CBSE Questions for Class 11 Commerce Applied Mathematics Limits And Continuity     Quiz 1 - MCQExams.com

Evaluate $$\underset{x \rightarrow 3}\lim \sqrt[4] {x^3}$$ using the properties of limits.
  • $$28^{1/4}$$
  • $$25^{1/4}$$
  • $$27^{1/4}$$
  • $$26^{1/4}$$
$$If {A_i} = \frac{{x - {a_i}}}{{\left| {x - {a_i}} \right|}}, \,i = 1,2,3,.....n$$ and $${a_1}< {a_2}< {a_3}....< {a_{n,}} \, then$$
$$\mathop {\lim }\limits_{x \to {a_m}} \left( {{A_1}{A_2}......{A_n}} \right), 1 \le m \le n$$
  • is equal to $${\left( { - 1} \right)^m}$$
  • is equal to $${\left( { - 1} \right)^{m + 1}}$$
  • is equal to $${\left( { - 1} \right)^{n-m}}$$
  • is equal to $${\left( { - 1} \right)^{n-m-1}}$$
$$\displaystyle \mathop {\lim }\limits_{x \to \frac{\pi }{2}} \frac{{\cot x - \cos x}}{{{{\left( {\frac{\pi }{2} - x} \right)}^3}}}$$
  • $$\dfrac{-1}{2}$$
  • $$\dfrac{1}{2}$$
  • $$2$$
  • $$1$$
$$f(x)= x\sin\dfrac{1}{x} , \  for x\neq 0$$
       $$= 0,\  for x=0$$
Then.
  • $$f'(0^+) exit\ but \ f'(0^-)$$ does not exit
  • $$f'(0^+) \ and \ f'(0^-)$$ do not exit
  • $$f'(0^+) = f'(0^-)$$ 
  • none of these
$$\displaystyle\lim _{ x\rightarrow 0 }{ \dfrac { \sin ^{ -1 }{ x } -\tan ^{ -1 }{ x }  }{ { x }^{ 3 } }  } $$ is equal to 
  • $$0$$
  • $$1$$
  • $$-1$$
  • $$\dfrac{1}{2}$$
If $$\mathop {\lim }\limits_{x \to \infty } \left( {\frac{{{x^2} + x + 1}}{{x + 1}} - ax - b} \right)\, = 4$$,then
  • $$a=1,b=4$$
  • $$a=1,b=-4$$
  • $$a=2,b=-3$$
  • $$a=2,b=3$$
$$\displaystyle\lim_{n\rightarrow \infty}\left(\tan\theta +\dfrac{1}{2}\tan \dfrac{\theta}{2}+\dfrac{1}{2^2}\tan \dfrac{\theta}{2^2}+...+\dfrac{1}{2^n}\tan\dfrac{\theta}{2^n}\right)$$ equals?
  • $$\dfrac{1}{\theta}$$
  • $$\dfrac{1}{\theta}-2\cot 2\theta$$
  • $$2\cot 2\theta$$
  • None of these
Let p= $$\lim_{x\rightarrow 0+}(1+tan^{2}\sqrt{x})^{\frac{1}{2x}}$$ then log p is equal to :
  • 1
  • $$\frac{1}{2}$$
  • $$\frac{1}{4}$$
  • 2
$$\displaystyle \lim _{ x\rightarrow \frac { \pi  }{ 4 }  }{ { \left( \sin { 2x }  \right)  }^{ \sec ^{ 2 }{ 2x }  } }$$ is equal to 
  • $$-\dfrac {1}{2}$$
  • $$\dfrac {1}{2}$$
  • $$e^{-\dfrac {1}{2}}$$
  • $$e^{\dfrac {1}{2}}$$
$$\displaystyle \lim _{ \theta \rightarrow \pi /2 }{ \dfrac { 1-\sin  \theta  }{ (\pi /2-\theta )\cos { \theta  }  }  } $$ is equal to
  • $$1$$
  • $$-1$$
  • $$1/2$$
  • $$-1/2$$
If $$\underset {x \rightarrow \infty}{lim} (1+\frac {a}{x}-\frac {4}{x^{2}})^{2x} =e^{3}$$ , then 'a' is equal to :
  • 2
  • $$\frac {3}{2}$$
  • $$\frac {2}{3}$$
  • $$\frac {1}{2}$$
The value of $$lim_{x\to 0} \dfrac{sin(\pi cos^2 x)}{x^2}$$ equals 
  • $$-\pi$$
  • $$\pi$$
  • $$\dfrac{\pi}{2}$$
  • $$2 \pi$$
$$\underset { x\rightarrow 1 }{ lim } \frac { xtan(x-[x]) }{ x-1 } $$ is:
  • 1
  • 0
  • -1
  • does not exist
The value of $$lim_{\theta \to \dfrac{\pi}{2}} (sec \theta - tan \theta)$$ equals 
  • $$0$$
  • $$1$$
  • $$2$$
  • $$\infty$$
The value of $$\lim _{ x\rightarrow 0 }{ \dfrac { 1-\cos { ^{ 3 }x }  }{ x\sin { x\cos { x }  }  }  }$$ is
  • $$\dfrac{2}{5}$$
  • $$\dfrac{3}{5}$$
  • $$\dfrac{3}{2}$$
  • $$\dfrac{3}{4}$$
The value of $$\displaystyle\lim _ { x \rightarrow \infty } a ^ { x } \sin \left( \frac { b } { a ^ { x } } \right)$$ where $$a > 1$$ is 
  • $$b \log a$$
  • $$a \log b$$
  • $$b$$
  • $$a$$
The value of $$\displaystyle \lim _{ x\rightarrow 3 }{ \dfrac { \left( { x }^{ 3 }+27 \right) \log _{ e }{ \left( x-2 \right)  }  }{ { x }^{ 2 }-9 }  } $$ is
  • $$9$$
  • $$18$$
  • $$27$$
  • $$\dfrac {1}{3}$$
The value of $$\displaystyle \lim _{ x\rightarrow \frac { x }{ 4 }  }{ \dfrac { 4\sqrt { 2 } -{ \left( \cos { x } +\sin { x }  \right)  }^{ 5 } }{ 1-\sin { 2x }  }  } $$ is
  • $$0$$
  • $$\sqrt {2}$$
  • $$5\sqrt {2}$$
  • $$3$$
$$\displaystyle \lim _ { x \rightarrow 0 } \left( \left[ \dfrac { - 5 \sin x } { x } \right] + \left[ \dfrac { 6 \sin x } { x } \right] \right)$$  (where  $$[ .]$$  denotes greatest integer function) is equal to
  • $$0$$
  • $$-12$$
  • $$1$$
  • $$2$$
If $$\underset { x\rightarrow 0 }{ lim } \dfrac { { x }^{ 3 } }{ \sqrt { a+x } (bx-sinx) } =1,$$ a > 0, then a + b is equal to 
  • 36
  • 37
  • 38
  • 40
$$\lim _ { x \rightarrow 0 } \dfrac { \sin x ^ { 5 } } { \sin ^ { 4 } x } =$$
  • $$0$$
  • $$1$$
  • $$-1$$
  • $$\infty$$
$$\displaystyle\lim_{x\rightarrow 0}\dfrac{(1-\cos 2x)\sin 5x}{x^2\sin 3x}=?$$
  • $$10/3$$
  • $$3/10$$
  • $$6/5$$
  • $$56$$
$$\underset { x\rightarrow 0 }{ lim } \dfrac { 1-\cos { 2x }  }{ \cos { 2x } -\cos { 8x }  } $$ is equal to 
  • $$-1/15$$
  • $$1/10$$
  • $$1/15$$
  • $$15$$
$$\lim _ { x \rightarrow - 1 } \dfrac { \cos 2 - \cos 2 x } { x ^ { 2 } - | x | }$$  is equal to :
  • $$0$$
  • $$\cos 2$$
  • $$2 \sin 2$$
  • None
$$\lim _{ x\rightarrow 0 }{ \cfrac { x.{ 10 }^{ x }-x }{ 1-cosx } = } $$
  • $$\log { 10 } $$
  • $$2\log { 10 } $$
  • $$3\log { 10 } $$
  • $$4\log { 10 } $$
$$\lim _{ x\rightarrow 0 }{ \frac { \sqrt [ 3 ]{ 1+\sin { x }  } -\sqrt [ 3 ]{ 1-\sin { x }  }  }{ x }  } =$$
  • $$0$$
  • $$1$$
  • $$\frac { 2 }{ 3 } $$
  • $$\frac { 3 }{ 2 } $$
$$\underset { x\rightarrow 0 }{ lim } \frac { sin({ 6x }^{ 2 }) }{ Incos({ 2x }^{ 2 }-x) } =$$
  • 12
  • -12
  • 6
  • -6
$$\lim _ { x \rightarrow 1 } \left( \log _ { 3 } 3 x \right) ^ { \log _ { x } 3 } =?$$
  • $$e ^ { - 1 }$$
  • $$e$$
  • $$-1$$
  • $$1$$
Let  $$f ( \beta ) = \lim _ { \alpha \rightarrow \beta } \dfrac { \sin ^ { 2 } \alpha - \sin ^ { 2 } \beta } { \alpha ^ { 2 } - \beta ^ { 2 } },$$  then  $$f \left( \dfrac { \pi } { 4 } \right)$$  is greater than-
  • $$\lim _ { x \rightarrow 0 } \dfrac { 1 - \cos ^ { 3 } x } { x \sin 2 x }$$
  • $$\lim _ { x \rightarrow \pi / 2 } \dfrac { \cot x - \cos x } { ( \pi - 2 x ) ^ { 3 } }$$
  • $$\lim _ { x \rightarrow \infty } ( \cos \sqrt { x + 1 } - \cos \sqrt { x } )$$
  • $$\lim _ { x \rightarrow a } \dfrac { \sqrt { a + 2 x } - \sqrt { 3 x } } { \sqrt { 3 a + x } - 2 \sqrt { x } }$$ where $$a > 0$$
$$\underset { x\rightarrow -\infty  }{ lim } \frac { ({ 3x }^{ 4 }+{ 2x }^{ 2 })sin(\frac { 1 }{ x } )+{ |x| }^{ 3 }+5 }{ { |x }|^{ 3 }+{ |x| }^{ 2 }+|x|+1 } =$$
  • 2
  • 1
  • -2
  • -3
The value f $$\lim_{x\rightarrow \pi/4}\dfrac{\sqrt{1-\sqrt{\sin 2x}}}{\pi-4x}=$$
  • $$-\dfrac{1}{4}$$
  • $$\dfrac{1}{4}$$
  • $$\dfrac{1}{2}$$
  • $$None\ of\ these$$
If $$L = \underset{x \rightarrow 0}{lim} \dfrac{a \, sin \, x - sin \, 2x}{tan^3 x}$$ is finite, then the value of L is :
  • 1
  • 2
  • 3
  • -1
If $$\displaystyle \lim_{x\rightarrow 0}\dfrac {ae^{-x}-b\cos x-\dfrac {1}{2}cx}{x\cos x}=2$$ then the value of $$a+b+c$$ is-
  • $$4$$
  • $$-4$$
  • $$2$$
  • $$-2$$
$$\displaystyle \lim_{x\rightarrow 0} \dfrac {\sin 2x + 3x}{2x + \sin 3x}$$ is equal to
  • $$1$$
  • $$\dfrac {1}{5}$$
  • $$2$$
  • Does not exist
If $$f(x)$$ is continuous and $$f\left(\dfrac {9}{2}\right)=\dfrac {2}{9}$$, then $$\displaystyle\lim _{ x\rightarrow 0 }f\left(\frac {1-\cos 3x}{x^2}\right)$$ is equal to :
  • $$\dfrac {9}{2}$$
  • $$\dfrac {2}{9}$$
  • 0
  • $$\dfrac {8}{9}$$
The function $$f :( R-{0})$$ $$\rightarrow $$ R given by $$\displaystyle f(x)=\frac{1}{x}-\frac{2}{e^{2x}-1}$$ can be made continuous at $$x = 0$$ by defining $$f(0)$$ as
  • $$2$$
  • $$-1$$
  • $$0$$
  • $$1$$
If the function $$f(x)= \left\{\begin{matrix}\dfrac {\sqrt {2+\cos x}-1}{(\pi-x)^2} & x\neq \pi \\ k & x=\pi \end{matrix}\right.$$ is continuous at $$x=\pi$$, then $$k$$ equals :
  • $$0$$
  • $$\dfrac {1}{2}$$
  • $$2$$
  • $$\dfrac {1}{4}$$
If   $$f:R\rightarrow R$$   is a function defined by   $$ f(x)=[x]\displaystyle \cos\left(\frac{2x-1}{2}\pi\right)$$,   where   $$[{x}]$$   denotes the greatest integer function, then   $${f}$$   is:
  • continuous for every real $$x$$
  • discontinuous only at $$x = 0$$
  • discontinuous only at non-zero integral values of $$x$$
  • continuous only at $$x = 0$$
$$\displaystyle \lim_{x\rightarrow 0}x^{2}\displaystyle \sin\frac{\pi}{x}=$$
  • 1
  • 0
  • does not exist
  • $$\infty$$
$$\displaystyle \lim _{ x\rightarrow 0 }{ \cfrac { x{ e }^{ x }-\sin { x }  }{ x }  } $$ is equal to
  • $$3$$
  • $$1$$
  • $$0$$
  • $$2$$
Use limit properties to evaluate $$\displaystyle\lim_{x\to4}\dfrac{3x^2\tan \dfrac {\pi}{x}}x $$
  • $$12$$
  • $$14$$
  • $$16$$
  • $$18$$
For every integer $$n$$, let $$a_{n}$$ and $$b_{n}$$ be real numbers. Let function $$f: IR \rightarrow IR$$ be given by
$$f(x)=\left\{\begin{array}{l}
a_{n}+\sin\pi x,\ for\ x\in[2n,\ 2n+1]\\
b_{n}+\cos\pi x,\ for\ x\ \in(2n-1,2n)                  
\end{array}\right.$$$$, for\ all\ integers\ n.$$
lf $$f$$ is continuous, then which of the following hold(s) for all $$n$$?
  • $$a_{n-1}-b_{n-1}=0$$
  • $$a_{n}-b_{n}=1$$
  • $$a_{n}-b_{n+1}=1$$
  • $$a_{n-1}-b_{n}=-1$$
If $$\lim _{ x\rightarrow \infty  }{ x\sin { \left( \cfrac { 1 }{ x }  \right)  }  } =A$$ and $$\lim _{ x\rightarrow 0 }{ x\sin { \left( \cfrac { 1 }{ x }  \right)  }  } =B$$, then which one of the following is correct?
  • $$A=1$$ and $$B=0$$
  • $$A=0$$ and $$B=1$$
  • $$A=0$$ and $$B=0$$
  • $$A=1$$ and $$B=1$$
The function $$f\left( x \right)=\left[ x \right] ,$$  at $${ x }=5$$ is:
  • left continuous
  • right continuous
  • continuous
  • cannot be determined
$$f(x)=\left\{\begin{matrix} 2x-1& if &x>2 \\ k & if &x=2 \\  x^{2}-1& if & x<2\end{matrix}\right.$$is continuous at $$x= 2$$ then $$k =$$
  • $$1$$
  • $$2$$
  • $$3$$
  • $$4$$
Evaluate $$\displaystyle \lim_{x \rightarrow -2} \displaystyle \frac{x^2 - 1}{2x + 4}$$.
  • 0
  • 1
  • 2
  • $$\infty$$
If $$f(x)=\displaystyle \frac{\sin x}{x},x\neq 0$$ is to be continuous at $${x}=0$$ then $$\mathrm{f}({0})=$$
  • $$0$$
  • $$1$$
  • $$-1$$
  • $$2$$
Say true or false.
Every continuous function is always differentiable.
  • True
  • False
$$\displaystyle \lim_{x\rightarrow \infty} \sin x$$ equals
  • $$1$$
  • $$0$$
  • $$\infty$$
  • does not exist

 The function $$\displaystyle \mathrm{f}({x})=\frac{|x-3|}{x-3}$$ at $${x}=3$$, is
  • Left continuous
  • Right continuous
  • continuous
  • discontinuous
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers