Loading [MathJax]/jax/element/mml/optable/MathOperators.js
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Commerce Applied Mathematics Functions Quiz 8 - MCQExams.com
CBSE
Class 11 Commerce Applied Mathematics
Functions
Quiz 8
If
f
(
x
)
=
√
4
−
x
2
+
1
√
|
sin
x
|
−
sin
x
, then the domain of f(x) is
Report Question
0%
[-2,0]
0%
(0,2]
0%
[-2,2}
0%
[
π
2
, 2]
Explanation
undefined
If
f
(
x
)
=
s
i
n
2
x
and the composite functions g{f(x)}=|sin x|, then the function g(x)=
Report Question
0%
√
x
−
1
0%
√
x
0%
√
x
+
1
0%
−
√
x
the equation
|
x
+
1
$
l
o
g
(
x
+
1
)
3
+
2
x
−
x
2
=
(
x
−
3
)
|
x
|
has
Report Question
0%
Uniques solution
0%
Two solution
0%
No solutions
0%
more thatn two solution
if f(x)=
√
4
−
x
2
+
1
√
|
sin
x
|
−
sin
x
, then the domain of f(x) is
Report Question
0%
[
−
2
,
0
)
0%
[
0
,
2
]
0%
[
−
2
,
2
]
0%
N
o
n
e
o
f
t
h
e
s
e
Explanation
f
(
x
)
=
√
4
−
x
2
+
1
√
|
sin
x
|
−
sin
x
⇒
4
−
x
2
⩾
0
a
n
d
√
(
|
sin
x
|
)
−
sin
x
>
0
⇒
x
2
≤
4
4
sin
x
<
|
sin
x
|
⇒
x
∈
[
−
2
,
2
]
&
sin
x
<
0
⇒
x
∈
[
2
,
2
]
+
x
∈
[
−
2
,
0
)
⇒
x
∈
[
−
2
,
0
)
The domain of the function
f
(
x
)
=
log
1
/
2
(
−
log
2
(
1
+
1
4
√
x
)
−
1
)
is
Report Question
0%
0
<
x
<
1
0%
0
<
x
≤
1
0%
x
≥
1
0%
null set
Explanation
f
(
x
)
=
log
2
(
−
log
1
/
2
(
1
+
1
x
1
/
4
)
−
1
)
i
t
i
s
d
e
f
i
n
e
d
f
o
r
(
−
log
1
/
2
(
1
+
1
x
1
/
4
)
−
1
)
>
0
⇒
(
log
1
/
2
(
1
+
1
x
1
/
4
)
+
1
)
<
0
⇒
(
log
1
/
2
(
1
+
1
x
1
/
4
)
)
<
−
1
⇒
(
1
+
1
x
1
/
4
)
>
(
1
2
)
−
1
⇒
1
+
1
x
1
/
4
>
2
⇒
1
x
1
/
4
>
1
⇒
0
<
x
<
1
Find the domain of function
sin
−
1
[
1
+
x
2
2
x
]
.
Report Question
0%
[
−
1
,
1
]
0%
(
−
1
,
1
)
0%
{
−
1
,
1
}
0%
{
0
}
Explanation
sin
−
1
(
1
+
x
2
2
x
)
−
1
≤
1
+
x
2
2
x
≤
1
=
−
2
x
2
≤
x
(
x
2
+
1
)
≤
2
x
2
−
2
x
2
≤
x
(
x
2
+
1
)
⇒
x
(
x
2
+
1
+
2
x
)
≥
0
⇒
x
(
x
+
1
)
2
≥
0
w
h
i
c
h
i
s
t
r
u
e
f
o
r
x
≥
0
x
=
−
1
x
(
x
2
+
1
)
≤
2
x
2
⇒
x
(
x
2
+
1
−
2
x
)
≤
0
⇒
x
(
x
−
1
)
2
≤
0
w
h
i
c
h
i
s
t
r
u
e
f
o
r
x
≤
0
,
x
=
1
H
e
n
c
e
d
o
m
a
i
n
:
{
−
1
,
1
}
The domain of
f
(
x
)
=
e
s
i
n
(
x
−
|
x
|
)
+
|
x
|
c
o
s
(
x
|
x
+
1
|
)
, where [.] represents greatest integer function , is
Report Question
0%
R
0%
R-[-1, 0]
0%
R-[0,1]
0%
R-[-1)
The equation
|
x
−
1
|
+
|
a
|
=
4
can have real solution for
x
if a belongs to the interval
Report Question
0%
(
−
∞
,
4
]
0%
(
4
,
∞
)
0%
(
−
4
,
4
)
0%
(
∞
,
−
4
)
∪
(
4
,
∞
)
If
f
(
x
)
=
sin
−
1
(
sin
x
)
+
cos
−
1
(
sin
x
)
and
ϕ
(
x
)
=
f
(
f
(
f
(
x
)
)
)
then
ϕ
′
(
x
)
Report Question
0%
1
0%
sin
x
0%
0
0%
none of these
Explanation
f
(
x
)
=
sin
−
1
(
sin
x
)
+
cos
−
1
(
sin
x
)
=
π
2
[
∵
f(f(x))=f\left(\cfrac { \pi }{ 2 }\right )=\cfrac { \pi }{ 2 }
\phi (x)=f(f(f(x)))=f\left(\cfrac { \pi }{ 2 }\right )=\cfrac { \pi }{ 2 }
\phi (x)=\cfrac { \pi }{ 2 }
\phi '(x)=0
if
f\left( x \right) = 3x + 2
,
g\left( x \right) = {x^2} + 1
,then the values of
\left( {f_og} \right)\left( {{x^2} - 1} \right)
Report Question
0%
3{x^4} - 6{x^2} + 8
0%
3{x^4} + 3x + 4
0%
6{x^4} + 3{x^2} - 2
0%
6{x^4} + 3{x^2} + 2
Explanation
f\left(x\right)=3x+2
g\left(x\right)={x}^{2}+1
f.g\left(x\right)=f\left({x}^{2}+1\right)
f.g\left(x\right)=3\left({x}^{2}+1\right)+2=3{x}^{2}+5
f.g\left(x\right)=3{x}^{2}+5
f.g\left({x}^{2}-1\right)=3{\left({x}^{2}-1\right)}^{2}+5
=3\left({x}^{4}-2{x}^{2}+1\right)+5
=3{x}^{4}-6{x}^{2}+3+5
=3{x}^{4}-6{x}^{2}+8
Let A = {1,2,3,4,5} and B={1,2,3,4,5}. If
f:A\rightarrow B
is an one-one function and
f(x)=x
holds only for one value of
x\epsilon \{ 1,2,3,4,5\} ,
then the number of such possible function is
Report Question
0%
120
0%
36
0%
45
0%
44
Number of positive integers in the domain of the function
f(x)=\sqrt {\log_{0.5}\log_{6}\left(\dfrac {x^{2}+x}{x+4}\right)}
is
Report Question
0%
5
0%
6
0%
7
0%
8
Difference between the greatest and the least values of the function
f(x) = x(ln x - 2)
on
[1, e^{2}]
is
Report Question
0%
2
0%
e
0%
e^{2}
0%
1
The function
f :\left[-\dfrac{1}{2}, \dfrac{1}{2}\right]\rightarrow \left[-\dfrac{\pi}{2}, \dfrac{\pi}{2}\right]
defined by
f(x)=\sin^{-1}(3x-4x^{3})
is
Report Question
0%
both one-one and onto
0%
onto but not one-one
0%
one-one but not onto
0%
neither one-one nor onto
Explanation
f:[-\cfrac{1}{2},\cfrac{1}{2}]\rightarrow[-\cfrac{\pi}{2},\cfrac{\pi}{2}]\\f(x)=\sin^{-1}(3x-4x^3)
Range of
\sin^{-1}(3x-4x^3)
is $$
[-\cfrac{\pi}{2},\cfrac{\pi}{2}]$$
And
-\cfrac{\pi}{2}\le\sin^{-1}(3x-4x^3)\le\cfrac{\pi}{2}
\Rightarrow \sin(\cfrac{-\pi}{2})\le3x-4x^3\le\sin\cfrac{\pi}{2}
\Rightarrow-1\le3x-4x^3\le1
3x-4x^3\le-1
\Rightarrow 4x^3-3x-1\le0
\Rightarrow x\le\cfrac{1}{2}
and
3x-4x^3\le1\Rightarrow 4x^3-3x+1\le0\\ \Rightarrow x\le-\cfrac{1}{2}\\ \therefore x\epsilon [-\cfrac{1}{2},\cfrac{1}{2}]\\f{x}=\sin^{-1}(3x-4x^3)\\ \Rightarrow f^1(x)=\cfrac{1}{\sqrt{1-(3x-4x^3)^2}}\times(3-12x^2)\\ \Rightarrow f^1(x)=3-12x^2\\ \quad=-(12x^2-3)\\x^2\le0\Rightarrow 12x^2\le0\Rightarrow 12x^2-3\le-3\\-3(12x^2-3)\le3\\ \therefore f^1(x)\le0
\therefore f^1(x)
is a decreasing function.
Hence
f(x)
is one-one and range of function
=
its co-domain.
Hence it is both one-one and onto.
The domain of the function
f\left(x\right)=\sin^{-1}{\left(1+{e}^{x}\right)^{-1}}
is
Report Question
0%
R
0%
[-1,0]
0%
[0,1]
0%
[-1,1]
The interval on which the function
f(x)=2x^3+9x^2+12x-1
is decreasing is?
Report Question
0%
[-1, \infty)
0%
[-2, -1]
0%
(-\infty, -2]
0%
[-1, 1]
Explanation
f(x) = 2x^{3} + 9x^{2} + 12x - 1
f'(x) = 6x^{2} + 18x +12
= 6(x^{2} + 3x + 2)
= 6 (x+2)(x+1)
\therefore f(x)
decreases in interval
xt [-2,-1]
Let g be the inverse function of differentiable function f and
G\left( x \right) =\frac { 1 }{ g\left( x \right) } if\quad f\left( 4=2 \right)
and
f'\left( 4 \right) =\frac { 1 }{ 16 }
, then the value of
{ \left( G'\left( 2 \right) \right) }^{ 2 }
equals to:
Report Question
0%
1
0%
4
0%
16
0%
64
The domain of the function
f(x) = \frac {1} {\sqrt {^{10}C_{x - 1} - 3 \times ^{10} C_x}}
contains the points
Report Question
0%
9, 10, 11
0%
9, 10, 12
0%
all natural numbers
0%
None of these
Explanation
Given function is defined if
^{10} C_{x + 1} > 3 ^{10}C_x
\Rightarrow \dfrac{1} {11 - x} > \dfrac {3} {4} \Rightarrow 4x > 33
\Rightarrow x \geqslant 9 \ but \ x \leq 10 \Rightarrow x = 9, 10
If
f:( - 1,1) \to B
, is a function defined by
f(x) = {\tan ^{ - 1}}\dfrac{{2x}}{{1 - {x^2}}}
, then find
B
when
f(x)
is both one-one and onto function.
Report Question
0%
\left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right]
0%
\left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)
0%
\left( {0,\frac{\pi }{2}} \right)
0%
\left[ {0,\frac{\pi }{2}} \right)
Explanation
For
x \epsilon (-1,1)
, we have
f(x)=\tan^{-1}\left[\dfrac {2x}{1-x^2}\right]
Substituting
x=\tan\theta
in above equation.
Therefore,
f(\tan \theta)=\tan^{-1}\left[\dfrac {2\tan \theta}{1-\tan^2\theta}\right]
=\tan^{-1}\tan (2\theta)=2\theta
=2\tan ^{-1}x
Thus
-\dfrac {\pi}{2}<\tan ^{-1}\left[\dfrac {2x}{1-x^2}\right]<\dfrac {\pi}{2}
Thus option B is correct.
The sum of all real values of
x
satisfying the equation
{\left( {{{\rm{x}}^{{\rm{2 - }}}}{\rm{5x + 5}}} \right)^{{{\rm{x}}{{\rm{^2 + 4x - 60}}}}}}{\rm{ = 1}}
is
Report Question
0%
-4
0%
6
0%
5
0%
3
Explanation
(x^2 - 5x + 5)^{x^2 + 4x - 60} = 1
\Rightarrow (x^2 - 5x + 5)^0
\Rightarrow x^2 + 4x - 60 = 0
Solving for x.
x = -10, 6
And,
x^2 - 5x + 5
1^a = 1
or
b^o = 1
or
(-1)^x = 1
\therefore x^2 - 5x + 5 = 1
x^2 - 5x + 4 = 0
(x - 4) (x - 1) = 0
x = 4
or
1
Or
x^2 - 5x + 5 = -1
x^2 - 5x + 6 = 0
(x - 3) (x - 2) = 0
x = 3, 2
2 will satisfy not 3 because power will be odd
Hence
x = \{-10, 1, 2, 4, 6\}
\therefore
sum of solutions
=3
If
f \left( \dfrac { x + y } { 2 } \right) = \dfrac { f ( x ) + f ( y ) } { 2 }
for all
x , y \in R
and
f ^ { \prime } ( o ) = - 1 , f ( o ) = 1
then
f(2)=
Report Question
0%
\dfrac { 1 } { 2 }
0%
1
0%
-1
0%
\dfrac { -1 } { 2 }
Explanation
let
f(x)=ax+b
f(0)=1\implies b=1
f'(0)=-1 \implies a=-1
\implies f(x)=1-x
\implies f(2)=-1
The domain of
f(x) = \sqrt{2 - log_3 (x - 1)}
is
Report Question
0%
(2, 12]
0%
(\infty, 10]
0%
(3, 12]
0%
(1, 10]
Explanation
\sqrt{2-log_3(x-1)}
x-1 > 0
\Rightarrow x > 1
…………
(1)
Also,
2-log_3(x-1)\geq 0
log_3(x-1)\leq 2
(x-1)\leq 3^2
\Rightarrow x-1\leq 9
x\leq 10
…………..
(2)
Intersection of
(1)
&
(2)
x\in (1, 10]
.
If
f(x)=x^{3}+x^{2}f'(1)+xf''(2)+f'''(3)\ \forall x\ \epsilon \ R
, then
f(x)
is
Report Question
0%
one-one and onto
0%
one-one and into
0%
many-one and onto
0%
non-invertible
Let
E=\left\{1,2,3,4\right\}
and
F=\left\{1,2\right\}
. Then the number of onto functions from
E
to
F
is
Report Question
0%
14
0%
16
0%
12
0%
8
Explanation
The total number of ways of distributing
(1,2)
considering them as 2 objects among
(1,2,3,4)
considering them as 4 people is equal to total no. of Onto functions from E to F.
There can be two ways of distributing
(1,2),
Either we give both to one people
Or give
1
to one people and
2
to another.
So, Total no. of ways
=4×1+^4C_2×2=16
The domain of the function,
f(x)=\dfrac{|x|-2}{|x|-3}
is
Report Question
0%
R
0%
R-\{2,3\}
0%
R-\{2,-2\}
0%
R-\{-3,3\}
Explanation
f(x)=\dfrac{|x|-2}{|x|-3}
Here,
x
cannot be
\pm 3
.
(f is not defined when
x=\pm 3
)
Therefore,
Domain
= R-\{-3,3\}
If
f\left( x \right) =\sqrt { { x }^{ 2 }-4 }
and
g\left( x \right) =\dfrac { x-1 }{ x-3 }
then number of integer elements, which are not in the domain of the function
(f.g)(x)
equals
Report Question
0%
3
0%
4
0%
5
0%
None of these
Let
N
be the set of natural numbers and two functions
f
and
g
be defined as
f,g : N\to N
such that :
f (n)= \begin{cases}\dfrac{n+1}{2}& \text{if n is odd}\\ \dfrac{n}{2} & \text{in n is even} \end{cases}
and
g(n) = n - (-1)^n
. The fog is:
Report Question
0%
Both one-one and onto
0%
One-one but not onto
0%
Neither one-one nor onto
0%
onto but not one-one
Explanation
fx = \begin{cases} \dfrac{n+1}{2}& \text{n is odd} \\\dfrac{n}{2}& \text{n is even}\end{cases}
g(x) = n -(-1)^n \begin{cases}n+1; \text{n is odd} \\n-1; \text{n is even} \end{cases}
f(g(n)) = \begin{cases}\dfrac{n}{2}; & \text{n is even}\\ \dfrac{n+1}{2}; &\text{n is odd} \end{cases}
\therefore
onto but not one-one
If
f(x)=\dfrac {4^{x}}{4^{x}+2}
, then the value of
f(x)+f(1-x)
is
Report Question
0%
0
0%
-1
0%
1
0%
can't\ be\ determined
Explanation
Given
f{\left( x \right)} = \cfrac{{4}^{x}}{{4}^{x} + 2}
\therefore f{\left( 1 - x \right)} = \cfrac{{4}^{1-x}}{{4}^{1-x} + 2}
\Rightarrow f{\left( 1 - x \right)} = \cfrac{\left( \cfrac{4}{{4}^{x}} \right)}{\left( \cfrac{4}{{4}^{x}} \right) + 2}
\Rightarrow f{\left( 1 - x \right)} = \cfrac{4}{4 + {4}^{x} \cdot 2} = \cfrac{2}{2 + {4}^{x}}
Therefore,
f{\left( x \right)} + f{\left( 1 - x \right)} = \cfrac{{4}^{x}}{2 + {4}^{x}} + \cfrac{2}{2 + {4}^{x}}
\Rightarrow f{\left( x \right)} + f{\left( 1 - x \right)} = \cfrac{{4}^{x} + 2}{2 + {4}^{x}} = 1
Domain of the function
f\left( x \right) =\sqrt { 2-2x-{ x }^{ 2 } }
is
Report Question
0%
-\sqrt { 3 } \le x\le \sqrt { 3 }
0%
-1-\sqrt { 3 } \le x\le -1+\sqrt { 3 }
0%
-2\le x\le 2
0%
-2+\sqrt { 3 } \le x\le -2-\sqrt { 3 }
Explanation
Given,
f(x)=\sqrt{2-2x-x^2}
\sqrt{f\left(x\right)}\quad \Rightarrow \quad \:f\left(x\right)\ge 0
2-2x-x^2\ge \:0
-\left(x+1\right)^2+3\ge \:0
-\left(x+1\right)^2\ge \:-3
\left(x+1\right)^2\le \:3
-\sqrt{3}\le \:x+1\le \sqrt{3}
-\sqrt{3}\le \:x+1\quad \mathrm{and}\quad \:x+1\le \sqrt{3}
-\sqrt{3}\le \:x+1\quad :\quad x\ge \:-\sqrt{3}-1
x+1\le \sqrt{3}\quad :\quad x\le \sqrt{3}-1
\Rightarrow -\sqrt{3}-1\le \:x\le \sqrt{3}-1
Let
f(x)=x^ {135}+x^ {125}-x^ {115}+x^ {5}+1
. If
f(x)
divided by
x^ {3}-x
, then the remainder is some function of
x
say
g(x)
. Then
g(x)
is an:-
Report Question
0%
one-one function
0%
many one function
0%
into function
0%
onto function
Explanation
The domain of the function
\sin^{-1} (log_2(\frac{x}{3}))
is-
Report Question
0%
[
\frac{1}{2},3
]
0%
[
\frac{1}{2},3
]
0%
[
\frac{3}{2},6
]
0%
[
\frac{1}{2},2
]
Domain of function
f(x)=\dfrac{|x|-x}{2x}
is
Report Question
0%
\mathbb{R}
0%
\mathbb{R}-\{0\}
0%
\mathbb{Z}
0%
\mathbb{N}
The domain of
f(x)= e^{\sqrt{x}}+cos x
is
Report Question
0%
(-\infty ,\infty )
0%
[0,\infty )
0%
(0,1)
0%
(1,\infty )
The domain of function
f ( x ) = \dfrac { x ^ { 2 } - 10 x + 26 } { x ^ { 4 } \left( x ^ { 2 } - 9 \right) \left( 1 + 27 x ^ { 2 } \right) }
Report Question
0%
\mathbf { x } \in \mathbf { R } - \{ 0,\pm3 \}
0%
\mathbf { x } \in \mathrm { R } - \{ 0,3 \}
0%
x \in R
0%
none
Explanation
f(x)=\dfrac{x^2-10x+26}{x^4(x^2-9)(1+27x^2)}
The function is defined only when
x^4(x^2-9)(1+27x^2)\neq 0\\\implies x\neq 0,x^2-9\neq 0\\x^2\neq 9\\x\neq \pm 3
The domain is
R-\{0,\pm3\}
The domain of the function
f(x)=\sqrt {\dfrac{x^{2}-1}{x-2}}
is
Report Question
0%
(2,\infty )
0%
(1,\infty )
0%
[-1,1] \cup (2,\infty)
0%
none of these
Explanation
Given,
f\left(x\right)=\sqrt{\dfrac{x^2-1}{x-2}}
\dfrac{x^2-1}{x-2}\ge \:0:\quad -1\le \:x\le \:1\quad \mathrm{or}\quad \:x>2
undefined singularity point:
x=2
combined domain of function,
-1\le \:x\le \:1\quad \mathrm{or}\quad \:x>2
\left[-1,\:1\right]\cup \left(2,\:\infty \:\right)
The domain of the function
f ( x ) = \log _ { 2 } x^2
is
Report Question
0%
\mathbf { x } \in \mathbf { R }
0%
x \in [ 0 , \infty )
0%
x \in (- \infty ,0)\cup( 0 , \infty )
0%
x \in R - \{ x | x \in 1 \}
Explanation
option C is correct
Domain of the function
f(x) = \dfrac{x^2-3x+2}{x^2+x-6}
is
Report Question
0%
{
x:x \epsilon R, x \neq -3
}
0%
{
x:x \epsilon R, x \neq 2
}
0%
{
x:x \epsilon R
}
0%
{
x:x \epsilon R, x \neq 2, x \neq -3
}
Explanation
Given,
f(x)=\dfrac{x^2-3x+2}{x^2+x-6}
x^2+x-6=0
roots of above equation are:
x=-3,2
So,
x
can't be equal to
-3 \, or \, 2
The above points are undefined
The function domain is
x<-3,-3<x<2,x>2
\left \{ x:x\in R,x\neq 2,x\neq -3 \right \}
The function
y=\dfrac { x }{ 1+{ x }^{ 2 } }
has its domain as
Report Question
0%
x \in R
0%
x\in R-(-1,1)
0%
x \in \left( 0,\infty \right)
0%
x \in \left( -\infty ,-1 \right)
Explanation
The function
y=\dfrac x{1+x^2}
is defined only when
1+x^2\neq 0
x^2\neq -1
\implies x\in R
The domain of the function,
f(x)=\sqrt{2-x}
-\dfrac{1}{\sqrt{9-x^{2}}}
is
Report Question
0%
(-3,1)
0%
[-3,1]
0%
(-3,2)
0%
(-3,2]
Explanation
Given,
f\left(x\right)=\sqrt{2-x}-\dfrac{1}{\sqrt{9-x^2}}
\sqrt{f\left(x\right)}\quad \Rightarrow \quad \:f\left(x\right)\ge 0\:
2-x\ge \:0:\quad x\le \:2
9-x^2\ge \:0:\quad -3\le \:x\le \:3
Combined interval:
-3\le \:x\le \:2
Undefined singularity points:
x=3,\:x=-3
Combining real regions and undefined singularity points:
-3<x\le \:2
(-3,\:2]
f : R \rightarrow R , f ( x ) = e ^ { | x | } - e ^ { - x }
is many-one into function.
Report Question
0%
True
0%
False
Explanation
f(x)=e^{(x)}-e^{-x}
For every
x
, there will be different
f(x)
\therefore
It is a one - one function
\therefore False
Number of one-one functions from A to B where
n(A)=4, n(B)=5
.
Report Question
0%
4
0%
5
0%
120
0%
90
Explanation
n(A)=4
and
n(B)=5
For one-one mapping
4 elements can be selected out of 5 elements of set B in
{}^5C_4
ways
and then those 4 selected elements can be mapped with 4 elements of set A in
4!
ways.
Number of one-one mapping from
A
to
B
={}^5C_4\times4!={}^5P_4=\dfrac{5!}{(5-4)!}=5!=120
Consider
f(x) = \dfrac{x^2}{1 + x^3}
;
g(t) = \displaystyle \int f(t) dt
. If
g(1) = 0
then
g(x)
equals
Report Question
0%
\dfrac{1}{3} ln(1 + x^3)
0%
\dfrac{1}{3} ln\left ( \dfrac{1 + x^3}{2} \right )
0%
\dfrac{1}{2} ln\left ( \dfrac{1 + x^3}{3} \right )
0%
\dfrac{1}{3}l n\left ( \dfrac{1 + x^3}{3} \right )
Domain of the function
f(x)=
\dfrac { x-3 }{ (x-1)\sqrt { { x }^{ 2 }-4 } }
Report Question
0%
(1,2)
0%
(-\infty,-2)\cup(2,\infty)
0%
(-\infty,-2)\cup(1,\infty)
0%
(-x,x)-{(t\pm2)}
Explanation
Given,
f(x)=\dfrac{x-3}{\left(x-1\right)\sqrt{x^2-4}}
\sqrt{f\left(x\right)}\quad \Rightarrow \quad \:f\left(x\right)\ge 0
x^2-4\ge \:0:\quad x\le \:-2\quad \mathrm{or}\quad \:x\ge \:2
Undefined singularity points
x<-2\quad \mathrm{or}\quad \:x>2
Domain
x<-2\quad \mathrm{or}\quad \:x>2
So, the domain is
(-\infty,-2)\cup(2,\infty)
In a set
A=\left\{1,2,3,4\right\}
, the relation R is defined as
x\quad R\quad y\quad \Longleftrightarrow \quad x\le y
, then the domain of the inverse relation is
Report Question
0%
\left\{1,2,3\right\}
0%
\left\{3,4,5,6\right\}
0%
\left\{1,2,3,4\right\}
0%
\left\{4,5,6\right\}
f : R \rightarrow R , f ( x ) = 2 x + | \sin x |
is one-one onto.
Report Question
0%
True
0%
False
Explanation
f(x) = 2x + \left | sin x \right |
for query x,there will be a defferent f(x)
\therefore one-one
& domain
\rightarrow
R
\therefore onto
\therefore True.
If
f:R\rightarrow R,f\left( x \right) =\dfrac { { ax }^{ 2 }+6x-8 }{ a+6x-{ 8x }^{ 2 } }
is onto, then
\alpha \in
Report Question
0%
\left( 1,\infty \right)
0%
\left( 0,\infty \right)
0%
\left( 2,12 \right)
0%
\left[ 2,14 \right]
If f :
R\rightarrow S
, defined by f(x) =sin x -
\sqrt{3}
cos x +1, is onto, then the interval of S is
Report Question
0%
[0, 3]
0%
[-1, 1]
0%
[0, 1]
0%
[-1, 3]
If
f : R \rightarrow R
be given by
f(x)=\left(3-x^{3}\right)^{\dfrac{1}{3}},
then
fof(x)
is
Report Question
0%
x^{\dfrac{1}{3}}
0%
1^{3}
0%
x
0%
\left(3-x^{3}\right)
Explanation
Given,
f(x)=\left(3-x^{3}\right)^{\dfrac{1}{3}}
.
Now,
fof(x)
=f[f(x)]
=\left(3-[f(x)]^{3}\right)^{\dfrac{1}{3}},
=\left(3-[(3-x^3)^{\dfrac{1}{3}}]^{3}\right)^{\dfrac{1}{3}},
=\left(3-[(3-x^3)]\right)^{\dfrac{1}{3}},
=[x^3]^{\dfrac{1}{3}}
=x
.
Let :
R\rightarrow R
defined as
f\left( x \right) =\dfrac { x\left( x+1 \right) \left( { x }^{ 4 }+1 \right) +{ 2x }^{ 4 }+{ x }^{ 2 }+2 }{ { x }^{ 2 }+x+1 }
Report Question
0%
odd and one-one
0%
even and one-one
0%
many to one and even
0%
many to one and neither even nor odd
The domain of the function
f(x) =
\dfrac{\sin^{-1}(x-3)}{\sqrt{9-x^2}}
is
Report Question
0%
[1, 2]
0%
[2, 3)
0%
[2, 3]
0%
[1, 2)
Explanation
Given the function is
f(x) =
\dfrac{\sin^{-1}(x-3)}{\sqrt{9-x^2}}
.
Now,
f(x)
will be defined if
|x-3|\le 1
or,
-1\le x-3\le 1
or,
2\le x\le 4
......(1),
and
{{9-x^2}}\gt 0
or,
x^2<9
or,
-3<x<3
.....(2).
So
f(x)
will be defined in the common portion of (1) and (2).
And the common protion is
2\le x\lt 3
or,
x\in [2,3)
.
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
0
Answered
1
Not Answered
49
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page