Loading [MathJax]/jax/element/mml/optable/MathOperators.js

CBSE Questions for Class 11 Commerce Applied Mathematics Functions Quiz 8 - MCQExams.com

If f(x)=4x2+1|sinx|sinx, then the domain of f(x) is 
  • [-2,0]
  • (0,2]
  • [-2,2}
  • [π2, 2]
If f(x)=sin2x and the composite functions g{f(x)}=|sin x|, then the function g(x)=
  • x1
  • x
  • x+1
  • x
the equation |x+1$log(x+1)3+2xx2=(x3)|x|  has 
  • Uniques solution
  • Two solution
  • No solutions
  • more thatn two solution
if f(x)=4x2+1|sinx|sinx, then the domain of f(x) is 
  • [2,0)
  • [0,2]
  • [2,2]
  • None of these
The domain of the function
f(x)=log1/2(log2(1+14x)1) is
  • 0<x<1
  • 0<x1
  • x1
  • null set
Find the domain of function sin1[1+x22x].
  • [1,1]
  • (1,1)
  • {1,1}
  • {0}
The domain of f(x)=esin(x|x|)+|x|cos(x|x+1|) , where [.] represents greatest integer function , is 
  • R
  • R-[-1, 0]
  • R-[0,1]
  • R-[-1)
The equation |x1|+|a|=4 can have real solution for x if a belongs to the interval
  • (,4]
  • (4,)
  • (4,4)
  • (,4)(4,)
If f(x)=sin1(sinx)+cos1(sinx) and ϕ(x)=f(f(f(x))) then ϕ(x)
  • 1
  • sinx
  • 0
  • none of these
if f\left( x \right) = 3x + 2 , g\left( x \right) = {x^2} + 1,then the values of \left( {f_og} \right)\left( {{x^2} - 1} \right)
  • 3{x^4} - 6{x^2} + 8
  • 3{x^4} + 3x + 4
  • 6{x^4} + 3{x^2} - 2
  • 6{x^4} + 3{x^2} + 2
Let A = {1,2,3,4,5} and B={1,2,3,4,5}. If f:A\rightarrow B is an one-one function and f(x)=x holds only for one value of  x\epsilon \{ 1,2,3,4,5\} , then the number of such possible function is  
  • 120
  • 36
  • 45
  • 44
Number of positive integers in the domain of the function f(x)=\sqrt {\log_{0.5}\log_{6}\left(\dfrac {x^{2}+x}{x+4}\right)} is
  • 5
  • 6
  • 7
  • 8
Difference between the greatest and the least values of the function
f(x) = x(ln x - 2) on [1, e^{2}] is
  • 2
  • e
  • e^{2}
  • 1
The function f :\left[-\dfrac{1}{2}, \dfrac{1}{2}\right]\rightarrow \left[-\dfrac{\pi}{2}, \dfrac{\pi}{2}\right] defined by f(x)=\sin^{-1}(3x-4x^{3}) is 
  • both one-one and onto
  • onto but not one-one
  • one-one but not onto
  • neither one-one nor onto
The domain of the function f\left(x\right)=\sin^{-1}{\left(1+{e}^{x}\right)^{-1}} is 
  • R
  • [-1,0]
  • [0,1]
  • [-1,1]
The interval on which the function f(x)=2x^3+9x^2+12x-1 is decreasing is?
  • [-1, \infty)
  • [-2, -1]
  • (-\infty, -2]
  • [-1, 1]
Let g be the inverse function of differentiable function f and G\left( x \right) =\frac { 1 }{ g\left( x \right)  } if\quad f\left( 4=2 \right) and f'\left( 4 \right) =\frac { 1 }{ 16 } , then the value of { \left( G'\left( 2 \right)  \right)  }^{ 2 } equals to:
  • 1
  • 4
  • 16
  • 64
The domain of the function f(x) = \frac {1} {\sqrt {^{10}C_{x - 1} - 3 \times ^{10} C_x}} contains the points
  • 9, 10, 11
  • 9, 10, 12
  • all natural numbers
  • None of these
If f:( - 1,1) \to B , is a function defined by f(x) = {\tan ^{ - 1}}\dfrac{{2x}}{{1 - {x^2}}}, then find B when f(x) is both one-one and onto function. 
  • \left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right]
  • \left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)
  • \left( {0,\frac{\pi }{2}} \right)
  • \left[ {0,\frac{\pi }{2}} \right)
The sum of all real values of x satisfying the equation
{\left( {{{\rm{x}}^{{\rm{2 - }}}}{\rm{5x + 5}}} \right)^{{{\rm{x}}{{\rm{^2 + 4x - 60}}}}}}{\rm{ = 1}} is
  • -4
  • 6
  • 5
  • 3
If  f \left( \dfrac { x + y } { 2 } \right) = \dfrac { f ( x ) + f ( y ) } { 2 }  for all  x , y \in R  and  f ^ { \prime } ( o ) = - 1 , f ( o ) = 1  then  f(2)=
  • \dfrac { 1 } { 2 }
  • 1
  • -1
  • \dfrac { -1 } { 2 }
The domain of f(x) = \sqrt{2 - log_3 (x - 1)} is
  • (2, 12]
  • (\infty, 10]
  • (3, 12]
  • (1, 10]
If f(x)=x^{3}+x^{2}f'(1)+xf''(2)+f'''(3)\ \forall x\ \epsilon \ R, then f(x) is
  • one-one and onto
  • one-one and into
  • many-one and onto
  • non-invertible
Let E=\left\{1,2,3,4\right\} and F=\left\{1,2\right\}. Then the number of onto functions from E to F is
  • 14
  • 16
  • 12
  • 8
The domain of the function, f(x)=\dfrac{|x|-2}{|x|-3} is
  • R
  • R-\{2,3\}
  • R-\{2,-2\}
  • R-\{-3,3\}
If f\left( x \right) =\sqrt { { x }^{ 2 }-4 } and g\left( x \right) =\dfrac { x-1 }{ x-3 } then number of integer elements, which are not in the domain of the function (f.g)(x) equals 
  • 3
  • 4
  • 5
  • None of these
Let N be the set of natural numbers and two functions f and g be defined as f,g : N\to N such that :
f (n)= \begin{cases}\dfrac{n+1}{2}& \text{if n is odd}\\ \dfrac{n}{2} & \text{in n is even} \end{cases}
and g(n) = n - (-1)^n. The fog is:
  • Both one-one and onto
  • One-one but not onto
  • Neither one-one nor onto
  • onto but not one-one
If f(x)=\dfrac {4^{x}}{4^{x}+2}, then the value of f(x)+f(1-x) is
  • 0
  • -1
  • 1
  • can't\ be\ determined
Domain of the function f\left( x \right) =\sqrt { 2-2x-{ x }^{ 2 } } is 
  • -\sqrt { 3 } \le x\le \sqrt { 3 }
  • -1-\sqrt { 3 } \le x\le -1+\sqrt { 3 }
  • -2\le x\le 2
  • -2+\sqrt { 3 } \le x\le -2-\sqrt { 3 }
Let f(x)=x^ {135}+x^ {125}-x^ {115}+x^ {5}+1. If f(x) divided by x^ {3}-x, then the remainder is some function of x say g(x). Then g(x) is an:-
  • one-one function
  • many one function
  • into function
  • onto function
The domain of the function \sin^{-1} (log_2(\frac{x}{3})) is-  
  • [\frac{1}{2},3]
  • [\frac{1}{2},3]
  • [\frac{3}{2},6]
  • [\frac{1}{2},2]
Domain of function f(x)=\dfrac{|x|-x}{2x} is
  • \mathbb{R}
  • \mathbb{R}-\{0\}
  • \mathbb{Z}
  • \mathbb{N}
The domain of f(x)= e^{\sqrt{x}}+cos x is 
  • (-\infty ,\infty )
  • [0,\infty )
  • (0,1)
  • (1,\infty )
The domain of function f ( x ) = \dfrac { x ^ { 2 } - 10 x + 26 } { x ^ { 4 } \left( x ^ { 2 } - 9 \right)  \left( 1 + 27 x ^ { 2 } \right) } 
  • \mathbf { x } \in \mathbf { R } - \{ 0,\pm3 \} 
  • \mathbf { x } \in \mathrm { R } - \{ 0,3 \} 
  • x \in R
  • none
The domain of the function f(x)=\sqrt {\dfrac{x^{2}-1}{x-2}} is 
  • (2,\infty )
  • (1,\infty )
  • [-1,1] \cup (2,\infty)
  • none of these
The domain of the function f ( x ) = \log _ { 2 }  x^2  is
  • \mathbf { x } \in \mathbf { R }
  • x \in [ 0 , \infty )
  • x \in (- \infty ,0)\cup( 0 , \infty )
  • x \in R - \{ x | x \in 1 \}
Domain of the function f(x) = \dfrac{x^2-3x+2}{x^2+x-6} is
  • {x:x \epsilon R, x \neq -3}
  • {x:x \epsilon R, x \neq 2}
  • {x:x \epsilon R}
  • {x:x \epsilon R, x \neq 2, x \neq -3}
The function y=\dfrac { x }{ 1+{ x }^{ 2 } }  has its domain as
  • x \in R
  • x\in R-(-1,1)
  • x \in \left( 0,\infty \right)
  • x \in \left( -\infty ,-1 \right)
The domain of the function, f(x)=\sqrt{2-x}-\dfrac{1}{\sqrt{9-x^{2}}}  is 
  • (-3,1)
  • [-3,1]
  • (-3,2)
  • (-3,2]
 f : R \rightarrow R , f ( x ) = e ^ { | x | } - e ^ { - x }  is many-one into function.
  • True
  • False
Number of one-one functions from A to B where n(A)=4, n(B)=5.
  • 4
  • 5
  • 120
  • 90
Consider f(x) = \dfrac{x^2}{1 + x^3} ; g(t) = \displaystyle \int f(t) dt . If g(1) = 0 then g(x) equals 
  • \dfrac{1}{3} ln(1 + x^3)
  • \dfrac{1}{3} ln\left ( \dfrac{1 + x^3}{2} \right )
  • \dfrac{1}{2} ln\left ( \dfrac{1 + x^3}{3} \right )
  • \dfrac{1}{3}l n\left ( \dfrac{1 + x^3}{3} \right )
Domain of the function f(x)= \dfrac { x-3 }{ (x-1)\sqrt { { x }^{ 2 }-4 }  }
  • (1,2)
  • (-\infty,-2)\cup(2,\infty)
  • (-\infty,-2)\cup(1,\infty)
  • (-x,x)-{(t\pm2)}
In a set A=\left\{1,2,3,4\right\}, the relation R is defined as x\quad R\quad y\quad \Longleftrightarrow \quad x\le y, then the domain of the inverse relation is
  • \left\{1,2,3\right\}
  • \left\{3,4,5,6\right\}
  • \left\{1,2,3,4\right\}
  • \left\{4,5,6\right\}
f : R \rightarrow R , f ( x ) = 2 x + | \sin x |  is one-one onto.
  • True
  • False
If f:R\rightarrow R,f\left( x \right) =\dfrac { { ax }^{ 2 }+6x-8 }{ a+6x-{ 8x }^{ 2 } } is onto, then \alpha \in
  • \left( 1,\infty \right)
  • \left( 0,\infty \right)
  • \left( 2,12 \right)
  • \left[ 2,14 \right]
If f : R\rightarrow S, defined by f(x) =sin x -\sqrt{3} cos x +1, is onto, then the interval of S is 
  • [0, 3]
  • [-1, 1]
  • [0, 1]
  • [-1, 3]
If   f : R \rightarrow R  be given by   f(x)=\left(3-x^{3}\right)^{\dfrac{1}{3}},  then fof(x) is
  • x^{\dfrac{1}{3}}
  • 1^{3}
  • x
  • \left(3-x^{3}\right)
Let : R\rightarrow R defined as f\left( x \right) =\dfrac { x\left( x+1 \right) \left( { x }^{ 4 }+1 \right) +{ 2x }^{ 4 }+{ x }^{ 2 }+2 }{ { x }^{ 2 }+x+1 }
  • odd and one-one
  • even and one-one
  • many to one and even
  • many to one and neither even nor odd
The domain of the function f(x) =\dfrac{\sin^{-1}(x-3)}{\sqrt{9-x^2}} is 
  • [1, 2]
  • [2, 3)
  • [2, 3]
  • [1, 2)
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers