Processing math: 2%

CBSE Questions for Class 11 Commerce Applied Mathematics Functions Quiz 6 - MCQExams.com

Let f:RR be defined by f(x)=x4 then
  • f may be one-one and onto
  • f is one-one and onto
  • f is one-one but not onto
  • f is neither one-one nor onto
If f:[0, \infty)\to [0,\infty) and f(x) = \dfrac{x}{1+x}, then f is 
  • One-one and onto
  • One-one but not onto
  • Onto but not one-one
  • Neither one-one nor onto
The function f:A\rightarrow B given by f(x) = x ,x\in A, is one to one but not onto. Then;
  • B\subset A
  • A=B
  • A'\subset B'\quad
  • A\subset B
  • A'\cap B'=\phi
The domain of definition of function f(x) = \dfrac {1 + 2(x + 4)^{-0.5}}{2 - (x + 4)^{0.5}} + (x + 4)^{0.5} + 4(x + 4)^{0.5} is
  • R
  • (-4, 4)
  • R^{+}
  • (-4, 0)\cup (0, \infty)
If fog = |\sin x| and gof = \sin^{2}\sqrt {x}, then f(x) and g(x) are
  • f(x) = \sqrt {\sin x}, g(x) = x^{2}
  • f(x) = |x|, g(x) = \sin x
  • f(x) = \sqrt {x}, g(x) = \sin^{2}x
  • f(x) = \sin \sqrt {x}, g(x) = x^{2}
The domain of the function f(x) = \sin^{-1} \left( \dfrac {x+5}{2} \right) is :
  • [-1.1]
  • [2,3]
  • [3,7]
  • [-7,-3]
  • (- \infty , \infty )
Let f(x) = |x - 2|, where x is a real number. Which one of the following is true?
  • f is periodic
  • f(x + y) = f(x) + f(y)
  • f is an odd function
  • f is not one-one function
  • f is an even function
If A = \left \{ 1 , 3 , 5 , 7 \right \} and B = \left \{ 1 , 2 , 3, 4 , 5 , 6 , 7 , 8 \right \} then the number of one-to-one functions from A into B is 
  • 1340
  • 1860
  • 1430
  • 1880
  • 1680
If f(x)=3x+5 and g(x)={ x }^{ 2 }-1, then \left( f\circ g \right) ({ x }^{ 2 }-1) is equal to
  • 3{ x }^{ 4 }-3x+5
  • 3{ x }^{ 4 }-6{ x }^{ 2 }+5
  • 6{ x }^{ 4 }+3{ x }^{ 2 }+5
  • 6{ x }^{ 4 }-6x+5
  • 3{ x }^{ 2 }+6x+4
If g(x)=1+\sqrt{x} and f\{g(x)\}=3+2\sqrt{x}+x, then f(x) is equal to
  • 1+2x^2
  • 2+x^2
  • 1+x
  • 2+x
If f\left( x \right) and g\left( x \right) are two functions with g\left( x \right) =x-\dfrac { 1 }{ x } and f\circ g\left( x \right) ={ x }^{ 3 }-\dfrac { 1 }{ { x }^{ 3 } } , then f^{ ' }\left( x \right) is equal to
  • 3{ x }^{ 2 }+3
  • { x }^{ 2 }-\dfrac { 1 }{ { x }^{ 2 } }
  • 1+\dfrac { 1 }{ { x }^{ 2 } }
  • 3{ x }^{ 2 }+\dfrac { 3 }{ { x }^{ 4 } }
If f : R - \left \{-1, k\right \} \rightarrow R - \left \{\alpha, \beta \right \} is a bijective function defined by f(x) = \dfrac {(2x - 1)(2x^{2} - 4px + p^{3})}{(x + 1)(x^{2} - p^{2}x + p^{2})} (where p\geq 0), then identify which of the following statement(s) is (are) correct?
  • If k\epsilon (-1, 1) then \alpha + \beta = 2
  • If k\epsilon (1, 3) then \alpha + \beta = 6
  • If k\epsilon (1, 3) then \alpha + \beta = 4
  • If k\epsilon (-1, 1) then \alpha + \beta = 6
If f(x)=\left| x \right| ,x\in R, then
  • f(x)=\left( f\times f \right) \left( x \right)
  • f(x)=x
  • f(x)=\left( f\times f \right) \left( x^2 \right)
  • f(x)=\left( f\circ f \right) \left( x \right)
If g(x)={ x }^{ 2 }+x-2 and \cfrac { 1 }{ 2 } (g\circ f)(x)=2{ x }^{ 2 }-5x+2, then f(x) is
  • 2x-3
  • 2x+3
  • 2{ x }^{ 2 }+3x+1
  • 2{ x }^{ 2 }+3x-1
If (ax^2 + bx + c)y +a'x^2+b'x+c=0, then the condition that x may be a rational function of y is
  • (ac'-a'c)^2=(ab'-a'b)(bc'-b'c)
  • (ab'-a'b)^2=(ab'-a' c)(bc'-b'c)
  • (bc'-b'c)^2=(ab'-a'b)(ac'-a'c)
  • None of these
If f(x)=\sin ^{ 2 }{ x } +\sin ^{ 2 }{ \left( x+\cfrac { \pi  }{ 3 }  \right)  } +\cos { x } \cos { \left( x+\cfrac { \pi  }{ 3 }  \right)  } and g\left( \cfrac { 5 }{ 4 }  \right) =1, then g\circ f(x) is equal to
  • 0
  • 1
  • \sin { { 1 }^{ o } }
  • None of these
If f(x)=ax+b and g(x)=cx+d, then f\left( g(x) \right) =g\left( f(x) \right) \Leftrightarrow
  • f(a)=g(c)
  • f(b)=g(b)
  • f(d)=g(b)
  • f(x)=g(a)
Number of solution of the equation  f ( x ) = g ( x )  are same as number of point of intersection of the curves y = f ( x )  and  y = g ( x )  hence answer the following question.
Number of the solution of the equation  2 ^ { x } = | x - 1 | + | x + 1 |  is
  • 0
  • 1
  • 2
  • \infty
The domain of definition of the function y(x) given by the equation a^x + a^y = a(a>1) is
  • 0 < x \leq 1
  • 0 \leq x < 1
  • - \infty < x < 1
  • - \infty < x \leq 0.
Let f(x)={ x }^{ 3 }-3x+1. The number of different real solutions of f(f(x))=0
  • 2
  • 4
  • 5
  • 7
The domain of the function f(x)=\cos ^{ -1 }{ \left( \cfrac { 1-\left| x \right|  }{ 2 }  \right)  } is
  • \left( -\infty ,-3 \right) \cup \left( 3,\infty \right)
  • \left[ -3,3 \right]
  • \quad (-\infty ,-3]\cup [3,\infty )
  • \phi
 If f:R\rightarrow R, g:R\rightarrow R are defined by f(x)=5x-3, g(x)=x^{2}+3, then (gof^{-1})(3)=
  • \dfrac{25}{3}
  • \dfrac{111}{25}
  • \dfrac{9}{25}
  • \dfrac{25}{111}
If the real-valued function f(x)=px+\sin x is a bijective function, then the set of all possible values of p\epsilon R is?
  • R-\{0\}
  • R
  • (0, \infty)
  • None of these
f,g:R\rightarrow R are functions such that f(x)=3x-\sin { \left( \cfrac { \pi x }{ 2 }  \right)  } ,g(x)={ x }^{ 3 }+2x-\sin { \left( \cfrac { \pi x }{ 2 }  \right)  }
The value of \cfrac { d }{ dx } { f }^{ -1 }{ \left( { g }^{ -1 }(x) \right)  }_{ x=12 } is equal to
  • \cfrac { 2 }{ 30+x }
  • \cfrac { 2 }{ 30-x }
  • \cfrac { 2 }{ 3\left( 28-\pi \right) }
  • \cfrac { 2 }{ 3\left( 28+\pi \right) }
The graph of a constant function f(x)=k is?
  • A straight line parallel to X-axis
  • A straight line parallel to Y-axis
  • A straight line passing through orgin
  • None
If f,g,h are three functions from a set of positive real numbers into itself satisfying the condition,
f(x) \cdot g(x)=h \sqrt{x^2 + y^2} such that x,y \epsilon (0,\infty).then, \dfrac{f(x)}{g(x)} is a?
  • Constant function
  • Identity function
  • Zero function
  • Signum function
A constant function is a periodic function.
  • True
  • False
If f: R\rightarrow R and g: R\rightarrow R are defined f(x) = x - [x] and g(x) = [x]\forall x\epsilon R, f(g(x)).
  • x
  • 0
  • f(x)
  • g(x)
Find number of all such function y = f(x) which are onto?
  • 243
  • 93
  • 150
  • None of these
On differentiating an identity function, we get?
  • Signum function
  • Sinc function
  • Constant function
  • None
Find the domain of definition of f(x) = \dfrac {\log_{2}(x + 3)}{x^{2} + 3x + 2}.
  • (-3, \infty)
  • \left \{-1, -2\right \}
  • (-3, \infty) - \left \{-1, -2\right \}
  • (-\infty, \infty)
If f(x_{1})=f(x_{2})\Rightarrow x_{1}=x_{2}\forall x_{1},x_{2}\epsilon A, then what type of a function is f:A\rightarrow B?
  • One-one
  • Constant
  • Onto
  • Many one
If g(x)-x^{2}-x+1 and f(x)=\sqrt{\frac{1}{x}-x}, then-
  • Domain of f(g(x)) ids[0,1]
  • Range of f(g(x)) is (0,\frac{7}{2\sqrt{3}})
  • f (g(x)) is many -one function
  • f(g(x)) is unbounded function
The domain of the function f\left( x \right) =\dfrac { 1 }{ \sqrt { \left| x \right| -x }  } is
  • \left( 0,\infty \right)
  • \left( -\infty ,0 \right)
  • \left( -\infty ,\infty \right) -\left\{ 0 \right\}
  • \left( -\infty ,\infty \right)
If A = {1, 3, 5, 7} , B = {2, 4, 6, 8, 10} and let R = {(1,8), (3,6), (5,2), (1,4)} be a relation from A to B. Then,
Domain (R) = ?
  • \{1, 3, 5\}
  • \{8, 6, 2, 4\}
  • \{1, 2, 3, 4\}
  • None of these
Consider the following functions are odd function in their default domains
(i) \cfrac { { 2 }^{ x }-1 }{ { 2 }^{ x }+1 }
(ii) \cfrac { { x }^{ 2 }+1 }{ x\sin { x }  }
(iii) \ln { \left( \cfrac { 1+x }{ 1-x }  \right)  }
(iv) x{ e }^{ \left| x \right| +\cos { x }  }\quad
Which of these is/are odd
  • (i) and (iii)
  • (i) and (iv)
  • all four
  • (i), (iii) and (iv)
Let f be an injective map with domain {x, y, z} and range {1, 2, 3} such that exactly one of the following statements is correct and the remaining are false :
f (x) = 1, f (y) \sqrt 1, f (z) \sqrt 2. The value of f^{-1} (1) is
  • x
  • y
  • z
  • none of these
Let f(x)=\dfrac{[x]} {[x+2]}. Find the domain of f(x)
  • x\,\epsilon R, x is not an integer
  • (-\infty,-2)\cup[-1,\infty)
  • x\,\epsilon R, x\neq 1
  • (-\infty,-1]
If f(x) is a real valued function, then which of the following is one-one function?
  • f(x)=e^{|x|}
  • f(x)=|e^x|
  • f(x)=\sin x
  • f(x)=|\sin x|
If A =\{1, 2, 3\} and B = \{4, 5\} then the number of function f : A \rightarrow B which is not onto is ______
  • 2
  • 6
  • 8
  • 4
If f\,: R \rightarrow R, g: R \rightarrow R\, are defined by f(x)= 5x -3,g(x)=x^2 + 3, then, (gof^{-1})(3) =
  • \displaystyle \frac{25}{3}
  • \displaystyle \frac{111}{25}
  • \displaystyle \frac{9}{25}
  • \displaystyle \frac{25}{111}

A function R on the set N of natural numbers is defined as R ={(2n, 2n+1):n\in N
The domain of R= {2, 4, 6, 8,............}
  • True
  • False
Let f:A \to b be a function defined by f(x) =\sqrt {1 - {x^2}}
  • f(x) is one-one if A =[0,1]
  • f(x) is onto if B = [0,1]
  • f(x) is one-one if A =[-1 , 0]
  • f(x) is onto if B = [-1,1]
If f:R\rightarrow R,f(x)=\begin{cases} 1\quad \quad x>0 \\ 0\quad \quad x=0 \\-1\quad x<0 \end{cases} and g:R\rightarrow R,g(x)=\left[ x \right] , then \left( f\circ g \right) \left( \pi  \right) is:
  • \pi
  • 0
  • 1
  • -1
f: ( 0,\infty )\rightarrow [0,\infty )  defined by f(x)=x^{2}  is 
  • one - one but not onto
  • onto but not one - one
  • bijective
  • neither one - one nor onto
Let f\left( x \right) = {x^2} and g\left( x \right) = \sqrt x (where x > 0),then
  • f\left( {g\left( x \right)} \right) = x
  • g\left( {f\left( x \right)} \right) = x
  • The least value of f\left( {g\left( x \right)} \right) + {1 \over {g\left( {f\left( x \right)} \right)}} is 2
  • The least value of g\left( {f\left( x \right)} \right) + {1 \over {f\left( {g\left( x \right)} \right)}} is 2
Let A = \{ 1,2,3,4,5,6\} . The number of onto functions from A toA such that.f\left( x \right) \ne x for all x \in A is
  • 720
  • 240
  • 245
  • 265
The domain of definition of the function y(x) given by equation {2^x} + {2^y} = 2 is
  • 0 < x \le 1
  • 0 \le x \le 1
  • - \infty < x \le 0
  • - \infty < x < 1
The domain of the function f(x) = sin^{-1} (log_2(\dfrac{x^2}{2})) is 
  • [ -2, -1) \cup (1, 2]
  • ( -2, -1] \cup [1, 2]
  • [ -2, -1] \cup [1, 2]
  • ( -2, -1) \cup (1, 2)
If g\left( x \right) = {x^2} + x - 2 and \frac{1}{2}gof\left( x \right) = 2{x^2} + 5x + 2, then f\left( x \right) is
  • 2x-3
  • 2x+3
  • 2{x^2} + 3x + 1
  • 2{x^2} - 3x -1
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers