CBSE Questions for Class 11 Commerce Applied Mathematics Functions Quiz 5 - MCQExams.com

If $$p(x) = \dfrac{x}{x-2}$$ and $$q(x) = \sqrt{9-x}$$, find the value of $$(p\circ  q)(5)$$
  • $$0$$
  • $$\dfrac{8}{7}$$
  • $$2$$
  • Undefined
Consider the functions $$\displaystyle f\left( x \right) =\sqrt { x } $$ and $$\displaystyle g\left( x \right) =7x+b$$. Find the value of $$b$$, if the composite function, $$\displaystyle y=f\left( g\left( x \right)  \right) $$ passes through $$(4, 6)$$. 
  • $$8$$
  • $$-8$$
  • $$-25$$
  • $$-26$$
  • $$\displaystyle 4-7\sqrt { 6 } $$
In real number system, find the domain of the function $$\displaystyle f\left( x \right) =\frac { \sqrt { x-3 }  }{ x-3 } $$.
  • $$\displaystyle x\ge 3$$
  • $$\displaystyle x>3$$
  • $$\displaystyle x<-3$$
  • $$x>-3$$
  • $$\displaystyle x<-3$$ or $$\displaystyle x>3$$
If $$f(x) =$$ $$\sqrt{x}$$ and $$g(x) =$$ $$\sqrt{x^2+4}$$, calculate the value of $$f(g(2))$$.
  • $$0$$
  • $$1.41$$
  • $$1.68$$
  • $$2.45$$
  • $$2.83$$
If $$f(x) = 2x$$ and $$f(f(x)) = x + 1$$, then the value of $$x $$ is
  • $$\dfrac {1}{3}$$
  • $$1$$
  • $$2$$
  • $$3$$
  • $$5$$
If $$f(x) = \sqrt {x^{2} - 4}$$, identify its domain.
  • All real numbers
  • All x such that $$x \geq 2$$
  • All x such that $$x \leq 2$$
  • All x such that $$-2\leq x\leq 2$$
  • All x such that $$x \leq -2$$ or $$x \geq 2$$
Which of the following is the domain of the function $$f(x) = \dfrac {3 - x}{\sqrt {x^{2} - 9}}$$?
  • $$-3 > x > 3$$
  • $$-x\leq x \leq 3$$
  • $$-3\leq x < 3$$
  • $$x < -3$$ or $$x > 3$$
  • $$x \leq -3$$ or $$x \geq 3$$
If $$f(x) =$$ $$x^2$$ and $$g(x) = 2x$$, calculate the value of $$f(g(-3))-g(f(-3))$$.
  • 54
  • 18
  • 0
  • -18
  • -54
Find $$g(x)$$, if $$f(x) = 7x + 12$$ and $$f(g(x) = 21x^{2} + 40$$
  • $$21x^{2} + 28$$
  • $$21x^{2}$$
  • $$7x^{2} + 4$$
  • $$3x^{2} + 28$$
  • $$3x^{2} + 4$$
If $$\left\{ \left( 7,11 \right) ,\left( 5,a \right)  \right\} $$ represents a constant function, then the value of '$$a$$' is :
  • $$7$$
  • $$11$$
  • $$5$$
  • $$9$$
Given a function $$f(x) = \dfrac {1}{2}x - 4$$ and the composite function $$f(g(x)) = g(f(x))$$, determine which among the following can be $$g(x)$$:
I. $$2x - \dfrac {1}{4}$$
II. $$2x + 8$$
III. $$\dfrac {1}{2}x - 4$$
  • I only
  • II only
  • III only
  • II and III only
  • I, II, and III
Find the values of $$x$$ for which $$\dfrac {1}{\sqrt {x + 1}}$$ is undefined
  • $$-1$$ only
  • $$1$$ only
  • All real numbers greater than $$-1$$
  • All real numbers less than $$-1$$
  • All real numbers less than or equal to $$-1$$
Find the value of  $$g(f(2))$$, if $$f(x) = e^{x}$$ and $$g(x) = \dfrac {x}{2}$$
  • $$2.7$$
  • $$3.7$$
  • $$4.2$$
  • $$5.4$$
  • $$6.1$$
If $$f(x) = 4x - 3$$ and $$g(x) = x - 4$$, determine which of the following composite function has a value of $$-11$$.
  • $$f(g(2))$$
  • $$g(f(2))$$
  • $$g(f(3))$$
  • $$f(g(3))$$
  • $$f(g(4))$$
If $$f(x) = x^{2} - 10$$ and $$g(x) = 4x + 3$$, calculate the value of $$f(g(2))$$.
  • $$-24$$
  • $$-21$$
  • $$12$$
  • $$27$$
  • $$111$$
Find the domain of the function $$f(x) = \sqrt {x^{2} + 3}$$.
  • $$-1.73 \leq x \leq 1.73$$
  • $$-1.32 \leq x \leq 1.32$$
  • $$x > 1.32$$
  • $$x > 1.73$$
  • All real numbers
The above figure shows the graph of the function $$f(x)$$, the value of $$f(f(3))$$ is:
493615.jpg
  • $$-4$$
  • $$-2$$
  • $$0$$
  • $$1$$
  • $$3$$
$$2$$ does not lie in the domain of which of the following function?
  • $$f(x) = \dfrac {x^{2} - 2x}{x^{2} - 2x^{3}}$$
  • $$f(x) = \dfrac {x^{-2} - \dfrac {2}{x}}{x^{2} - 2x^{2}}$$
  • $$f(x) = \dfrac {2x^{2}}{x^{3} - 2x^{2}}$$
  • $$f(x) = \dfrac {x^{2} - 2x}{x^{2} - x}$$
  • $$f(x) = \dfrac {4x^{2}}{x^{-2} + 2x}$$
If $$f(x) = 3x - 5$$ and $$g(x) = x^2 + 1, f [g(x)] =$$
  • $$3x^2-5$$
  • $$3x^2+6$$
  • $$x^2-5$$
  • $$3x^2-2$$
  • $$3x^2+5x-2$$
If k is a positive constant different from 1, which of the following could be the graph of $$\displaystyle y-x=k(x+y)$$ in the xy-plane?
If $$g(x) = \dfrac {5x - 3}{2x^{2} - 11 - 6}$$, what is the sum of all the real numbers that are not in the domain of $$g(x)$$?
  • $$-2$$
  • $$0.5$$
  • $$2$$
  • $$5.5$$
  • $$6.5$$
The Set $$A$$ has $$4$$ elements and the Set $$B$$ has $$5$$ elements then the number of injective mappings that can be defined from $$A$$ to $$B$$ is
  • $$144$$
  • $$72$$
  • $$60$$
  • $$120$$
Let $$f:R\rightarrow R$$ be defined by $$f(x)=2x+6$$ which is a bijective mapping then $${ f }^{ -1 }(x)\quad $$ is given by
  • $$\cfrac { x }{ 2 } -3$$
  • $$2x+6$$
  • $$x-3$$
  • $$6x+2$$
If $$f(x)=\dfrac{x+1}{x-1}$$ and $$g(x)=2x-1, f[g(x)]=$$
  • $$\dfrac{x-1}{x}$$
  • $$\dfrac{x}{x+1}$$
  • $$\dfrac{x+1}{x}$$
  • $$\dfrac{x}{x-1}$$
  • $$\dfrac{2x-1}{2x+1}$$
The domain of $$g(x)=\cfrac { 3 }{ \sqrt { 4-{ x }^{ 2 } }  } $$ is:
  • $$\left[ -2,2 \right] $$
  • $$\left( -2,2 \right) $$
  • $$\left( 0,2 \right) $$
  • $$\left( -\infty ,-2 \right) $$
  • $$\left( -\infty ,2 \right) $$
Let f : $$N \rightarrow N$$ defined by $$f(n)=\left\{\begin{matrix}
\dfrac{n+1}{2} & \text{if }\, n \, \text{is odd} \\
\dfrac{n}{2} & \text{if}\, n \, \text{is even}
\end{matrix}\right.$$
then $$f$$ is.
  • Many-one and onto
  • One-one and not onto
  • Onto but not one-one
  • Neither one-one nor onto
The number of onto functions from the set $$\{1, 2, .........., 11\}$$ to set $$\{1, 2, ....., 10\}$$ is
  • $$5\times \underline{|11}$$
  • $$\underline{|10}$$
  • $$\dfrac{\underline{|11}}{2}$$
  • $$10\times \underline{|11}$$
If $$f: R\rightarrow R$$ is defined by $$f(x) = \dfrac {x}{x^{2} + 1}$$, find $$f(f(2))$$
  • $$\dfrac {1}{29}$$
  • $$\dfrac {10}{29}$$
  • $$\dfrac {29}{10}$$
  • $$29$$
The domain of the function $$f(x)=\sqrt{\cos x}$$ is.
  • $$\left [ 0, \frac{\pi}{2} \right ]$$
  • $$\left [ 0, \frac{\pi}{2} \right ]\cup \left [ \frac{3\pi}{2}, 2\pi \right ]$$
  • $$\left [ \frac{3\pi}{2}, 2 \pi \right ]$$
  • $$\left [ \frac{-\pi}{2}, \frac{\pi}{2} \right ]$$
Let $$f(x)=2x-\sin x$$ and $$g(x)=\sqrt[3] x$$, then
  • Range of $$gof$$ is $$R$$
  • $$gof$$ is one-one
  • both $$f$$ and $$g$$ are one-one
  • both $$f$$ and $$g$$ are onto
For the function $$f(x) = \left [\dfrac {1}{[x]}\right ]$$, where $$[x]$$ denotes the greatest integer less than or equal to $$x$$, which of the following statements are true?
  • The domain is $$(-\infty, \infty)$$
  • The domain is $$\left \{0\right \} \cup \left \{-1\right \} \cup \left \{1\right \}$$
  • The domain is $$\left (-\infty, 0\right ) \cup [1, \infty)$$
  • The domain is $$\left \{0\right \}\cup \left \{1\right \}$$
If the function $$f : R \rightarrow R$$ is defined by $$f(x) = (x^2+1)^{35} \forall \in R$$, then $$f$$ is
  • One-one but not onto
  • Onto but not one-one
  • Neither one-one nor onto
  • Both one-one and onto
Let $$f(x) = 2^{100}x+1$$
$$g(x) = 3^{100}x+1$$
Then the set of real numbers x such that $$f(g(x)) = x$$ is
  • Empty
  • A singleton
  • A finite se with more than one element
  • Infinite
The number of real linear functions $$f(x)$$ satisfying $$f(f(x))=x+f(x)$$ is
  • $$0$$
  • $$4$$
  • $$5$$
  • $$2$$
Let $$f : R\rightarrow R$$ be defined by $$f(x) = \dfrac {1}{x} \ \   \forall  \ x \ \in \ R$$, then $$f$$ is _____
  • One-one
  • Onto
  • Bijective
  • $$f$$ is not defined
Consider the function $$f(x)=\displaystyle\frac{x-1}{x+1}$$. What is $$f(f(x))$$ equal to?
  • $$x$$
  • $$-x$$
  • $$-\displaystyle\frac{1}{x}$$
  • None of the above
Let N denote the set of all non-negative integers and Z denote the set of all integers. The function $$ f : Z \rightarrow N$$ given by f(x) = |x| is :
  • One-one but not onto
  • Onto but not one-one
  • Both one-one and onto
  • Neither one-one nor onto
The curve $$a^{2}y^{2} = x^{2}(a^{2} - x^{2})$$ is defined for
  • $$x\leq a$$ and $$x\geq -a$$
  • $$x < a$$ and $$x > -a$$
  • $$x \leq -a$$ and $$x\geq a$$
  • $$x\leq a$$ and $$x > -a$$
If $$f(x) = \log_{e}\left (\dfrac {1 + x}{1 - x}\right ), g(x) = \dfrac {3x + x^{3}}{1 + 3x^{2}}$$ and $$go f(t) = g(f(t))$$, then what is $$go f\left (\dfrac {e - 1}{e + 1}\right )$$ equal to?
  • $$2$$
  • $$1$$
  • $$0$$
  • $$\dfrac {1}{2}$$
If $$g(x)=\dfrac{1}{f(x)}$$ and $$f(x)=x, x\ne 0,$$ then which one of the following is correct?
  • $$f(f(f(g(g(f(x))))))=g(g(f(g(f(x)))))$$
  • $$f(g(f(g(g(f(g(x)))))))=g(g(f(g(f(x)))))$$
  • $$f(g(f(g(g(f(g(x)))))))=f(g(f(g(f(x)))))$$
  • $$f(f(f(g(g(f(x))))))=f(f(f(g(f(x)))))$$
The domain of the function $$f(x) = \dfrac {1}{\log_{10}(1 - x)} + \sqrt {x + 2}$$ is
  • $$[-3, -2.5]\cap[ - 2.5, -2]$$
  • $$[-2, 0)\cup(0, 1)$$
  • $$[0, 1]$$
  • None of the above
Let $$f(x)=\dfrac{x+1}{x-1}$$ for all $$x \neq 1$$. 
Let
$$f^1(x)=f(x), f^2(x)=f(f(x))$$ and generally
$$f^n(x)=f(f^{n-1}(x)) $$ for $$n > 1$$
Let $$P= f^1(2)f^2(3)f^3(4)f^4(5)$$
Which of the following is a multiple of P ?
  • $$125$$
  • $$375$$
  • $$250$$
  • $$147$$
Number of values of $$x\in [0, \pi]$$ where $$f(x) = [4\sin x-7]$$ is non-derivable is
[Note: [k] denotes the greatest integer less than or equal to k.]
  • 7
  • 8
  • 9
  • 10
Let $$M$$ be the set of all $$2 \times 2$$ matrices with entries from the set of real numbers $$R$$. Then the function $$ f : M \rightarrow R$$ defined by $$f\left( A \right) =\left| A \right|$$ for every $$ A\in M$$, is
  • One-one and onto
  • Neither one-one nor onto
  • One-one but not onto
  • Onto but not one-one
Consider the following statements :
Statement 1 : The function $$f:R \rightarrow R$$ such that $$f(x)=x^3$$ for all $$x\in R$$ is one-one.
Statement 2 : $$f(a) = f(b) \Rightarrow a=b$$ for all $$a, b \in R$$ if the function $$f$$ is one-one.
Which one of the following is correct in respect of the above statements?
  • Both the statements are true and Statement 2 is the correct explanation of Statement 1.
  • Both the statements are true and Statement 2 is not the correct explanation of Statement 1.
  • Statement 1 is true but Statement 2 is false.
  • Statement 1 is true but Statement 2 is true.
If $$f(x) = 8x^3, g(x) = x^{1/3}$$, then fog (x) is
  • $$8^3x$$
  • $$(8x)^{1/3}$$
  • $$8x^3$$
  • $$8x$$
The mid-point of the domain of the function $$f\left( x \right) =\sqrt { 4-\sqrt { 2x+5 }  } $$ for real $$x$$ is
  • $$\dfrac{1}{4}$$
  • $$\dfrac{3}{2}$$
  • $$\dfrac{2}{3}$$
  • $$-\dfrac{2}{5}$$
The domain of the function
$$f(x)=\sin ^{ -1 }{ \left\{ \log _{ 2 }{ \left( \cfrac { 1 }{ 2 } { x }^{ 2 } \right)  }  \right\}  } $$ is
  • $$\left[ -2,1 \right] \cup \left[ 1,2 \right] $$
  • $$(-2,-1] \cup [1,2]$$
  • $$\left[ -2,-1 \right] \cup \left[ 1,2 \right] $$
  • $$(-2,-1)\cup (1,2)$$
Let $$f (x) = \sqrt {2 - x - x^2}$$ and g(x) = cos x. Which of the following statements are true?
(I) Domain of $$f((g(x))^2) = $$ Domain of f(g(x))
(II) Domain of f(g(x)) + g(f(x)) = Domain of g(f(x))
(III) Domain of f(g(x)) = Domain of g(f(x))
(IV) Domain of $$g((f(x))^3) = $$ Domain of f(g(x))
  • Only (I)
  • Only (I) and (II)
  • Only (III) and (IV)
  • Only (I) and (IV)
If $$f:R\rightarrow R, g:R \rightarrow R$$ be two functions given by $$f(x)=2x-3$$ and $$g(x)=x^3+5$$, then $$(fog)^{-1}(x)$$ is equal to
  • $$\begin{pmatrix}\dfrac{x+7}{2}\end{pmatrix} ^{\dfrac{1}{3}}$$
  • $$\begin{pmatrix}\dfrac{x-7}{2}\end{pmatrix} ^{\dfrac{1}{3}}$$
  • $$\begin{pmatrix}x-\dfrac{7}{2}\end{pmatrix} ^{\dfrac{1}{3}}$$
  • $$\begin{pmatrix}x+\dfrac{7}{2}\end{pmatrix} ^{\dfrac{1}{3}}$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers