CBSE Questions for Class 11 Commerce Applied Mathematics Functions Quiz 9 - MCQExams.com

Let f : $$R\rightarrow R$$ be a function defined by f(x) = $${ x }^{ 3 }+{ x }^{ 2 }+3x+sin\times .$$ Then f is.
  • one-one & onto
  • one-one & into
  • many one & onto
  • many one & into
The domain of the definition of the function
$$f(x)=\cfrac { 1 }{ 4-{ x }^{ 2 } } +\log _{  }{ \left( { x }^{ 3 }-x \right)  } $$ is
  • $$\left( 1,2 \right) \cup \left( 2,\infty \right) $$
  • $$\left( -1,0 \right) \cup \left( 1,2 \right) \cup \left( 3,\infty \right) $$
  • $$\left( -1,0 \right) \cup \left( 1,2 \right) \cup \left( 2,\infty \right) $$
  • $$\left( -2,-1 \right) \cup \left( -1,0 \right) \cup \left( 2,\infty \right) $$
If working set window is too large _____________________.
  • it will not encompass entire locality
  • it may overlap several localities
  • it will cause memory problems
  • none of the mentioned
Time complexity to check if an edge exists between two vertices would be __________.
  • O(V*V)
  • O(V+E)
  • O(1)
  • O(E)
What is the definition for Ackermann's function?
  • A(1,i) = i+1 for i>=1
  • A(i,j) = i+j for i>=j
  • A(i,j) = i+j for i = j
  • A(1,i) = i+1 for i<1
Let $$f:R\rightarrow R$$ be defined by $$f(x)=\left|\begin{matrix} 2x & x > 3\\ x^2 & 1 < x \leq 3\\ 3x & x\leq 1\end{matrix}\right.$$. Then $$f(-1)+f(2)+f(4)$$ is?
  • $$9$$
  • $$14$$
  • $$5$$
  • $$10$$
Following code snippet is the function to insert a string in a trie. Find the missing line.
  • node = node.children[index];
  • node = node.children[str.charAt(i + 1)];
  • node = node.children[index++];
  • node = node.children[index+++];
Function which is used to read strings is __________.
  • getch()
  • getc()
  • getstr()
  • gets()
A function inside another function is called a _____ function.
  • Nested
  • Sum
  • Text
  • None of these
LetN be the set of natural numbers and two functions f and g be defined as $$ f, g: N \rightarrow N $$ such that$$f ( n ) = \left\{ \begin{array} { l l } { \frac { n + 1 } { 2 } } & { \text { if } n \text { is odd } } \\ { \frac { n } { 2 } } & { \text { if } n \text { is even } } \end{array} \right.$$and $$ g ( n ) = n - ( - 1 ) ^ { n } . $$ Then fog is :
  • onto but not one-one.
  • one-one but not onto.
  • both one-one and onto.
  • neither one-one nor onto.
A function $$f$$ from the set of natural numbers to integers defined by $$f(n)=\begin{cases} \cfrac { n-1 }{ 2 } ,\quad \text{when n is odd} \\ -\cfrac { n }{ 2 } ,\quad \text{when n is even} \end{cases}$$  is
  • neither one-one nor onto
  • one-one but not onto
  • onto but not one-one
  • one-one and onto both
The function $$f:A\rightarrow B$$ defined by $$f(x)=-{ x }^{ 2 }+6x-8$$ is a bijection, if
  • $$A=(-\infty ,3];B=(-\infty ,1]$$
  • $$A=[-3,\infty );B=(-\infty ,1]$$
  • $$A=(-\infty ,3];B=[1,\infty )$$
  • $$A=[3,\infty );B=[1,\infty )$$
Which of the following functions from $$Z$$ to itself are bijections?
  • $$f(x)={x}^{3}$$
  • $$f(x)=x+2$$
  • $$f(x)=2x+1$$
  • $$f(x)={X}^{2}+x$$
Let $$M$$ be the set of all $$2\times 2$$ matrices with entries from the set $$R$$ of real numbers. Then the function $$f:M\rightarrow R$$ defined by $$f(A)=\left| A \right| $$ for every $$A\in M$$, is
  • one-one and onto
  • neither one-one nor onto
  • one-one but not onto
  • onto but not one-one
If a function $$f:(2,\infty )\rightarrow B$$ defined by $$f(x)={ x }^{ 2 }-4x+5$$ is a bijection, then $$B=$$
  • $$R$$
  • $$[1,\infty)$$
  • $$(0,1]$$
  • $$[0,1)$$
Let $$f:Z\rightarrow Z$$ be given by $$f(x)=\begin{cases} \cfrac { x }{ 2 } ,\quad \text{if}\ x \ \text{is even} \\ 0,\quad \text{if }\ x \ \text{is odd} \end{cases}$$. Then, $$f$$ is
  • onto but not one-one
  • one-one but not onto
  • one-one and onto
  • neither one-one nor onto
Which of the following functions from $$A=\left\{ x:-1\le x\le 1 \right\} $$ to itself are bijections?
  • $$f(x)=\cfrac { x }{ 2 } $$
  • $$g(x)=\sin { \left( \cfrac { \pi x }{ 2 } \right) } $$
  • $$h(x)=\left| x \right| $$
  • $$k(x)={ x }^{ 2 }$$
The function $$f:\left[ -\dfrac {1}{2},\dfrac {1}{2} \right] \rightarrow \left[ -\dfrac {\pi }{2},\dfrac {\pi }{2} \right] $$ defined by $$f(x)=\sin ^{ -1 }{ \left( 3x-4{ x }^{ 3 } \right)  } $$ is
  • bijection
  • injection but not a surjection
  • surjection but not an injection
  • neither injection nor a surjection
If $$g(x)={ x }^{ 2 }+x-2$$ and $$\cfrac { 1 }{ 2 } (g\circ f(x))=2{ x }^{ 2 }-5x+2$$, then $$f(x)$$ is equal to
  • $$2x-3$$
  • $$2x+3$$
  • $$2{x}^{2}+3x+1$$
  • $$2{x}^{2}-3x-1$$
A function $$f$$ from the set of natural numbers to the set of integers defined by
$$f(n)=\begin{cases} \cfrac { n-1 }{ 2 } ,\quad \text{when n is odd} \\ -\cfrac { n }{ 2 } ,\quad \text{when n is even} \end{cases}$$
  • neither one-one nor onto
  • one-one but not onto
  • onto but not one-one
  • one-one and onto both
If $$n \geq 2$$ then the number of surjections that can be defined from $$\{1, 2, 3, .......  n\}$$ onto $$\{1, 2\}$$ is
  • $$2n$$
  • $$^nP_2$$
  • $$2^n$$
  • $$2^{n}-2$$
The function $$f:R\rightarrow R$$ defined by $$f(x)=(x-1)(x-2)(x-3)$$ is
  • one-one but not onto
  • onto but not one-one
  • both one and onto
  • neither one-one nor onto
If $$g(x)=x^2+x-1$$ and 
$$(gof)(x)=4x^2-10x+5$$, then
$$f\left(\dfrac{5}{4}\right)$$ is equal to:
  • $$\dfrac{3}{2}$$
  • $$\dfrac{1}{2}$$
  • $$-\dfrac{3}{2}$$
  • $$-\dfrac{1}{2}$$
Let $$S$$ be the set of all real roots of the equation, $${ 3 }^{ x }\left( { 3 }^{ x }-1 \right) +2=\left| { 3 }^{ x }-1 \right| +\left| { 3 }^{ x }-2 \right| $$. Then $$S$$:
  • contains at least four elements
  • is a singleton
  • is an empty set
  • contains exactly two elements
If $$f(x) = \dfrac{x+1}{x-1}$$, then the valueof $$f(f(x))$$ is equal to
  • $$x$$
  • $$0$$
  • $$-x$$
  • $$1$$
Let $$f : x \rightarrow y $$ be such that $$f(1) = 2$$ and $$f(x + y) = f(x) f(y)$$ for all natural numbers x and y. If $$\displaystyle \sum_{k= 1}^n f(a + k) = 16 (2^n - 1)$$ , then a is equal to 
  • $$3$$
  • $$4$$
  • $$5$$
  • $$6$$
  • $$7$$
If $$f(x)=\dfrac{(4x+3)}{(6x-4)}, x\neq \dfrac{2}{3}$$ then $$(f o f)(x)=?$$
  • $$x$$
  • $$(2x-3)$$
  • $$\dfrac{4x-6}{3x+4}$$
  • None of these
If $$f(x)=\sqrt[3]{3-x^3}$$ then $$(f o f)(x)=?$$
  • $$x^{1/3}$$
  • $$x$$
  • $$(1-x^{1/3})$$
  • None of these
Let $$ f : R \rightarrow R : f(x) =x +1 $$ and $$ g : R \rightarrow R : g(x) = 2x -3 $$.
Find $$(f +g) (x)$$.
  • $$3x -2$$
  • $$4x -5$$
  • $$3x -4$$
  • $$2x -3$$
If $$\displaystyle f(x) = | x - 2 |$$ and $$ g(x) = fof\,(x) $$ , then for $$ x > 20 , {g}\,'(x) = $$ 

  • $$ 2 $$
  • $$ 1 $$
  • $$ 3 $$
  • None of these
If $$\displaystyle {f}'(x) = g\,(x) $$ and $$\displaystyle {g}'(x) = - f\,(x) $$ for all $$ x $$ and $$ f\,(2) = 4 = {f}'(2) $$ then $$\displaystyle f^{2}\,(19) + g^{2} \,(19) $$ is 
  • $$ 16 $$
  • $$ 32 $$
  • $$ 64 $$
  • None of these
The value of f(0), so that the function
f(x) = $$ \dfrac{2x-sin^{-1}x}{2x+tan^{-1}x} $$ is continuous at each point in its domain, is equal to
  • 2
  • 1/3
  • 2/3
  • -1/3
let $$f(x) = sin^2 x/2 + cos ^2 x/2 $$ and $$g(x) = sec^2 x - tan ^2 x.$$ The two functions are equal over the set
  • $$\phi$$
  • $$R$$
  • $$R-{ x:x (2n+1) \frac{\pi}{2}, n\in1}$$
  • None of these
Let $$f(n)$$ denote the number of different ways in which the positive integer $$n$$ can be expressed as the sum of $$1s$$ and $$2s$$. For example, $$f(4) = 5$$, since $$4 = 2 + 2 = 2 + 1 + 1 = 1 + 2 + 1 = 1 + 1 + 2 = 1 + 1 + 1 + 1$$. Note that order of $$1s$$ and $$2s$$ is important.
$$f : N\rightarrow N$$ is
  • One-one and onto
  • One-one and into
  • Many-one and onto
  • Many-one and into
The domain of the function $$\sqrt { (\log\ 5x) } $$ is 
  • $$(1, \infty )$$
  • $$(0, \infty )$$
  • $$(0, 1 )$$
  • $$(0.5 , 1 )$$
The function $$f(x)= \dfrac{(3^{x}-1^{})^2}{\sin x. \ln(1+x)}, x\neq 0 $$ , is continuous at $$x=0$$. Then the value of $$f(0)$$ is 
  • 2log 3
  • $$ (\log_{e}3)^{2} $$
  • $$ \log_{e} 6 $$
  • None of these
The domain of the function $$f(x) = \left [ log_{10} \left ( \frac{5x - x^{2}} {4} \right ) \right]^{1/2}$$ is 

  • $$- \infty < x < \infty$$
  • $$1 \leqslant x \leqslant 4$$
  • $$ 4 \leqslant x \leqslant 16$$
  • $$ -1 \leqslant x \leqslant 1$$
The domain of $$f(x)  = \log| \log {x}|$$ is 
  • $$\left(0, \infty\right )$$
  • $$\left(1, \infty\right )$$
  • $$\left(0, 1\right )\cup \left(1, \infty \right )$$
  • $$\left(-\infty, 1\right )$$
Which of the following is not true about $$h_1(x)$$?
  • It is periodic function with period $$\pi$$
  • Range is [0,1]
  • Domain if R
  • None of these
If f: $$R\rightarrow R$$ be given by $$f(x) = 3 + 4x$$ and $$a_n = A + Bx$$, then which of the following is not true?
  • A + B + 1 = $$2^{2n + 1}$$
  • | A - B| = 1`
  • $$\displaystyle \lim_{n \to \infty} \dfrac{A}{B} = -1$$
  • None of these
Let $$ f(x) + f(y) = f(x\sqrt{1 - y^2} + y\sqrt{1 - x^2})$$ (f(x) is not identically zero) the.
  • $$f(4x^3 - 3x) + 3f(x) = 0$$
  • $$f(4x^3 - 3x) = 3f(x)$$
  • $$f(2x\sqrt{1-x^2}) + 2f(x) = 0$$
  • $$f(2x\sqrt{1-x^2}) = 2f(x)$$
Consider two functions $$f(x) = \begin{cases} [x],       -2 \leq x \leq -1\\ |x| + 1,      -1 < x \leq 2 \end{cases}$$ and  g(x) = \begin{cases} [x],   -\pi \leq x < 0 \\ sin x,    0 \leq x \leq \pi \end{cases} where [.] denotes thegreatest integer function

The exhaustive domain of g(f(x)) is
  • [0,2]
  • [-2, 0]
  • [-2,2]
  • [-1,2]
The graph of y = g(x) in its domain is broken at
  • 1 point
  • 2 point
  • 3 point
  • None of these
Let $$g(x) = f(x) - 1$$. If $$f(x) + f(1 - x) = 2 \space \forall \space x \space \epsilon \space R$$, then $$g(x)$$ is symmetrical about
  • Origin
  • The line $$x = \frac{1} {2}$$
  • The point $$\left (1, 0 \right )$$
  • The point $$\left (\frac {1} {2}, 0 \right )$$
Domain (D) and range (R) of $$f(x) = \sin^{-1}\left (\cos^{-1} [x]  \right )$$ where [.] denotes the greatest integer function is 
  • $$D \equiv x \epsilon \left [ 1, 2 \right ), R \epsilon \left \{0 \right \}$$
  • $$D \equiv x \epsilon \left [ 0, 1 \right ], R \equiv \left \{-1, 0, 1 \right \}$$
  • $$D \equiv x \epsilon \left [ -1, 1 \right ), R \epsilon \left \{0, \sin^{-1} \left (\frac{\pi} {2}\right), \sin^{-1} (\pi) \right \}$$
  • $$D \equiv x \epsilon \left [-1, 1 \right ), R \epsilon \left \{-\frac{\pi} {2}, 0 , \frac{\pi} {2} \right \}$$
g(f(x)) is not defined if
  • $$a\space \epsilon ( 10, \infty) b\space \epsilon (5, \infty)$$
  • $$a\space \epsilon ( 4, 10) b\space \epsilon (5, \infty)$$
  • $$a\space \epsilon ( 10, \infty) b\space \epsilon (0, 1)$$
  • $$a\space \epsilon ( 4, 10) b\space \epsilon (1, 5)$$
Let $$A=\left\{0,1\right\}$$ and $$N$$ be the set of natural numbers. Then, the mapping $$f:N\to A$$ defined by $$f(2n-1)=0, f(2n)=1, \forall n \in R$$, is onto.
  • True
  • False
For set $$A, B$$ and $$C$$, let $$f:A\to B, g:B\to C$$ be functions such that $$gof $$ is surjective.
Then $$g$$ is surjective function.
  • True
  • False
Let $$A$$ be a finite set. Then, each injective function from $$A$$ into itself is not surjective.
  • True
  • False
Let $$f:A\to B$$ and $$g:B\to C$$ be the bijective function. Then $$(gof)^{-1}$$ is
  • $$f^{-1}og^{-1}$$
  • $$fog$$
  • $$g^{-1} of^{-1}$$
  • $$gof$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers