$ is
  • empty
  • a singleton
  • a finite set with more than one element
  • infinite
If $$f: R\rightarrow R^{+}$$ and $$g: R^{+} \rightarrow R$$ are such that $$g(f(x)) = |\sin x|$$ and $$f(g(x)) = (\sin \sqrt {x})^{2}$$, then a possible choice for f and g is
  • $$f(x) = x^{2} , g(x) = \sin \sqrt {x}$$
  • $$f(x) = \sin x, g(x) = |x|$$
  • $$f(x) = \sin^{2}x, g(x) = \sqrt {x}$$
  • $$f(x) = x^{2}, g(x) = \sqrt {x}$$
The domain of the function $$f(x) = \log (1 - x) + \sqrt {x^{2} - 1}$$
  • $$(-\infty, -1)$$
  • $$(-\infty, -1]$$
  • $$(-\infty, 2]$$
  • $$(-\infty, 0)$$
If $$h(x)={x}^{3}+x$$ and $$g(x)=2x+3$$, then calculate $$g(h(2))$$.
  • $$7$$
  • $$10$$
  • $$17$$
  • $$19$$
  • $$23$$
$$f(x) = x^{2} + d$$ and $$g(x) = 2x^{2}$$, where d is a constant. If $$\dfrac {f(g(2))}{f(2)} = 4$$, find the value of $$d$$.
  • $$16$$
  • 5
  • 22
  • 18
Find the correct expression for $$\displaystyle f\left( g\left( x \right)  \right) $$ if $$\displaystyle f(x)=4x+1$$ and $$\displaystyle g\left( x \right) ={ x }^{ 2 }-2$$  
  • $$\displaystyle -{ x }^{ 2 }+4x+1$$
  • $$\displaystyle { x }^{ 2 }+4x-1$$
  • $$\displaystyle 4{ x }^{ 2 }-7$$
  • $$\displaystyle 4{ x }^{ 2 }-1$$
  • $$\displaystyle 16{ x }^{ 2 }+8x-1$$
If $$f(g(a)) = 0$$  where $$ g(x) = \dfrac {x}{4} + 2$$ and $$f(x) = |x^{2} - 3|$$, find the possible value of $$a.$$
  • $$-8+4\sqrt{3}$$
  • $$-(8+4\sqrt{3})$$
  • $$6$$
  • $$18$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers