Processing math: 100%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Commerce Applied Mathematics Functions Quiz 8 - MCQExams.com
CBSE
Class 11 Commerce Applied Mathematics
Functions
Quiz 8
If
f
(
x
)
=
√
4
−
x
2
+
1
√
|
sin
x
|
−
sin
x
, then the domain of f(x) is
Report Question
0%
[-2,0]
0%
(0,2]
0%
[-2,2}
0%
[
π
2
, 2]
Explanation
undefined
If
f
(
x
)
=
s
i
n
2
x
and the composite functions g{f(x)}=|sin x|, then the function g(x)=
Report Question
0%
√
x
−
1
0%
√
x
0%
√
x
+
1
0%
−
√
x
the equation
|
x
+
1
$
l
o
g
(
x
+
1
)
3
+
2
x
−
x
2
=
(
x
−
3
)
|
x
|
has
Report Question
0%
Uniques solution
0%
Two solution
0%
No solutions
0%
more thatn two solution
if f(x)=
√
4
−
x
2
+
1
√
|
sin
x
|
−
sin
x
, then the domain of f(x) is
Report Question
0%
[
−
2
,
0
)
0%
[
0
,
2
]
0%
[
−
2
,
2
]
0%
N
o
n
e
o
f
t
h
e
s
e
Explanation
f
(
x
)
=
√
4
−
x
2
+
1
√
|
sin
x
|
−
sin
x
⇒
4
−
x
2
⩾
0
a
n
d
√
(
|
sin
x
|
)
−
sin
x
>
0
⇒
x
2
≤
4
4
sin
x
<
|
sin
x
|
⇒
x
∈
[
−
2
,
2
]
&
sin
x
<
0
⇒
x
∈
[
2
,
2
]
+
x
∈
[
−
2
,
0
)
⇒
x
∈
[
−
2
,
0
)
The domain of the function
f
(
x
)
=
log
1
/
2
(
−
log
2
(
1
+
1
4
√
x
)
−
1
)
is
Report Question
0%
0
<
x
<
1
0%
0
<
x
≤
1
0%
x
≥
1
0%
null set
Explanation
f
(
x
)
=
log
2
(
−
log
1
/
2
(
1
+
1
x
1
/
4
)
−
1
)
i
t
i
s
d
e
f
i
n
e
d
f
o
r
(
−
log
1
/
2
(
1
+
1
x
1
/
4
)
−
1
)
>
0
⇒
(
log
1
/
2
(
1
+
1
x
1
/
4
)
+
1
)
<
0
⇒
(
log
1
/
2
(
1
+
1
x
1
/
4
)
)
<
−
1
⇒
(
1
+
1
x
1
/
4
)
>
(
1
2
)
−
1
⇒
1
+
1
x
1
/
4
>
2
⇒
1
x
1
/
4
>
1
⇒
0
<
x
<
1
Find the domain of function
sin
−
1
[
1
+
x
2
2
x
]
.
Report Question
0%
[
−
1
,
1
]
0%
(
−
1
,
1
)
0%
{
−
1
,
1
}
0%
{
0
}
Explanation
sin
−
1
(
1
+
x
2
2
x
)
−
1
≤
1
+
x
2
2
x
≤
1
=
−
2
x
2
≤
x
(
x
2
+
1
)
≤
2
x
2
−
2
x
2
≤
x
(
x
2
+
1
)
⇒
x
(
x
2
+
1
+
2
x
)
≥
0
⇒
x
(
x
+
1
)
2
≥
0
w
h
i
c
h
i
s
t
r
u
e
f
o
r
x
≥
0
x
=
−
1
x
(
x
2
+
1
)
≤
2
x
2
⇒
x
(
x
2
+
1
−
2
x
)
≤
0
⇒
x
(
x
−
1
)
2
≤
0
w
h
i
c
h
i
s
t
r
u
e
f
o
r
x
≤
0
,
x
=
1
H
e
n
c
e
d
o
m
a
i
n
:
{
−
1
,
1
}
The domain of
f
(
x
)
=
e
s
i
n
(
x
−
|
x
|
)
+
|
x
|
c
o
s
(
x
|
x
+
1
|
)
, where [.] represents greatest integer function , is
Report Question
0%
R
0%
R-[-1, 0]
0%
R-[0,1]
0%
R-[-1)
The equation
|
x
−
1
|
+
|
a
|
=
4
can have real solution for
x
if a belongs to the interval
Report Question
0%
(
−
∞
,
4
]
0%
(
4
,
∞
)
0%
(
−
4
,
4
)
0%
(
∞
,
−
4
)
∪
(
4
,
∞
)
If
f
(
x
)
=
sin
−
1
(
sin
x
)
+
cos
−
1
(
sin
x
)
and
ϕ
(
x
)
=
f
(
f
(
f
(
x
)
)
)
then
ϕ
′
(
x
)
Report Question
0%
1
0%
sin
x
0%
0
0%
none of these
Explanation
f
(
x
)
=
sin
−
1
(
sin
x
)
+
cos
−
1
(
sin
x
)
=
π
2
[
∵
sin
−
1
θ
+
cos
−
1
θ
=
π
2
]
f
(
f
(
x
)
)
=
f
(
π
2
)
=
π
2
ϕ
(
x
)
=
f
(
f
(
f
(
x
)
)
)
=
f
(
π
2
)
=
π
2
ϕ
(
x
)
=
π
2
ϕ
′
(
x
)
=
0
if
f
(
x
)
=
3
x
+
2
,
g
(
x
)
=
x
2
+
1
,then the values of
(
f
o
g
)
(
x
2
−
1
)
Report Question
0%
3
x
4
−
6
x
2
+
8
0%
3
x
4
+
3
x
+
4
0%
6
x
4
+
3
x
2
−
2
0%
6
x
4
+
3
x
2
+
2
Explanation
f
(
x
)
=
3
x
+
2
g
(
x
)
=
x
2
+
1
f
.
g
(
x
)
=
f
(
x
2
+
1
)
f
.
g
(
x
)
=
3
(
x
2
+
1
)
+
2
=
3
x
2
+
5
f
.
g
(
x
)
=
3
x
2
+
5
f
.
g
(
x
2
−
1
)
=
3
(
x
2
−
1
)
2
+
5
=
3
(
x
4
−
2
x
2
+
1
)
+
5
=
3
x
4
−
6
x
2
+
3
+
5
=
3
x
4
−
6
x
2
+
8
Let A = {1,2,3,4,5} and B={1,2,3,4,5}. If
f
:
A
→
B
is an one-one function and
f
(
x
)
=
x
holds only for one value of
x
ϵ
{
1
,
2
,
3
,
4
,
5
}
,
then the number of such possible function is
Report Question
0%
120
0%
36
0%
45
0%
44
Number of positive integers in the domain of the function
f
(
x
)
=
√
log
0.5
log
6
(
x
2
+
x
x
+
4
)
is
Report Question
0%
5
0%
6
0%
7
0%
8
Difference between the greatest and the least values of the function
f
(
x
)
=
x
(
l
n
x
−
2
)
on
[
1
,
e
2
]
is
Report Question
0%
2
0%
e
0%
e
2
0%
1
The function
f
:
[
−
1
2
,
1
2
]
→
[
−
π
2
,
π
2
]
defined by
f
(
x
)
=
sin
−
1
(
3
x
−
4
x
3
)
is
Report Question
0%
both one-one and onto
0%
onto but not one-one
0%
one-one but not onto
0%
neither one-one nor onto
Explanation
f
:
[
−
1
2
,
1
2
]
→
[
−
π
2
,
π
2
]
f
(
x
)
=
sin
−
1
(
3
x
−
4
x
3
)
Range of
sin
−
1
(
3
x
−
4
x
3
)
is $$
[-\cfrac{\pi}{2},\cfrac{\pi}{2}]$$
And
−
π
2
≤
sin
−
1
(
3
x
−
4
x
3
)
≤
π
2
⇒
sin
(
−
π
2
)
≤
3
x
−
4
x
3
≤
sin
π
2
⇒
−
1
≤
3
x
−
4
x
3
≤
1
3
x
−
4
x
3
≤
−
1
⇒
4
x
3
−
3
x
−
1
≤
0
⇒
x
≤
1
2
and
3
x
−
4
x
3
≤
1
⇒
4
x
3
−
3
x
+
1
≤
0
⇒
x
≤
−
1
2
∴
x
ϵ
[
−
1
2
,
1
2
]
f
x
=
sin
−
1
(
3
x
−
4
x
3
)
⇒
f
1
(
x
)
=
1
√
1
−
(
3
x
−
4
x
3
)
2
×
(
3
−
12
x
2
)
⇒
f
1
(
x
)
=
3
−
12
x
2
=
−
(
12
x
2
−
3
)
x
2
≤
0
⇒
12
x
2
≤
0
⇒
12
x
2
−
3
≤
−
3
−
3
(
12
x
2
−
3
)
≤
3
∴
f
1
(
x
)
≤
0
∴
f
1
(
x
)
is a decreasing function.
Hence
f
(
x
)
is one-one and range of function
=
its co-domain.
Hence it is both one-one and onto.
The domain of the function
f
(
x
)
=
sin
−
1
(
1
+
e
x
)
−
1
is
Report Question
0%
R
0%
[
−
1
,
0
]
0%
[
0
,
1
]
0%
[
−
1
,
1
]
The interval on which the function
f
(
x
)
=
2
x
3
+
9
x
2
+
12
x
−
1
is decreasing is?
Report Question
0%
[
−
1
,
∞
)
0%
[
−
2
,
−
1
]
0%
(
−
∞
,
−
2
]
0%
[
−
1
,
1
]
Explanation
f
(
x
)
=
2
x
3
+
9
x
2
+
12
x
−
1
f
′
(
x
)
=
6
x
2
+
18
x
+
12
=
6
(
x
2
+
3
x
+
2
)
=
6
(
x
+
2
)
(
x
+
1
)
∴
f
(
x
)
decreases in interval
x
t
[
−
2
,
−
1
]
Let g be the inverse function of differentiable function f and
G
(
x
)
=
1
g
(
x
)
i
f
f
(
4
=
2
)
and
f
′
(
4
)
=
1
16
, then the value of
(
G
′
(
2
)
)
2
equals to:
Report Question
0%
1
0%
4
0%
16
0%
64
The domain of the function
f
(
x
)
=
1
√
10
C
x
−
1
−
3
×
10
C
x
contains the points
Report Question
0%
9, 10, 11
0%
9, 10, 12
0%
all natural numbers
0%
None of these
Explanation
Given function is defined if
10
C
x
+
1
>
3
10
C
x
⇒
1
11
−
x
>
3
4
⇒
4
x
>
33
⇒
x
⩾
9
b
u
t
x
≤
10
⇒
x
=
9
,
10
If
f
:
(
−
1
,
1
)
→
B
, is a function defined by
f
(
x
)
=
tan
−
1
2
x
1
−
x
2
, then find
B
when
f
(
x
)
is both one-one and onto function.
Report Question
0%
[
−
π
2
,
π
2
]
0%
(
−
π
2
,
π
2
)
0%
(
0
,
π
2
)
0%
[
0
,
π
2
)
Explanation
For
x
ϵ
(
−
1
,
1
)
, we have
f
(
x
)
=
tan
−
1
[
2
x
1
−
x
2
]
Substituting
x
=
tan
θ
in above equation.
Therefore,
f
(
tan
θ
)
=
tan
−
1
[
2
tan
θ
1
−
tan
2
θ
]
=
tan
−
1
tan
(
2
θ
)
=
2
θ
=
2
tan
−
1
x
Thus
−
π
2
<
tan
−
1
[
2
x
1
−
x
2
]
<
π
2
Thus option B is correct.
The sum of all real values of
x
satisfying the equation
(
x
2
−
5
x
+
5
)
x
2
+
4
x
−
60
=
1
is
Report Question
0%
−
4
0%
6
0%
5
0%
3
Explanation
(
x
2
−
5
x
+
5
)
x
2
+
4
x
−
60
=
1
⇒
(
x
2
−
5
x
+
5
)
0
⇒
x
2
+
4
x
−
60
=
0
Solving for x.
x
=
−
10
,
6
And,
x
2
−
5
x
+
5
1
a
=
1
or
b
o
=
1
or
(
−
1
)
x
=
1
∴
x
2
−
5
x
+
5
=
1
x
2
−
5
x
+
4
=
0
(
x
−
4
)
(
x
−
1
)
=
0
x
=
4
or
1
Or
x
2
−
5
x
+
5
=
−
1
x
2
−
5
x
+
6
=
0
(
x
−
3
)
(
x
−
2
)
=
0
x
=
3
,
2
2 will satisfy not 3 because power will be odd
Hence
x
=
{
−
10
,
1
,
2
,
4
,
6
}
∴
sum of solutions
=
3
If
f
(
x
+
y
2
)
=
f
(
x
)
+
f
(
y
)
2
for all
x
,
y
∈
R
and
f
′
(
o
)
=
−
1
,
f
(
o
)
=
1
then
f
(
2
)
=
Report Question
0%
1
2
0%
1
0%
−
1
0%
−
1
2
Explanation
let
f
(
x
)
=
a
x
+
b
f
(
0
)
=
1
⟹
b
=
1
f
′
(
0
)
=
−
1
⟹
a
=
−
1
⟹
f
(
x
)
=
1
−
x
⟹
f
(
2
)
=
−
1
The domain of
f
(
x
)
=
√
2
−
l
o
g
3
(
x
−
1
)
is
Report Question
0%
(
2
,
12
]
0%
(
∞
,
10
]
0%
(
3
,
12
]
0%
(
1
,
10
]
Explanation
√
2
−
l
o
g
3
(
x
−
1
)
x
−
1
>
0
⇒
x
>
1
…………
(
1
)
Also,
2
−
l
o
g
3
(
x
−
1
)
≥
0
l
o
g
3
(
x
−
1
)
≤
2
(
x
−
1
)
≤
3
2
⇒
x
−
1
≤
9
x
≤
10
…………..
(
2
)
Intersection of
(
1
)
&
(
2
)
x
∈
(
1
,
10
]
.
If
f
(
x
)
=
x
3
+
x
2
f
′
(
1
)
+
x
f
″
(
2
)
+
f
‴
(
3
)
∀
x
ϵ
R
, then
f
(
x
)
is
Report Question
0%
one-one and onto
0%
one-one and into
0%
many-one and onto
0%
non-invertible
Let
E
=
{
1
,
2
,
3
,
4
}
and
F
=
{
1
,
2
}
. Then the number of onto functions from
E
to
F
is
Report Question
0%
14
0%
16
0%
12
0%
8
Explanation
The total number of ways of distributing
(
1
,
2
)
considering them as 2 objects among
(
1
,
2
,
3
,
4
)
considering them as 4 people is equal to total no. of Onto functions from E to F.
There can be two ways of distributing
(
1
,
2
)
,
Either we give both to one people
Or give
1
to one people and
2
to another.
So, Total no. of ways
=
4
×
1
+
4
C
2
×
2
=
16
The domain of the function,
f
(
x
)
=
|
x
|
−
2
|
x
|
−
3
is
Report Question
0%
R
0%
R
−
{
2
,
3
}
0%
R
−
{
2
,
−
2
}
0%
R
−
{
−
3
,
3
}
Explanation
f
(
x
)
=
|
x
|
−
2
|
x
|
−
3
Here,
x
cannot be
±
3
.
(f is not defined when
x
=
±
3
)
Therefore,
Domain
=
R
−
{
−
3
,
3
}
If
f
(
x
)
=
√
x
2
−
4
and
g
(
x
)
=
x
−
1
x
−
3
then number of integer elements, which are not in the domain of the function
(
f
.
g
)
(
x
)
equals
Report Question
0%
3
0%
4
0%
5
0%
None of these
Let
N
be the set of natural numbers and two functions
f
and
g
be defined as
f
,
g
:
N
→
N
such that :
f
(
n
)
=
{
n
+
1
2
if n is odd
n
2
in n is even
and
g
(
n
)
=
n
−
(
−
1
)
n
. The fog is:
Report Question
0%
Both one-one and onto
0%
One-one but not onto
0%
Neither one-one nor onto
0%
onto but not one-one
Explanation
f
x
=
{
n
+
1
2
n is odd
n
2
n is even
g
(
x
)
=
n
−
(
−
1
)
n
{
n
+
1
;
n is odd
n
−
1
;
n is even
f
(
g
(
n
)
)
=
{
n
2
;
n is even
n
+
1
2
;
n is odd
∴
onto but not one-one
If
f
(
x
)
=
4
x
4
x
+
2
, then the value of
f
(
x
)
+
f
(
1
−
x
)
is
Report Question
0%
0
0%
−
1
0%
1
0%
c
a
n
′
t
b
e
d
e
t
e
r
m
i
n
e
d
Explanation
Given
f
(
x
)
=
4
x
4
x
+
2
∴
f
(
1
−
x
)
=
4
1
−
x
4
1
−
x
+
2
⇒
f
(
1
−
x
)
=
(
4
4
x
)
(
4
4
x
)
+
2
⇒
f
(
1
−
x
)
=
4
4
+
4
x
⋅
2
=
2
2
+
4
x
Therefore,
f
(
x
)
+
f
(
1
−
x
)
=
4
x
2
+
4
x
+
2
2
+
4
x
⇒
f
(
x
)
+
f
(
1
−
x
)
=
4
x
+
2
2
+
4
x
=
1
Domain of the function
f
(
x
)
=
√
2
−
2
x
−
x
2
is
Report Question
0%
−
√
3
≤
x
≤
√
3
0%
−
1
−
√
3
≤
x
≤
−
1
+
√
3
0%
−
2
≤
x
≤
2
0%
−
2
+
√
3
≤
x
≤
−
2
−
√
3
Explanation
Given,
f
(
x
)
=
√
2
−
2
x
−
x
2
√
f
(
x
)
⇒
f
(
x
)
≥
0
2
−
2
x
−
x
2
≥
0
−
(
x
+
1
)
2
+
3
≥
0
−
(
x
+
1
)
2
≥
−
3
(
x
+
1
)
2
≤
3
−
√
3
≤
x
+
1
≤
√
3
−
√
3
≤
x
+
1
a
n
d
x
+
1
≤
√
3
−
√
3
≤
x
+
1
:
x
≥
−
√
3
−
1
x
+
1
≤
√
3
:
x
≤
√
3
−
1
⇒
−
√
3
−
1
≤
x
≤
√
3
−
1
Let
f
(
x
)
=
x
135
+
x
125
−
x
115
+
x
5
+
1
. If
f
(
x
)
divided by
x
3
−
x
, then the remainder is some function of
x
say
g
(
x
)
. Then
g
(
x
)
is an:-
Report Question
0%
one-one function
0%
many one function
0%
into function
0%
onto function
Explanation
The domain of the function
sin
−
1
(
l
o
g
2
(
x
3
)
)
is-
Report Question
0%
[
1
2
,
3
]
0%
[
1
2
,
3
]
0%
[
3
2
,
6
]
0%
[
1
2
,
2
]
Domain of function
f
(
x
)
=
|
x
|
−
x
2
x
is
Report Question
0%
R
0%
R
−
{
0
}
0%
Z
0%
N
The domain of
f
(
x
)
=
e
√
x
+
c
o
s
x
is
Report Question
0%
(
−
∞
,
∞
)
0%
[
0
,
∞
)
0%
(0,1)
0%
(
1
,
∞
)
The domain of function
f
(
x
)
=
x
2
−
10
x
+
26
x
4
(
x
2
−
9
)
(
1
+
27
x
2
)
Report Question
0%
x
∈
R
−
{
0
,
±
3
}
0%
x
∈
R
−
{
0
,
3
}
0%
x
∈
R
0%
none
Explanation
f
(
x
)
=
x
2
−
10
x
+
26
x
4
(
x
2
−
9
)
(
1
+
27
x
2
)
The function is defined only when
x
4
(
x
2
−
9
)
(
1
+
27
x
2
)
≠
0
⟹
x
≠
0
,
x
2
−
9
≠
0
x
2
≠
9
x
≠
±
3
The domain is
R
−
{
0
,
±
3
}
The domain of the function
f
(
x
)
=
√
x
2
−
1
x
−
2
is
Report Question
0%
(
2
,
∞
)
0%
(
1
,
∞
)
0%
[
−
1
,
1
]
∪
(
2
,
∞
)
0%
none of these
Explanation
Given,
f
(
x
)
=
√
x
2
−
1
x
−
2
x
2
−
1
x
−
2
≥
0
:
−
1
≤
x
≤
1
o
r
x
>
2
undefined singularity point:
x
=
2
combined domain of function,
−
1
≤
x
≤
1
o
r
x
>
2
[
−
1
,
1
]
∪
(
2
,
∞
)
The domain of the function
f
(
x
)
=
log
2
x
2
is
Report Question
0%
x
∈
R
0%
x
∈
[
0
,
∞
)
0%
x
∈
(
−
∞
,
0
)
∪
(
0
,
∞
)
0%
x
∈
R
−
{
x
|
x
∈
1
}
Explanation
option C is correct
Domain of the function
f
(
x
)
=
x
2
−
3
x
+
2
x
2
+
x
−
6
is
Report Question
0%
{
x
:
x
ϵ
R
,
x
≠
−
3
}
0%
{
x
:
x
ϵ
R
,
x
≠
2
}
0%
{
x
:
x
ϵ
R
}
0%
{
x
:
x
ϵ
R
,
x
≠
2
,
x
≠
−
3
}
Explanation
Given,
f
(
x
)
=
x
2
−
3
x
+
2
x
2
+
x
−
6
x
2
+
x
−
6
=
0
roots of above equation are:
x
=
−
3
,
2
So,
x
can't be equal to
−
3
o
r
2
The above points are undefined
The function domain is
x
<
−
3
,
−
3
<
x
<
2
,
x
>
2
{
x
:
x
∈
R
,
x
≠
2
,
x
≠
−
3
}
The function
y
=
x
1
+
x
2
has its domain as
Report Question
0%
x
∈
R
0%
x
∈
R
−
(
−
1
,
1
)
0%
x
∈
(
0
,
∞
)
0%
x
∈
(
−
∞
,
−
1
)
Explanation
The function
y
=
x
1
+
x
2
is defined only when
1
+
x
2
≠
0
x
2
≠
−
1
⟹
x
∈
R
The domain of the function,
f
(
x
)
=
√
2
−
x
−
1
√
9
−
x
2
is
Report Question
0%
(-3,1)
0%
[-3,1]
0%
(-3,2)
0%
(-3,2]
Explanation
Given,
f
(
x
)
=
√
2
−
x
−
1
√
9
−
x
2
√
f
(
x
)
⇒
f
(
x
)
≥
0
2
−
x
≥
0
:
x
≤
2
9
−
x
2
≥
0
:
−
3
≤
x
≤
3
Combined interval:
−
3
≤
x
≤
2
Undefined singularity points:
x
=
3
,
x
=
−
3
Combining real regions and undefined singularity points:
−
3
<
x
≤
2
(
−
3
,
2
]
f
:
R
→
R
,
f
(
x
)
=
e
|
x
|
−
e
−
x
is many-one into function.
Report Question
0%
True
0%
False
Explanation
f
(
x
)
=
e
(
x
)
−
e
−
x
For every
x
, there will be different
f
(
x
)
∴
It is a one - one function
∴
F
a
l
s
e
Number of one-one functions from A to B where
n
(
A
)
=
4
,
n
(
B
)
=
5
.
Report Question
0%
4
0%
5
0%
120
0%
90
Explanation
n
(
A
)
=
4
and
n
(
B
)
=
5
For one-one mapping
4 elements can be selected out of 5 elements of set B in
5
C
4
ways
and then those 4 selected elements can be mapped with 4 elements of set A in
4
!
ways.
Number of one-one mapping from
A
to
B
=
5
C
4
×
4
!
=
5
P
4
=
5
!
(
5
−
4
)
!
=
5
!
=
120
Consider
f
(
x
)
=
x
2
1
+
x
3
;
g
(
t
)
=
∫
f
(
t
)
d
t
. If
g
(
1
)
=
0
then
g
(
x
)
equals
Report Question
0%
1
3
l
n
(
1
+
x
3
)
0%
1
3
l
n
(
1
+
x
3
2
)
0%
1
2
l
n
(
1
+
x
3
3
)
0%
1
3
l
n
(
1
+
x
3
3
)
Domain of the function
f
(
x
)
=
x
−
3
(
x
−
1
)
√
x
2
−
4
Report Question
0%
(
1
,
2
)
0%
(
−
∞
,
−
2
)
∪
(
2
,
∞
)
0%
(
−
∞
,
−
2
)
∪
(
1
,
∞
)
0%
(
−
x
,
x
)
−
(
t
±
2
)
Explanation
Given,
f
(
x
)
=
x
−
3
(
x
−
1
)
√
x
2
−
4
√
f
(
x
)
⇒
f
(
x
)
≥
0
x
2
−
4
≥
0
:
x
≤
−
2
o
r
x
≥
2
Undefined singularity points
x
<
−
2
o
r
x
>
2
Domain
x
<
−
2
o
r
x
>
2
So, the domain is
(
−
∞
,
−
2
)
∪
(
2
,
∞
)
In a set
A
=
{
1
,
2
,
3
,
4
}
, the relation R is defined as
x
R
y
⟺
x
≤
y
, then the domain of the inverse relation is
Report Question
0%
{
1
,
2
,
3
}
0%
{
3
,
4
,
5
,
6
}
0%
{
1
,
2
,
3
,
4
}
0%
{
4
,
5
,
6
}
f
:
R
→
R
,
f
(
x
)
=
2
x
+
|
sin
x
|
is one-one onto.
Report Question
0%
True
0%
False
Explanation
f
(
x
)
=
2
x
+
|
s
i
n
x
|
for query x,there will be a defferent f(x)
∴
o
n
e
−
o
n
e
& domain
→
R
∴
o
n
t
o
∴
T
r
u
e
.
If
f
:
R
→
R
,
f
(
x
)
=
a
x
2
+
6
x
−
8
a
+
6
x
−
8
x
2
is onto, then
α
∈
Report Question
0%
(
1
,
∞
)
0%
(
0
,
∞
)
0%
(
2
,
12
)
0%
[
2
,
14
]
If f :
R
→
S
, defined by f(x) =sin x -
√
3
cos x +1, is onto, then the interval of S is
Report Question
0%
[0, 3]
0%
[-1, 1]
0%
[0, 1]
0%
[-1, 3]
If
f
:
R
→
R
be given by
f
(
x
)
=
(
3
−
x
3
)
1
3
,
then
f
o
f
(
x
)
is
Report Question
0%
x
1
3
0%
1
3
0%
x
0%
(
3
−
x
3
)
Explanation
Given,
f
(
x
)
=
(
3
−
x
3
)
1
3
.
Now,
f
o
f
(
x
)
=
f
[
f
(
x
)
]
=
(
3
−
[
f
(
x
)
]
3
)
1
3
,
=
(
3
−
[
(
3
−
x
3
)
1
3
]
3
)
1
3
,
=
(
3
−
[
(
3
−
x
3
)
]
)
1
3
,
=
[
x
3
]
1
3
=
x
.
Let :
R
→
R
defined as
f
(
x
)
=
x
(
x
+
1
)
(
x
4
+
1
)
+
2
x
4
+
x
2
+
2
x
2
+
x
+
1
Report Question
0%
odd and one-one
0%
even and one-one
0%
many to one and even
0%
many to one and neither even nor odd
The domain of the function
f
(
x
)
=
sin
−
1
(
x
−
3
)
√
9
−
x
2
is
Report Question
0%
[
1
,
2
]
0%
[
2
,
3
)
0%
[
2
,
3
]
0%
[
1
,
2
)
Explanation
Given the function is
f
(
x
)
=
sin
−
1
(
x
−
3
)
√
9
−
x
2
.
Now,
f
(
x
)
will be defined if
|
x
−
3
|
≤
1
or,
−
1
≤
x
−
3
≤
1
or,
2
≤
x
≤
4
......(1),
and
9
−
x
2
>
0
or,
x
2
<
9
or,
−
3
<
x
<
3
.....(2).
So
f
(
x
)
will be defined in the common portion of (1) and (2).
And the common protion is
2
≤
x
<
3
or,
x
∈
[
2
,
3
)
.
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
0
Answered
1
Not Answered
49
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page