Processing math: 4%

CBSE Questions for Class 11 Commerce Applied Mathematics Functions Quiz 7 - MCQExams.com

Let f : RR and g : RR be two one-one and onto functions such that they are the mirror images of each other about the line y =If h(x) = f(x) + g(x), then h(0) equal to
  • 2
  • 4
  • 0
  • 1
ccisdefinedasf(x)=ax+bcx+dbd0.then f is a constant function when
  • a=c
  • b=d
  • ad=bc
  • ab=cd
Let A be a set of 4 elements and B has 3 elements . From the set of all functions from A to B, the probability that it is an onto function is
  • 49
  • 0
  • 2932
  • 1
If f:AB defined as f(x)=x2+2x+11+(x+1)2 is onto function, then set B is equal to
  • [0,)
  • (,0)
  • [2,)
  • (,)
Find the domain on which the function f(x) = 2x^2 -5 and g(x) = 5x - 2 are equal.
  • 3,-\dfrac{1}{2}
  • -3,-\dfrac{1}{2}
  • 3,\dfrac{1}{2}
  • -3,\dfrac{1}{2}
The domain of the function f(x) = \dfrac{1}{\log_{10}(1-x)} + \sqrt{x+2} is equal to 
  • [-3, -2.5) \cup (-2.5, 2]
  • [-2, 0) \cup (0, 1]
  • [0,1]
  • None of these
If g(f(x) ) = |\sin x | and f(g(x))=(\sin\sqrt x)^2 , then 
  • f(x) = \sin^2x. g(x) =\sqrt x
  • f(x) = \sin x , g(x) =|x|
  • f(x) = x^2, g(x) = \sin \sqrt x
  • f and g can not be determined
Let f, g:R\rightarrow {R} be two functions defined as f\left( x \right) =\left| x \right| +x, g\left( x \right) =\left| x \right| -x, \forall x\in R. Then, find fog(x) 
  • ||x|-x|-|x|-x
  • ||x|-x|+|x|-x
  • ||x|-x|-|x|+x
  • None of thesse
The set of all values of x for which \dfrac { \sqrt { -{ x }^{ 2 }+5x-6 }  }{ \sqrt { 1-2\left\{ x \right\}  }  } \ge 0 is (where{.} denotes the fractional part function)
  • \left[2,\dfrac{5}{2}\right]\cup{3}
  • (2, 3)
  • \left[\dfrac{5}{2},\ 3\right]
  • \left[2,\dfrac{5}{2}\right]\cup\left[\dfrac{5}{2}, 3\right]
Consider set A={1,2,3,4} and set B={0,2,4,6,8}, then the number of one-one function from set A to set B is ?
  • 5
  • 24
  • 120
  • None of these
The set onto which the derivative of the function f(x)=x(\log x-1) maps the range [1,\infty ) is
  • \left[1,\infty \right)
  • \left( e,\infty \right)
  • \left[e,\infty \right)
  • \left( 0,0 \right)
If f(x)=2x+5 and g(x)=x^2+1 be two real function , then value of fog at x=1
  • 9
  • 6
  • 5
  • 4
If f ( x ) = \left( a - x ^ { n } \right) ^ { 1 / n } where a > 0 and n is a positive integer then ( f o f ) ( x ) is 
  • f ( x )
  • x
  • 0
  • 1
The domain of the function, f(x) = \dfrac{\sqrt{\sin x}}{\sqrt{(x - 2)(8 - x)}} is
  • [0, \pi] \cup [2\pi, 8)
  • (2, \pi] \cup [2\pi, 8)
  • (2, 8)
  • (0, 8)
Let E=\{1, 2, 3, 4\} and F=\{1, 2\} then the number of onto functions from E to F is
  • 14
  • 16
  • 12
  • 8
Let f\left( x \right) ={ x }^{ 2 },g\left( x \right) ={ 2 }^{ x }, then solution set of fog\left( x \right) =gof\left( x \right) is
  • R
  • \left\{ 0 \right\}
  • \left\{ 0,2 \right\}
  • None of these
Let f(x+\dfrac{1}{x})=x^2+\dfrac{1}{x^2}(x\neq 0), then f(x)=
  • x^2
  • x^2-1
  • x^2-2
  • N.O.T
If a relation 'R' is defined by R = \left\{ {\left( {x,y} \right)/2{x^2} + 3{y^2} \le 6} \right\}, then the domain of R(x,y) is 
  • x\in \left[ { - 3,3} \right]
  • x\in \left[ { - \sqrt 3 ,\sqrt 3 } \right]
  • y\in \left[ { - \sqrt 2 ,\sqrt 2 } \right]
  • y\in \left[ { - 2,2} \right]
If f\left( x \right) =\begin{cases} 2+x,\quad x\ge 0 \\ 2-x,\quad x<0 \end{cases} then f\left( f\left( x \right)  \right) is given by
  • f\left( f\left( x \right) \right) =\begin{cases} 2+x,\quad x\ge 0 \\ 4-x,\quad x<0 \end{cases}
  • f\left( f\left( x \right) \right) =\begin{cases} 2+x,\quad x\ge 0 \\ 2-x,\quad x<0 \end{cases}
  • f\left( f\left( x \right) \right) =\begin{cases} 4+x,\quad x< 0 \\ x,\quad x\ge 0 \end{cases}
  • f\left( f\left( x \right) \right) =\begin{cases} 4+x,\quad x\ge 0 \\ x,\quad x<0 \end{cases}
If (x) is defined on (0,1) then the domain of defination of f[({e^x})] +f\left( {ln\,\left| x \right|} \right) is subset of
  • (-e,-1)
  • (-e,-1) (1,e)
  • ( - \infty , - 1)(1,\infty )
  • (-e,e)
If f(x)=sin log \left( {\sqrt {4 - {x^2}} /\left( {1 - x} \right)} \right) then the domain and range f are (respectively)
  • [-1,1],(-1,1)
  • (-2,1),(-1,1)
  • (1,2),[-1,1]
  • (-2,1),[-1,1]
If f(g(x))=5x+2 and g(x)=8x then f(x)=
  • \frac{5}{8}x+2.
  • \frac{8}{5}x+2.
  • \frac{5}{8}x-2.
  • 8x-2
  • 5x-2
Let g\left( x \right) =1+x-\left[ x \right]  and f\left( x \right) =\begin{cases} -1,x<0 \\ 0,x=0 \\ 1,x>0 \end{cases} Then for all x,f\left( g\left( x \right) \right)  is equal to (where \left[ . \right]  represents the greatest integer function)
  • x
  • 1
  • f\left( x \right)
  • g\left( x \right)
If : f(x) = 5 {x}^{2}, g(x) = 3x^{4}, then : (fog) (-1) = 
  • 45
  • -54
  • -32
  • -64
Let f:X \to \left[ {1,\,27} \right] be  a function by f\left( x \right) = 5\sin x + 12\cos x + 14. The set X so that f is one-one and onto is 
  • \left[ { - \pi /2,\pi /2\,} \right]
  • \left[ {0,\,\pi } \right]
  • \left[ {0,\,\pi /2} \right]
  • non of these
The distinct linear functions which maps from [-1,1] onto [0,2] are 
  • x+1, -x+1
  • x-1, x+1
  • -x+1
  • -x+2
For a,\ b\ \in \ R-\left\{ 0 \right\}, let f(x)=ax^{2}+bx+a satisfies f\left(x+\dfrac{7}{4}\right)=f\left(\dfrac{7}{4}-x\right) \forall \ x\ \in\ R.
Also the equation f(x)=7x+a has only one real distinct solution. The minimum value of f(x) in \left[0,\dfrac{3}{2}\right] is equal to
  • \dfrac{-33}{8}
  • 0
  • 4
  • -2
If f ( x ) = \left( a - x ^ { n } \right) ^ { 1 / n } where a > 0 and } n is a positive integer then( f o f ) ( x ) is
  • f ( x )
  • x
  • 0
  • 1
The identity function on real numbers given by f(x)=x is continuous at every real numbers.
  • True
  • False
The set of all x for which the functions are not defined
f\left( x \right) =\log _{ [(x-2)/( x+3)]}2 and g\left( x \right) =\dfrac { 1 }{ \sqrt { { x }^{ 2 }-9 }  } , is
  • \left[ -3,2 \right]
  • \left[ -3,2 \right)
  • (-3,2]
  • \left( -3,-2 \right)
If f:R \rightarrow R, f(x)=2x-1 and g; R \rightarrow R, g(x)=x^{2}+2, then (gof)(x) equals-
  • 2x^{2}-1
  • (2x-1)^{2}
  • 2x^{2}+3
  • 4x^{2}-4x+3
The domain of definition of
f\left( x \right) =\sqrt { \log _{ 0.4 }{ \frac { x-1 }{ x+5 }  }  } \times \dfrac { 1 }{ { x }^{ 2 }-36 } , is
  • \left( -\infty ,0 \right) -\left\{ -6 \right\}
  • \left( 0,\infty \right) -\left\{ 1,6 \right\}
  • \left( 1,\infty \right) -\left\{ 6 \right\}
  • \left( 1,\infty \right) +\left\{ 6 \right\}
If f\left( x \right) = (1 - x) , x \in \left[ { - 3,3} \right] , then the domain of f\left( {f\left( x \right)} \right) is
  • \left[ { - 2,3} \right]
  • \left( { - 2,3} \right)
  • \left[ { - 2,3]} \right.
  • ( - 2,3]
If \log_2\left ( 3^{2x+2}+7 \right )=2+\log_2\left ( 3^{x-1}+1 \right ), then number of real values of x is/are
  • 0
  • 1
  • 2
  • 4
If f(x)=\frac{x}{\sqrt{1-x^{2}}} and g(x) = f(x)=\frac{x}{\sqrt{1+x^{2}}} , then (fog)(x) =
  • f(x)=\frac{x}{\sqrt{1-x^{2}}}
  • f(x)=\frac{x}{\sqrt{1+x^{2}}}
  • x^{2}
  • x
The domain of the function f\left( x \right) = \sqrt {x - \sqrt {1 - {x^2}} } is
  • \left[ { - 1, - \dfrac{1}{{\sqrt 2 }}} \right] \cup \left[ {\dfrac{1}{{\sqrt 2 }},1} \right]
  • \left[ { - 1,1} \right]
  • ( - \infty , - \dfrac{1}{2}] \cup [\dfrac{1}{{\sqrt 2 }},\infty )
  • \left[ {\dfrac{1}{{\sqrt 2 }},1} \right]
The domain of the functions f(x)=\sqrt { \log { \left( 2x-{ x }^{ 2 } \right)  }  } is
  • (0,2)
  • [0,2]
  • \left\{ 1 \right\}
  • none
The domain of the function f(x)=\cfrac { 1 }{ \sqrt { \left| x \right| -x }  } is
  • (-\infty, \infty)
  • (0,\infty)
  • (-\infty, 0)
  • (-\infty, \infty)-\left\{ 0 \right\}
Let g(x)=1+x-[x]\quad and f(x)=\begin{cases} -1\quad if\quad x<0 \\ 0\quad \quad if\quad x=0 \\ 1\quad \quad if\quad x>0 \end{cases} , then \forall \:x,fog(x) equals 
  • x
  • 1
  • f(x)
  • g(x)
f:c \to c is defined as f(x) = \dfrac{{ax + b}}{{cx + d}},bd \ne 0 then f is a constant function when,
  • a=c
  • b=d
  • ad=bc
  • ab=cd
Let f(x)= max { 1+sinx, 1, 1 -cosx}, x \epsilon [0, 2 \pi] and g(x)= max {1, |x-1|} x \epsilon R, then
  • g(f(0))=1
  • g(f(1))=1
  • f(f(1))=1
  • f(g(0))=1+sin1
If f(x)=\frac{1}{x},g(x)=\frac{1}{x^{2}} and h (x)= x^{2}, then
  • fog (x)= x^{2}, x\neq \bar{0}, h(g(x))= \frac{1}{x^{2}}
  • h(g(x))= \frac{1}{x^{2}}x\neq 0, fog(x)= x^{2}
  • fog(x)=x^{2},x\neq 0,h(g(x))= (g(x))^{2},x\neq 0
  • None of these
if f\left( x \right) = \log \left( {\dfrac{{1 +x}}{{1 - x}}} \right) and g\left( x \right) = \dfrac{{3x + {x^3}}}{{1 + 3{x^2}}} then \left( {f(g(x)))} \right) is equal to
  • - f\left( x \right)
  • 3f\left( x \right)
  • {\left( {f\left( x \right)} \right)^3}
  • f\left( {3x} \right)
Let f:R\rightarrow R is a function satisfying f(2-x)=f(2+x) and f(20-x)=f(x)\forall x\in R
If f(0)=5 then the minimum possible no. of values of x satisfying f(x)=5 for x=[0.,70], is
  • 21
  • 12
  • 11
  • 22
Let f\left( x \right) = {x^2} and g\left( x \right) = {2^x}. Then the solution of the equation fog\left( x \right) = gof\left( x \right) is
  • R
  • \left\{ {0} \right\}
  • \left\{ {0,\,2} \right\}
  • none
All values of a for which f : R \to R defined by f(x)= {x^3} + a{x^2} + 3x + 100 is a one one functions, are
  • ( - \infty , - 2)
  • ( - \infty ,4)
  • (4, - 4)
  • ( - 3,3)
Domain of f\left( x \right) = \sin ^{ -1 }{ \left[ \log _{ 2 }{ \left( \frac { { x }^{ 2 } }{ 2 }  \right)  }  \right]  } , where \left[ . \right] denotes greatest integer functions, is
  • \left[ -\sqrt { 8, } \sqrt { 8 } \right]
  • \left[ -\sqrt { 8, } -1 \right] \cup (1,\quad \sqrt { 8 } ]
  • (-2,-1)\cup (1,2)
  • None of these
If f(x) is defined on (0,1)  then the domain of definition of f({e}^{x})+f(\ln{\left| x \right| }) is
  • (-e,-1)
  • (-e,-1)\cup (1,e)
  • (-5,-1)\cup (1,\infty)
  • (-e,e)
The domain of \sqrt {|x - 2| - 1}  + \sqrt {3 - |x - 2|} \,\,is\,
  • [ - 1,3]\, \cup \,[5,\infty )
  • [ - 1,5]
  • [1,3]
  • [ - 1,1] \cup [3,5]
f:R \rightarrow R such that f(x)=\ell n(x+\sqrt {x^{2}+1}). Another function g(x) is defined such that gof(x)=x\ \forall\ x \in\ R. Then g(2) is -
  • \dfrac {e^{2}+e^{-2}}{2}
  • e^{2}
  • \dfrac {e^{2}-e^{-2}}{2}
  • e^{-2}
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers