Processing math: 48%

CBSE Questions for Class 11 Commerce Applied Mathematics Functions Quiz 4 - MCQExams.com

If f(x)={x+1,ifx15x2ifx>1,g(x)={xifx12xifx>1

and x(1,2), then g(f(x)) is equal to
  • x2+3
  • x23
  • 5x2
  • 1x
Which of the functions defined below are NOT one-one function(s) 
  • f(x)=5(x2+4),(xR)
  • g(x)=2x+1x
  • h(x)=ln(x2+x+1),(xR)
  • f(x)=ex
If g(x)=2x+1 and h(x)=4x2+4x+7, find a function f such that fog=h
  • f(x)=x36
  • f(x)=x2+6
  • f(x)=x26
  • f(x)=(2x+1)2+6
Which of the following are two distinct linear functions which map the interval [1,1] onto [0,2]
  • f(x)=1+x or 1x
  • f(x)=1+2x or 1x
  • f(x)=1+x or 12x
  • f(x)=1+x or 2x
Which of the following is an onto function
  • f:[0,π][11],f(x)=sinx
  • f:[0,π][1,1],f(x)=cosx
  • f:RR,f(x)=ex
  • f:QR,f(x)=x3
If f:RR,f(x)=(x+1)2 and g:RR,g(x)=x2+1 then (fog)(3) is equal to
  • 121
  • 144
  • 112
  • 11
If f(x)=logx, g(x)=x3, then f[g(a)]+f[g(b)] equals
  • f[g(a)+g(b)]
  • 3f(ab)
  • g[f(ab)]
  • g[f(a)+f(b)]
If f(x)=x3 and g(x)=sin2x, then
  • g[f(1)]=1
  • f(g(π/12)=1/8
  • gf(2)=sin2
  • none of these
If f(x)=(axn)1/n, where  nN, then f{f(x)} equals
  • 0
  • x
  • xn
  • none of these
The domain of the function ln(x1) is.
  • [0,1)
  • R
  • RZ
  • (1,)
If f(x)=ln1+x1x and g(x)=3x+x31+3x2, then f[g(x)] equals.

  • f(x)
  • [f(x)]3
  • 3f(x)
  • f(x)2
If f(x)={1xQ0xQ then fof(3) is equal to
  • 0
  • 1
  • 3
  • none of these
Let f(x)=e3x,g(x)=logex,x>0, then fog(x) is
  • 3x
  • x3
  • log103x
  • log3x
f(x)>x;xϵR. The equation f(f(x))x=0 has
  • Atleast one real root
  • More than one real root
  • No real root if f(x) is a polynomial & one real root if f(x) is not a polynomial
  • No real root at all
If functions f(x) and g(x) are defined on RR such that
f(x)=x+3,x rational
         =4x,x irrational
g(x)=x+5, x irrational
      =x,x rational
then (fg)(x) is
  • one-one & onto
  • neither one-one nor onto
  • one-one but not onto
  • onto but not one-one
The domain of the function,  y=f(x)=log10(5xx24) is
  • [1,4]
  • (1,4)
  • [1,4)
  • (1,4]
Let f(x)=ax+bcx+d. Then fof(x) = x provided that.
  • d =- a
  • d = a
  • a = b = c = d = 1
  • a = b = 1
If f(x)=11x,x0,1 then the graph of the function y=f[f{f(x)}] for x>1  is
  • a straight line
  • a circle
  • an ellipse
  • a pair of straight lines
Let f(x)=32+x34 be a function and g(x) be another function such that g(f(x))=x, then the value of g(20) will be
  • 333
  • 335
  • 338
  • 343
Let f:RR,g:RR be two function such that
f(x)=2x3,g(x)=x3+5
The function (fog)1(x) is equal to.
  • (x+72)1/3
  • (x72)1/3
  • (x27)1/3
  • (x72)1/3
The domain of the function, f(x)=1[x]2[x]6  is
  • (,3][4,)
  • (,2)[4,)
  • (,2)(4,)
  • none of these
The domain of the function f(x)=log0.3(x1)x2+2x+8 is
  • (1,4)
  • (2,4)
  • [2,4)
  • none of these
If f:[0,Π][1,1], f(x) = cosx, then f is.
  • one-one
  • onto
  • one-one onto
  • none of these
The domain of the function f(x)=111x2 is .
  • (,1)
  • (1,)
  • [0,1]
  • [1,1]
If X = {2,3,5,7,11} and Y = {4,6,8,9,10} then find the number of one-one functions from X to Y
  • 720
  • 120
  • 24
  • 12
If f(x)=(1x3)13, then find fof(x)
  • 1x
  • x
  • x2
  • x3
f:AB defined by f(x) = 2x+3 and if A = {-2,-1,0,1,2} B = {-1,1,3,5,7} then which type of function is f?
  • One-one
  • Onto
  • Bijection
  • Constant
The domain of the function f(x)=1x3 is
  • x<3
  • x>3
  • x3
  • x3
If f(x) + f(1-x) = 10 then the value of f(110)+f(210)+.........+f(910)
  • is 45
  • is 50
  • is 90
  • Cannot be determined
If f (x) = 2x - 1 and g (x) = 3x + 2, then find (fog) (x) :
  • 2 (3x + 1)
  • 2 ( 3x + 2)
  • 3 (2x + 1 )
  • 3 ( 3x + 1 )
The domain of the function f(x) = log [x-1] is_______
  • R - {1,-1}
  • R - {1}
  • R - {-1}
  • R - {0}
If f = {(1,3) (2,1) (3,4) (4,2)} and g = {(1,2) (2,3) (3,4) (4,1)} then find n(fog)
  • 12
  • 16
  • 4
  • 5
If f(x) = -x^2+1, g(x) = -\sqrt[3]{x} then (gofogofogogog) (x) is.
  • an odd function
  • an even function
  • a polynomial function
  • an identity function
The domain of the function, \displaystyle f(x) = \frac{\left | x \right |\,-2}{\left | x \right |\,-3} is ..........
  • R
  • R - \{2, 3\}
  • R - \{2, -2\}
  • R - \{-3, 3\}
If f(x)=2x-1 and g(x)=3x+2  then find (fog) (x)
  • 2(3x+1)
  • 2(3x+2)
  • 3(2x+1)
  • 3(3x+1)
If f(x) = 2x+1 and g(x) = 3x-5 then find \left ( fog \right )^{-1}\left ( 0 \right )
  • 5/3
  • 3/2
  • 2/3
  • 3/5
Find \left( f\circ g \right) \left( 3 \right) when f\left( x \right) =7x-6 and g\left( x \right) =5{ x }^{ 2 }-7x-6.
  • -36
  • 1014
  • -90
  • 120
If f is a constant function and f(100)=100  then f(2007)=_____
  • 2007
  • 100
  • 0
  • None of these
If f(x)\, =\, (p\, -\, x^n)^{1/n},\, p\, >\, 0 and n is a positive integer, then f(f(x)) =
  • x
  • x^n
  • p^{1/n}
  • p\, -\, x^n
If f:R\rightarrow R and g:R\rightarrow R are defined by f\left( x \right) =\left| x \right| and g\left( x \right) =\left[ x-3 \right] for x\in R, then
g\left( f\left( x \right)  \right) :\left\{ -\dfrac { 8 }{ 5 } < x < \dfrac { 8 }{ 5 }  \right\} is equal to
[.] is Greatest integer function
  • \left\{ 0,1 \right\}
  • \left\{ 1,2 \right\}
  • \left\{ -3,-2 \right\}
  • \left\{ 2,3 \right\}
Let R be the set of real numbers and the functions f: R \rightarrow R and g: R\rightarrow R be defined by f(x) = x^{2} + 2x - 3 and g(x) = x + 1. Then the value of x for which f(g(x)) = g(f(x)) is
  • -1
  • 0
  • 1
  • 2
Let f:R\rightarrow R be such that f is injective and f(x)f(y)=f(x+y) for all x,y\in R, if f(x), f(y) and f(z) are in GP, then x,y and z are in
  • AP always
  • GP always
  • AP depending on the values of x,y and z
  • GP depending on the values of x,y and z
Let Q be the set of all rational numbers in [0, 1] and f : [0, 1]\rightarrow [0, 1] be defined by f(x)=\begin{cases}x&for&x\in Q\\ 1-x&for&x\notin Q\end{cases}
Then the set S=\{x\in [0, 1]: (f\, o \, f)(x)=x\} is equal to
  • [0, 1]
  • Q
  • [0, 1] - Q
  • (0, 1)
If f(x)={2}^{100}x+1, g(x)={3}^{100}x+1, then the set of real numbers x such that f\left\{ g(x) \right\} =x is
  • empty
  • a singleton
  • a finite set with more than one element
  • infinite
If f: R\rightarrow R^{+} and g: R^{+} \rightarrow R are such that g(f(x)) = |\sin x| and f(g(x)) = (\sin \sqrt {x})^{2}, then a possible choice for f and g is
  • f(x) = x^{2} , g(x) = \sin \sqrt {x}
  • f(x) = \sin x, g(x) = |x|
  • f(x) = \sin^{2}x, g(x) = \sqrt {x}
  • f(x) = x^{2}, g(x) = \sqrt {x}
The domain of the function f(x) = \log (1 - x) + \sqrt {x^{2} - 1}
  • (-\infty, -1)
  • (-\infty, -1]
  • (-\infty, 2]
  • (-\infty, 0)
If h(x)={x}^{3}+x and g(x)=2x+3, then calculate g(h(2)).
  • 7
  • 10
  • 17
  • 19
  • 23
f(x) = x^{2} + d and g(x) = 2x^{2}, where d is a constant. If \dfrac {f(g(2))}{f(2)} = 4, find the value of d.
  • 16
  • 5
  • 22
  • 18
Find the correct expression for \displaystyle f\left( g\left( x \right)  \right)  if \displaystyle f(x)=4x+1 and \displaystyle g\left( x \right) ={ x }^{ 2 }-2  
  • \displaystyle -{ x }^{ 2 }+4x+1
  • \displaystyle { x }^{ 2 }+4x-1
  • \displaystyle 4{ x }^{ 2 }-7
  • \displaystyle 4{ x }^{ 2 }-1
  • \displaystyle 16{ x }^{ 2 }+8x-1
If f(g(a)) = 0  where g(x) = \dfrac {x}{4} + 2 and f(x) = |x^{2} - 3|, find the possible value of a.
  • -8+4\sqrt{3}
  • -(8+4\sqrt{3})
  • 6
  • 18
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers