Processing math: 100%

CBSE Questions for Class 11 Commerce Applied Mathematics Functions Quiz 8 - MCQExams.com

If f(x)=4x2+1|sinx|sinx, then the domain of f(x) is 
  • [-2,0]
  • (0,2]
  • [-2,2}
  • [π2, 2]
If f(x)=sin2x and the composite functions g{f(x)}=|sin x|, then the function g(x)=
  • x1
  • x
  • x+1
  • x
the equation |x+1$log(x+1)3+2xx2=(x3)|x|  has 
  • Uniques solution
  • Two solution
  • No solutions
  • more thatn two solution
if f(x)=4x2+1|sinx|sinx, then the domain of f(x) is 
  • [2,0)
  • [0,2]
  • [2,2]
  • None of these
The domain of the function
f(x)=log1/2(log2(1+14x)1) is
  • 0<x<1
  • 0<x1
  • x1
  • null set
Find the domain of function sin1[1+x22x].
  • [1,1]
  • (1,1)
  • {1,1}
  • {0}
The domain of f(x)=esin(x|x|)+|x|cos(x|x+1|) , where [.] represents greatest integer function , is 
  • R
  • R-[-1, 0]
  • R-[0,1]
  • R-[-1)
The equation |x1|+|a|=4 can have real solution for x if a belongs to the interval
  • (,4]
  • (4,)
  • (4,4)
  • (,4)(4,)
If f(x)=sin1(sinx)+cos1(sinx) and ϕ(x)=f(f(f(x))) then ϕ(x)
  • 1
  • sinx
  • 0
  • none of these
if f(x)=3x+2 , g(x)=x2+1,then the values of (fog)(x21)
  • 3x46x2+8
  • 3x4+3x+4
  • 6x4+3x22
  • 6x4+3x2+2
Let A = {1,2,3,4,5} and B={1,2,3,4,5}. If f:AB is an one-one function and f(x)=x holds only for one value of  xϵ{1,2,3,4,5}, then the number of such possible function is  
  • 120
  • 36
  • 45
  • 44
Number of positive integers in the domain of the function f(x)=log0.5log6(x2+xx+4) is
  • 5
  • 6
  • 7
  • 8
Difference between the greatest and the least values of the function
f(x)=x(lnx2) on [1,e2] is
  • 2
  • e
  • e2
  • 1
The function f:[12,12][π2,π2] defined by f(x)=sin1(3x4x3) is 
  • both one-one and onto
  • onto but not one-one
  • one-one but not onto
  • neither one-one nor onto
The domain of the function f(x)=sin1(1+ex)1 is 
  • R
  • [1,0]
  • [0,1]
  • [1,1]
The interval on which the function f(x)=2x3+9x2+12x1 is decreasing is?
  • [1,)
  • [2,1]
  • (,2]
  • [1,1]
Let g be the inverse function of differentiable function f and G(x)=1g(x)iff(4=2) and f(4)=116, then the value of (G(2))2 equals to:
  • 1
  • 4
  • 16
  • 64
The domain of the function f(x)=110Cx13×10Cx contains the points
  • 9, 10, 11
  • 9, 10, 12
  • all natural numbers
  • None of these
If f:(1,1)B , is a function defined by f(x)=tan12x1x2, then find B when f(x) is both one-one and onto function. 
  • [π2,π2]
  • (π2,π2)
  • (0,π2)
  • [0,π2)
The sum of all real values of x satisfying the equation
(x25x+5)x2+4x60=1 is
  • 4
  • 6
  • 5
  • 3
If  f(x+y2)=f(x)+f(y)2  for all  x,yR  and  f(o)=1,f(o)=1  then  f(2)=
  • 12
  • 1
  • 1
  • 12
The domain of f(x)=2log3(x1) is
  • (2,12]
  • (,10]
  • (3,12]
  • (1,10]
If f(x)=x3+x2f(1)+xf(2)+f(3) x ϵ R, then f(x) is
  • one-one and onto
  • one-one and into
  • many-one and onto
  • non-invertible
Let E={1,2,3,4} and F={1,2}. Then the number of onto functions from E to F is
  • 14
  • 16
  • 12
  • 8
The domain of the function, f(x)=|x|2|x|3 is
  • R
  • R{2,3}
  • R{2,2}
  • R{3,3}
If f(x)=x24 and g(x)=x1x3 then number of integer elements, which are not in the domain of the function (f.g)(x) equals 
  • 3
  • 4
  • 5
  • None of these
Let N be the set of natural numbers and two functions f and g be defined as f,g:NN such that :
f(n)={n+12if n is oddn2in n is even
and g(n)=n(1)n. The fog is:
  • Both one-one and onto
  • One-one but not onto
  • Neither one-one nor onto
  • onto but not one-one
If f(x)=4x4x+2, then the value of f(x)+f(1x) is
  • 0
  • 1
  • 1
  • cant be determined
Domain of the function f(x)=22xx2 is 
  • 3x3
  • 13x1+3
  • 2x2
  • 2+3x23
Let f(x)=x135+x125x115+x5+1. If f(x) divided by x3x, then the remainder is some function of x say g(x). Then g(x) is an:-
  • one-one function
  • many one function
  • into function
  • onto function
The domain of the function sin1(log2(x3)) is-  
  • [12,3]
  • [12,3]
  • [32,6]
  • [12,2]
Domain of function f(x)=|x|x2x is
  • R
  • R{0}
  • Z
  • N
The domain of f(x)=ex+cosx is 
  • (,)
  • [0,)
  • (0,1)
  • (1,)
The domain of function f(x)=x210x+26x4(x29)(1+27x2) 
  • xR{0,±3} 
  • xR{0,3} 
  • xR
  • none
The domain of the function f(x)=x21x2 is 
  • (2,)
  • (1,)
  • [1,1](2,)
  • none of these
The domain of the function f(x)=log2x2  is
  • xR
  • x[0,)
  • x(,0)(0,)
  • xR{x|x1}
Domain of the function f(x)=x23x+2x2+x6 is
  • {x:xϵR,x3}
  • {x:xϵR,x2}
  • {x:xϵR}
  • {x:xϵR,x2,x3}
The function y=x1+x2 has its domain as
  • xR
  • xR(1,1)
  • x(0,)
  • x(,1)
The domain of the function, f(x)=2x19x2  is 
  • (-3,1)
  • [-3,1]
  • (-3,2)
  • (-3,2]
 f:RR,f(x)=e|x|ex  is many-one into function.
  • True
  • False
Number of one-one functions from A to B where n(A)=4,n(B)=5.
  • 4
  • 5
  • 120
  • 90
Consider f(x)=x21+x3 ; g(t)=f(t)dt . If g(1)=0 then g(x) equals 
  • 13ln(1+x3)
  • 13ln(1+x32)
  • 12ln(1+x33)
  • 13ln(1+x33)
Domain of the function f(x)= x3(x1)x24
  • (1,2)
  • (,2)(2,)
  • (,2)(1,)
  • (x,x)(t±2)
In a set A={1,2,3,4}, the relation R is defined as xRyxy, then the domain of the inverse relation is
  • {1,2,3}
  • {3,4,5,6}
  • {1,2,3,4}
  • {4,5,6}
f:RR,f(x)=2x+|sinx|  is one-one onto.
  • True
  • False
If f:RR,f(x)=ax2+6x8a+6x8x2 is onto, then α
  • (1,)
  • (0,)
  • (2,12)
  • [2,14]
If f : RS, defined by f(x) =sin x -3 cos x +1, is onto, then the interval of S is 
  • [0, 3]
  • [-1, 1]
  • [0, 1]
  • [-1, 3]
If f:RR be given by f(x)=(3x3)13, then fof(x) is
  • x13
  • 13
  • x
  • (3x3)
Let : RR defined as f(x)=x(x+1)(x4+1)+2x4+x2+2x2+x+1
  • odd and one-one
  • even and one-one
  • many to one and even
  • many to one and neither even nor odd
The domain of the function f(x)=sin1(x3)9x2 is 
  • [1,2]
  • [2,3)
  • [2,3]
  • [1,2)
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers