Processing math: 100%

CBSE Questions for Class 11 Commerce Applied Mathematics Functions Quiz 7 - MCQExams.com

Let f : RR and g : RR be two one-one and onto functions such that they are the mirror images of each other about the line y =If h(x) = f(x) + g(x), then h(0) equal to
  • 2
  • 4
  • 0
  • 1
ccisdefinedasf(x)=ax+bcx+dbd0.then f is a constant function when
  • a=c
  • b=d
  • ad=bc
  • ab=cd
Let A be a set of 4 elements and B has 3 elements . From the set of all functions from A to B, the probability that it is an onto function is
  • 49
  • 0
  • 2932
  • 1
If f:AB defined as f(x)=x2+2x+11+(x+1)2 is onto function, then set B is equal to
  • [0,)
  • (,0)
  • [2,)
  • (,)
Find the domain on which the function f(x)=2x25 and g(x)=5x2 are equal.
  • 3,12
  • 3,12
  • 3,12
  • 3,12
The domain of the function f(x)=1log10(1x)+x+2 is equal to 
  • [3,2.5)(2.5,2]
  • [2,0)(0,1]
  • [0,1]
  • None of these
If g(f(x))=|sinx| and f(g(x))=(sinx)2 , then 
  • f(x)=sin2x.g(x)=x
  • f(x)=sinx,g(x)=|x|
  • f(x)=x2,g(x)=sinx
  • f and g can not be determined
Let f, g:RR be two functions defined as f(x)=|x|+x, g(x)=|x|x,xR. Then, find fog(x) 
  • ||x|x||x|x
  • ||x|x|+|x|x
  • ||x|x||x|+x
  • None of thesse
The set of all values of x for which x2+5x612{x}0 is (where{.} denotes the fractional part function)
  • [2,52]3
  • (2,3)
  • [52, 3]
  • [2,52][52,3]
Consider set A=1,2,3,4 and set B=0,2,4,6,8, then the number of one-one function from set A to set B is ?
  • 5
  • 24
  • 120
  • None of these
The set onto which the derivative of the function f(x)=x(logx1) maps the range [1,) is
  • [1,)
  • (e,)
  • [e,)
  • (0,0)
If f(x)=2x+5 and g(x)=x2+1 be two real function , then value of fog at x=1
  • 9
  • 6
  • 5
  • 4
If f(x)=(axn)1/n where a>0 and n is a positive integer then (fof)(x) is 
  • f(x)
  • x
  • 0
  • 1
The domain of the function, f(x)=sinx(x2)(8x) is
  • [0,π][2π,8)
  • (2,π][2π,8)
  • (2,8)
  • (0,8)
Let E={1,2,3,4} and F={1,2} then the number of onto functions from E to F is
  • 14
  • 16
  • 12
  • 8
Let f(x)=x2,g(x)=2x, then solution set of fog(x)=gof(x) is
  • R
  • {0}
  • {0,2}
  • None of these
Let f(x+1x)=x2+1x2(x0), then f(x)=
  • x2
  • x21
  • x22
  • N.O.T
If a relation R is defined by R={(x,y)/2x2+3y26}, then the domain of R(x,y) is 
  • x[3,3]
  • x[3,3]
  • y[2,2]
  • y[2,2]
If f(x)={2+x,x02x,x<0 then f(f(x)) is given by
  • f(f(x))={2+x,x04x,x<0
  • f(f(x))={2+x,x02x,x<0
  • f(f(x))={4+x,x<0x,x0
  • f(f(x))={4+x,x0x,x<0
If (x) is defined on (0,1) then the domain of defination of f[(ex)] +f(ln|x|) is subset of
  • (e,1)
  • (e,1)(1,e)
  • (,1)(1,)
  • (e,e)
If f(x)=sin log (4x2/(1x)) then the domain and range f are (respectively)
  • [1,1],(1,1)
  • (2,1),(1,1)
  • (1,2),[1,1]
  • (2,1),[1,1]
If f(g(x))=5x+2 and g(x)=8x then f(x)=
  • 58x+2.
  • 85x+2.
  • 58x2.
  • 8x-2
  • 5x-2
Let g(x)=1+x[x] and f(x)={1,x<00,x=01,x>0 Then for all x,f(g(x)) is equal to (where [.] represents the greatest integer function)
  • x
  • 1
  • f(x)
  • g(x)
If : f(x)=5x2, g(x)=3x4, then : (fog)(1)= 
  • 45
  • 54
  • 32
  • 64
Let f:X[1,27] be  a function by f(x)=5sinx+12cosx+14. The set X so that f is one-one and onto is 
  • [π/2,π/2]
  • [0,π]
  • [0,π/2]
  • non of these
The distinct linear functions which maps from [1,1] onto [0,2] are 
  • x+1, x+1
  • x1, x+1
  • x+1
  • x+2
For a, b  R{0}, let f(x)=ax2+bx+a satisfies f(x+74)=f(74x) x  R.
Also the equation f(x)=7x+a has only one real distinct solution. The minimum value of f(x) in [0,32] is equal to
  • 338
  • 0
  • 4
  • 2
If f(x)=(axn)1/n where a>0 and } n is a positive integer then(fof)(x) is
  • f(x)
  • x
  • 0
  • 1
The identity function on real numbers given by f(x)=x is continuous at every real numbers.
  • True
  • False
The set of all x for which the functions are not defined
f(x)=log[(x2)/(x+3)]2 and g(x)=1x29, is
  • [3,2]
  • [3,2)
  • (3,2]
  • (3,2)
If f:RR,f(x)=2x1 and g;RR,g(x)=x2+2, then (gof)(x) equals-
  • 2x21
  • (2x1)2
  • 2x2+3
  • 4x24x+3
The domain of definition of
f(x)=log0.4x1x+5×1x236, is
  • (,0){6}
  • (0,){1,6}
  • (1,){6}
  • (1,)+{6}
If f(x)=(1x) , x[3,3] , then the domain of f(f(x)) is
  • [2,3]
  • (2,3)
  • [2,3]
  • (2,3]
If log2(32x+2+7)=2+log2(3x1+1), then number of real values of x is/are
  • 0
  • 1
  • 2
  • 4
If f(x)=x1x2 and g(x) = f(x)=x1+x2 , then (fog)(x) =
  • f(x)=x1x2
  • f(x)=x1+x2
  • x2
  • x
The domain of the function f(x)=x1x2 is
  • [1,12][12,1]
  • [1,1]
  • (,12][12,)
  • [12,1]
The domain of the functions f(x)=log(2xx2) is
  • (0,2)
  • [0,2]
  • {1}
  • none
The domain of the function f(x)=1|x|x is
  • (,)
  • (0,)
  • (,0)
  • (,){0}
Let g(x)=1+x[x] and f(x)={1ifx<00ifx=01ifx>0 , then x,fog(x) equals 
  • x
  • 1
  • f(x)
  • g(x)
f:cc is defined as f(x)=ax+bcx+d,bd0 then f is a constant function when,
  • a=c
  • b=d
  • ad=bc
  • ab=cd
Let f(x)= max { 1+sinx, 1, 1 -cosx}, xϵ[0,2π] and g(x)= max {1, |x-1|} xϵR, then
  • g(f(0))=1
  • g(f(1))=1
  • f(f(1))=1
  • f(g(0))=1+sin1
If f(x)=1x,g(x)=1x2 and h (x)=x2, then
  • fog(x)=x2,xˉ0,h(g(x))=1x2
  • h(g(x))=1x2x0,fog(x)=x2
  • fog(x)=x2,x0,h(g(x))=(g(x))2,x0
  • None of these
if f(x)=log(1+x1x) and g(x)=3x+x31+3x2 then (f(g(x)))) is equal to
  • f(x)
  • 3f(x)
  • (f(x))3
  • f(3x)
Let f:RR is a function satisfying f(2x)=f(2+x) and f(20x)=f(x)xR
If f(0)=5 then the minimum possible no. of values of x satisfying f(x)=5 for x=[0.,70], is
  • 21
  • 12
  • 11
  • 22
Let f(x)=x2 and g(x)=2x. Then the solution of the equation fog(x)=gof(x) is
  • R
  • {0}
  • {0,2}
  • none
All values of a for which f : R R defined by f(x)= x3+ax2+3x+100 is a one one functions, are
  • (,2)
  • (,4)
  • (4,4)
  • (3,3)
Domain of f(x)=sin1[log2(x22)], where [.] denotes greatest integer functions, is
  • [8,8]
  • [8,1](1,8]
  • (2,1)(1,2)
  • None of these
If f(x) is defined on (0,1)  then the domain of definition of f(ex)+f(ln|x|) is
  • (e,1)
  • (e,1)(1,e)
  • (5,1)(1,)
  • (e,e)
The domain of |x2|1+3|x2|is
  • [1,3][5,)
  • [1,5]
  • [1,3]
  • [1,1][3,5]
f:RR such that f(x)=n(x+x2+1). Another function g(x) is defined such that gof(x)=x  x R. Then g(2) is -
  • e2+e22
  • e2
  • e2e22
  • e2
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers