MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Commerce Applied Mathematics Limits And Continuity Quiz 10 - MCQExams.com
CBSE
Class 11 Commerce Applied Mathematics
Limits And Continuity
Quiz 10
$$lim_{n\to \infty} \Sigma^n_{r=1} \dfrac{\pi}{n} sin(\dfrac{\pi r}{n})$$ is equal to
Report Question
0%
$$1$$
0%
$$2$$
0%
$$3$$
0%
$$4$$
Evaluate : $$\displaystyle\lim _{ x\rightarrow 0 }{ \left( \dfrac { { e }^{ x\ell n\left( { 3 }^{ x }-1 \right) }-\left( { 3 }^{ x }-1 \right) ^{ x }\sin { x } }{ { e }^{ x\ell nx } } \right) } $$ is equal to
Report Question
0%
$$\dfrac{1}{e}\ell n3$$
0%
$$e\ \ell n\ 3$$
0%
$$3$$
0%
$$\dfrac{1}{3}$$
$$\underset{x \rightarrow 0}{Lt} \dfrac{sin x - x + x^3 / 6}{x^5}$$ =
Report Question
0%
$$\dfrac{1}{120}$$
0%
$$\dfrac{1}{110}$$
0%
$$\dfrac{1}{100}$$
0%
none of these
$$\displaystyle \lim_{x\rightarrow0 }{\dfrac{(\cos\alpha)^{x}-(\sin\alpha)^{x}-\cos 2\alpha}{(x-4)}}, \alpha\in \left(0, \dfrac{\pi}{2}\right)$$ is equal to
Report Question
0%
$$\cos^{4}\alpha.\log(\cos\alpha)-\sin^{4}\alpha.\log(\sin\alpha)$$
0%
$$\sin^{4}\alpha.\log(\cos\alpha)-\cos^{4}\alpha.\log(\sin\alpha)$$
0%
$$\sin^{4}\alpha.\log(\cos\alpha)+\cos^{4}\alpha.\log(\sin\alpha)$$
0%
$$None\ of\ the \ above$$
$$\displaystyle\lim _{ x\rightarrow 0 }{ \dfrac { 3\sin { \left( { x }^{ 9} \right) -\sin { \left( { x }^{ 9 } \right) } } }{ { x }^{ 3 } } } =q$$
Report Question
0%
0
0%
$$4\left(\dfrac{\pi}{200}\right)^{3}$$
0%
$$\dfrac{\pi}{200}$$
0%
$$\dfrac{\pi}{100}$$
$$\underset { x\rightarrow 0 }{ Lt } \cfrac {tanx-x}{x^2tanx}$$ equals:
Report Question
0%
1
0%
1/2
0%
1/3
0%
None of these
evaluate$$ \underset { x\rightarrow 0 }{ lim } \frac { x-\int _{ 0 }^{ x }{ { cost }^{ 2 }dt } }{ { x }^{ 3 }-6x } $$
Report Question
0%
$$3$$
0%
$$-1$$
0%
$$0$$
0%
$$1$$
$$\lim _ { x \rightarrow 0 } \left\{ \tan \left( \frac { \pi } { 4 } + x \right) \right\} ^ { \frac { 1 } { x } } =$$
Report Question
0%
$$e$$
0%
$$e ^ { 2 }$$
0%
$$e ^ { - 1 }$$
0%
$$e ^ { - 2 }$$
$$\displaystyle\lim_{x\rightarrow \infty}\left(\dfrac{x+1}{2x+1}\right)^{x^2}$$ equals?
Report Question
0%
$$0$$
0%
e
0%
$$1$$
0%
$$\infty$$
If $$g(x)=\frac { x }{ \left[ x \right] } for\quad x>2\quad then\quad \underset { x\rightarrow { 2 }^{ + } }{ Lim } \frac { g\left( x \right) -g\left( 2 \right) }{ x-2 } $$
Report Question
0%
-1
0%
0
0%
1/2
0%
1
$$\underset{x \rightarrow \infty}{lim} \dfrac{2 \tan^{-1} x}{\pi}$$ equals $$e^L$$ then $$L$$ is equal to
Report Question
0%
$$\dfrac{2}{\pi}$$
0%
$$-\dfrac{2}{\pi}$$
0%
$$-\dfrac{\pi}{2}$$
0%
$$1$$
$$\displaystyle \lim _{ x\rightarrow x/2 } \dfrac { \left[ 1-\tan { \left( \dfrac { x }{ 2 } \right) } \right] \left[ 1-\sin { x } \right] }{ \left[ 1+\tan { \left( \dfrac { x }{ 2 } \right) } \right] \left[ \pi -2x \right] ^{ 3 } } $$ is
Report Question
0%
$$\dfrac {1}{8}$$
0%
$$0$$
0%
$$\dfrac {1}{32}$$
0%
$$\infty$$
$$\displaystyle \lim _{ \theta \rightarrow 0 }{ \frac { 4\theta \left( \tan { \theta -2\theta \tan { \theta } } \right) }{ { \left( 1-\cos { 2\theta } \right) }^{ 2 } } } $$ is
Report Question
0%
$$1/\sqrt {2}$$
0%
$$1/2$$
0%
$$1$$
0%
$$2$$
the value of $$\underset { x\rightarrow \infty }{ lim } \frac { { x }^{ 5 } }{ { 5 }^{ x } } $$ is-
Report Question
0%
0
0%
1
0%
$${ e }^{ 5 }$$
0%
$${ e }^{ -5 }$$
If $$k$$ is an integer such that $$\lim_{n \rightarrow \infty} \left[\left(\cos \dfrac{k\pi}{4}\right)^{2}-\left(\cos \dfrac{k\pi}{6}\right)^{2}\right]=0$$ then :
Report Question
0%
$$k$$ is divisible neither by $$4$$ nor by $$8$$.
0%
$$k$$ must be divisible by $$12$$ but not necessarily by $$24$$.
0%
$$k$$ must be divisible by $$24$$.
0%
either $$k$$ is divisible by $$24$$ or $$k$$ is neither divisible by $$4$$ nor by $$6$$.
$$\lim _ { x \rightarrow 5 } \frac { \sin ^ { 2 } ( x - 5 ) \tan ( x - 5 ) } { \left( x ^ { 2 } - 25 \right) ( x - 5 ) } =$$
Report Question
0%
1$$/ 10$$
0%
$$1$$
0%
$$0$$
0%
$$-6$$
The value of $$\underset{x \rightarrow 0}{lim} \cos \,ec^4 \,x \displaystyle \overset{x^2}{\underset{0}{\int}} \dfrac{In(1 + 4t)}{1 + t^2}dt$$ is
Report Question
0%
$$1$$
0%
$$2$$
0%
$$3$$
0%
$$4$$
$$\lim_{n \rightarrow \infty}n^{2}\left(x^{1/n}-x^{1/\left(n+n\right)}\right),x>0$$, is equal to
Report Question
0%
$$0$$
0%
$$e^{x}$$
0%
$$\log_{e}x$$
0%
$$none\ of\ these$$
$$\lim_{x\rightarrow 0}\frac{ln(sin 3x)}{ln(sin x)}$$ is equal to
Report Question
0%
0
0%
1
0%
2
0%
Non existent
$$\underset{x \rightarrow n/2}{lim} \dfrac{\cot x - \cos x}{(\pi - 2x)^3}$$ equals
Report Question
0%
$$\dfrac{1}{24}$$
0%
$$\dfrac{1}{16}$$
0%
$$\dfrac{1}{8}$$
0%
$$\dfrac{1}{4}$$
$$\underset{x \rightarrow 2}{lim} \dfrac{\sqrt[3]{60 + x^2} - 4}{\sin (x - 2)}$$ equals
Report Question
0%
$$\dfrac{1}{4}$$
0%
$$0$$
0%
$$\dfrac{1}{12}$$
0%
Does not exist
$$\lim _ { x \rightarrow 0 } \frac { \sin x \sin \left( \frac { \pi } { 3 } + x \right) \sin \left( \frac { \pi } { 3 } - x \right) } { x } =$$
Report Question
0%
$$\frac { 3 } { 4 }$$
0%
$$\frac { 1 } { 4 }$$
0%
$$\frac { 4 } { 3 }$$
0%
$$0$$
$$\lim_{x\rightarrow 0}\dfrac{2\left(\sqrt{3}\sin\left(\dfrac{\pi}{6}+x\right)-\cos\left(\dfrac{\pi}{6}+x\right)\right)}{x\sqrt{3}\left(\sqrt{3}\cos x-\sin x\right)}$$
Report Question
0%
$$-1/3$$
0%
$$2/3$$
0%
$$4/3$$
0%
$$-4/3$$
$$\lim_{x\rightarrow \pi/4}\dfrac{2\sqrt{2}-\left(\cos x+\sin x\right)^{2}}{1-\sin 2x}$$ is equal to
Report Question
0%
1
0%
$$2\sqrt{2}$$
0%
$$\dfrac{4\sqrt{2}}{3}$$
0%
$$does\ not\ exist$$
Let $$f$$ be a differentiable function such that $$f'(x) = 7- \dfrac{3}{4}\dfrac{f(x)}{x}, (x > 0)$$ and $$f(1) \neq 4$$.
Then $$\underset{x\to 0^+}{\lim} xf \left(\dfrac{1}{x}\right) $$:
Report Question
0%
Exists and equals 4
0%
Does not exist
0%
Exist and equals
0%
Exists and equals $$\dfrac{4}{7}$$
Explanation
$$f'(x) = 7 -\dfrac{3}{4}\dfrac{f(x)}{x}$$ $$(x > 0)$$
Given $$f(1) \neq 4$$ $$\underset{x\to 0^+}{\lim} xf\left(\dfrac{1}{x}\right) = ?$$
$$\dfrac{dy}{dx} + \dfrac{3}{4}\dfrac{y}{x} = 7$$ (This is LDE)
IF $$=e^{\int \tfrac{3}{4x}dx} = e^{\tfrac{3}{4}ln|x|} = x^{\tfrac{3}{4}}$$
$$y.x^{\frac{3}{4}} =\int 7.x^{\frac{3}{4}} dx$$
$$y.x^{\frac{3}{4}} = 7.\dfrac{x^{\frac{7}{4}}}{\frac{7}{4}} + C$$
$$f(x) = 4x+C.x^{-\frac{3}{4}}$$
$$f\left(\dfrac{1}{x}\right) = \dfrac{4}{x} + C.x^{\frac{3}{4}}$$
$$\underset{x\to 0^+}{\lim} xf\left(\dfrac{1}{x}\right) = \underset{x\to 0^+}{\lim}\left(4+C.x^{\frac{7}{4}}\right) = 4$$
If $$\underset { x\rightarrow 0 }{ Lim } \dfrac { \left( 1+{ a }^{ 3 } \right) +8{ e }^{ 1/x } }{ 1+\left( 1-{ b }^{ 3 } \right) +{ e }^{ 1/x } } =2$$ then
Report Question
0%
$$a=1,b=2$$
0%
$$a=1,b={-3}^{1/3}$$
0%
$$a=2,b={3}^{1/3}$$
0%
none of these
$$lim_{x\to \dfrac{\pi}{2}} tan^2x(\sqrt{2sin^2x + 3 sin x +4} - \sqrt{sin^2x + 6 sin x+2})$$ is equal to
Report Question
0%
$$\dfrac{3}{4}$$
0%
$$\dfrac{1}{6}$$
0%
$$\dfrac{1}{12}$$
0%
$$\dfrac{5}{12}$$
$$\lim _ { x \rightarrow 0 } \frac { 1 - \cos x } { x \log ( 1 + x ) } =$$
Report Question
0%
$$1$$
0%
$$0$$
0%
$$-1$$
0%
$$\frac { 1 } { 2 }$$
Evaluate $$\displaystyle \lim _{ x\rightarrow 0 }{ \dfrac { \sin { \left[ \cos { x } \right] } }{ 1+\left[ \cos { x } \right] } } $$ ($$[.]$$ denotes the greatest integer function)
Report Question
0%
$$-1$$
0%
$$1$$
0%
$$0$$
0%
$$does\ not\ exist$$
$$\displaystyle \lim _{ x\rightarrow 0 }{ \frac { x\left( { e }^{ \sin { x } }-1 \right) }{ 1-\cos { x } } } $$
Report Question
0%
$$\dfrac {1}{2}$$
0%
$$2$$
0%
$$0$$
0%
$$1$$
$$P= \lim_{x \rightarrow o^{+}} (1+ \tan^{2} \sqrt{x})^{1/2x}=$$____
Report Question
0%
$$P=1/4$$
0%
$$P=1/2$$
0%
$$P=2$$
0%
$$P=1$$
$$\displaystyle \lim _{ x\rightarrow 0 } \left(\dfrac{1^{1/x}+2^{1/x}+3^{1/x}+.....n^{1/x}}{n}\right)^{nx} ,\ n\ \epsilon \ N $$ is equal to
Report Question
0%
$$n!$$
0%
$$1$$
0%
$$\dfrac{1}{n!}$$
0%
$$0$$
Explanation
$$\underset { x\rightarrow \infty }{ lim } { \left( \dfrac { { 1 }^{ 1/x }+{ 2 }^{ 1/x }+{ 3 }^{ 1/x }......+{ n }^{ 1/x } }{ n } \right) }^{ nx }$$
if we put the limits then we have $${ 1 }^{ \infty }$$ form. We have for $$\underset { x\rightarrow \infty }{ lim } { \left[ f\left( x \right) \right] }^{ 9\left( x \right) }$$ such that limit has the form $${ 1 }^{ \infty }$$, then
$$\underset { x\rightarrow \infty }{ lim } { \left[ f\left( x \right) \right] }^{ 9\left( x \right) }={ e }^{ \underset { x\rightarrow \infty }{ lim } 9\left( x \right) \left[ f\left( x \right) -1 \right] }\quad \longrightarrow \left( 1 \right) $$
Using this we can evalute the limit asked,
$$\underset { x\rightarrow \infty }{ lim } { \left( \dfrac { { 1 }^{ 1/x }+{ 2 }^{ 1/x }+{ 3 }^{ 1/x }+......{ n }^{ 1/x } }{ n } \right) }^{ nx }={ e }^{ \underset { x\rightarrow \infty }{ lim } nx\left( \dfrac { { 1 }^{ 1/x }+{ 2 }^{ 1/x }+{ 3 }^{ 1/x }......{ n }^{ 1/x }-n }{ n } \right) }$$
$$={ e }^{ \underset { x\rightarrow \infty }{ lim } \left( \dfrac { { 1 }^{ 1/x }+{ 2 }^{ 1/x }+{ 3 }^{ 1/x }+......{ n }^{ 1/x }-n }{ \left( 1/x \right) } \right) }$$
if we put the limits we find that it is in $$\div $$ form, so we will employ the L'Hospital's rule
$$={ e }^{ \underset { x\rightarrow \infty }{ lim } \left( \dfrac { { 1 }^{ 1/x }\left( -\dfrac { 1 }{ { x }^{ 2 } } \right) ln1+{ 2 }^{ 1/x }\left( -\dfrac { 1 }{ { x }^{ 2 } } \right) ln2......+{ n }^{ 1/x }\left( -\dfrac { 1 }{ { x }^{ 2 } } \right) lnn-0 }{ \left( -1/{ x }^{ 2 } \right) } \right) }$$
$$={ e }^{ \underset { x\rightarrow \infty }{ lim } \left( { 1 }^{ 1/x }ln1+{ 2 }^{ 1/x }ln2......+{ n }^{ 1/x }lnn \right) }$$
$$={ e }^{ ln1+ln2+ln3......+lnn }$$ [$$\because$$ $$\underset { x\rightarrow \infty }{ lim } { n }^{ 1/x }={ n }^{ 0 }=1$$]
$$={ e }^{ ln\left( 1.2.3.4.5.6......n \right) }$$ [$$\because$$ $$lna+lnb=lnab$$]
$$={ e }^{ lnn! }$$
$$=n!$$ [$$\because$$ $${ e }^{ lnb }=b$$]
Answer : Option A
The values of $$\displaystyle\lim_{n\rightarrow \infty}\dfrac{\sqrt[4]{n^5+2}-\sqrt[3]{n^2+1}}{\sqrt[5]{n^4+2}-\sqrt[2]{n^3+1}}$$ is?
Report Question
0%
$$1$$
0%
$$0$$
0%
$$-1$$
0%
$$\infty$$
$$\displaystyle\lim _{ x\rightarrow 0 }{ \dfrac { x\tan { 2x } -2x\tan { x } }{ \left( 1-\cos { 2x } \right) ^{ 2 } } }$$ equal to
Report Question
0%
$$\dfrac{1}{4}$$
0%
$$1$$
0%
$$\dfrac{1}{2}$$
0%
$$None of these$$
Let $$f(x)=\displaystyle\lim _{ n\rightarrow \infty }{ \dfrac { { 2x }^{ 2n }\sin { \frac { 1 }{ x } +x } }{ 1+{ x }^{ 2x } } } $$ then find
Report Question
0%
$$\displaystyle\lim _{ x\rightarrow \infty }{ xf\left( x \right) } $$
0%
$$\displaystyle\lim _{ x\rightarrow 1 }{ f\left( x \right) } $$
0%
$$\displaystyle\lim _{ x\rightarrow 0 }{ f\left( x \right) } $$
0%
$$\displaystyle\lim _{ x\rightarrow -\infty }{ f\left( x \right) } $$
If $$ \lim _{x \rightarrow 0}\left(\cos x+a^{3} \sin \left(b^{6} x\right)\right)^{\frac{1}{x}}=e^{512} $$
then value of $$ab^2$$ is equal to
Report Question
0%
$$-512$$
0%
$$512$$
0%
$$8$$
0%
none of these
$$if\left( x \right) =\left[ x-3 \right] +\left[ x-4 \right] \quad for\quad x\epsilon R\quad then\quad \underset { x\rightarrow 3 }{ lim } f\left( x \right) =$$
Report Question
0%
-2
0%
-1
0%
0
0%
2
$$\displaystyle\lim _{ x\rightarrow 0 }{ \dfrac { { \left( \cos { x } \right) }^{ 1/2 }-{ \left( \cos { x } \right) }^{ 1/3 } }{ \sin ^{ 2 }{ x } } } $$ is $$
Report Question
0%
$$1/6$$
0%
$$-1/12$$
0%
$$2/3$$
0%
$$1/3$$
The value of $$\begin{matrix} lim \\ x\rightarrow y \end{matrix}\dfrac { { sin }^{ 2 }x-sin^{ 2 }y }{ { x }^{ 2 }-{ y }^{ 2 } } $$
Report Question
0%
0
0%
1
0%
$$\dfrac { siny }{ y } $$
0%
$$\dfrac { sin2y }{ 2y } $$
$$\displaystyle\lim_{x\rightarrow 0}\dfrac{x\tan 2x-2x\tan x}{(1-\cos 2x)^2}$$ is equal to?
Report Question
0%
$$2$$
0%
$$-2$$
0%
$$1/2$$
0%
$$-1/2$$
$$\underset { x\rightarrow 0 }{ lim } (\cos x+a\sin b{ x) }^{ \frac { 1 }{ x } }$$ is equal to
Report Question
0%
$$e^a$$
0%
$$e^{ab}$$
0%
$$e^b$$
0%
$$e^{a/b}$$
$$\displaystyle \lim_{x\rightarrow 0}{\dfrac{x(1+a\cos x)-b\sin x}{x^{3}}}=1$$ then
Report Question
0%
$$a=-5/2$$
0%
$$a=-3/2,b=-1/2$$
0%
$$a=-3/2,b=-5/2$$
0%
$$a=-5/2,b=-3/2$$
If $$\displaystyle\lim_{x\rightarrow 0}[1+x ln (1+b^2)]^{1/x}=2b\sin^2\theta, b > $$ s m f $$\theta\in (-\pi, \pi]$$, then the value of $$\theta$$ is?
Report Question
0%
$$\pm \dfrac{\pi}{4}$$
0%
$$\pm \dfrac{\pi}{3}$$
0%
$$\pm \dfrac{\pi}{6}$$
0%
$$\pm \dfrac{\pi}{2}$$
$$\lim _ { x \rightarrow \infty } \dfrac { \sin \left( \pi \cos ^ { -2 } x \right) } { x ^ { 2 } }$$ is equal to:
Report Question
0%
$$- \pi$$
0%
$$ \pi$$
0%
$$\dfrac { \pi } { 2 }$$
0%
$$1$$
The value of $$\displaystyle\lim_{\theta \rightarrow 0^+}\dfrac{\sin\sqrt{\theta}}{\sqrt{\sin\theta}}$$ is equal to?
Report Question
0%
$$0$$
0%
$$1$$
0%
$$-1$$
0%
$$4$$
Let $$f$$ : $$\left ( \dfrac{\pi}{2}, \dfrac{\pi}{2} \right )\rightarrow R$$ , $$f(x) = \left \{\begin{matrix} \lim_{n\rightarrow \infty }\dfrac{(tanx)^{2n} + x^2}{sin^2x + (tanx)^{2n}}; & x \neq 0 \\ 1; & x = 0 \end{matrix} \right., n \in N$$ . Which of the following holds good ?
Report Question
0%
$$f \left( -\dfrac{\pi^-}{4} \right) = f \left (\dfrac{\pi^+}{4} \right)$$
0%
$$f \left( -\dfrac{\pi^-}{4} \right) = f \left (-\dfrac{\pi^+}{4} \right)$$
0%
$$f \left( \dfrac{\pi^-}{4} \right) = f \left (\dfrac{\pi^+}{4} \right)$$
0%
$$f(0^+) = f(0) = f(0^)$$
$$\displaystyle\lim_{x\rightarrow 0}\left(\dfrac{1}{\sin^2x}-\dfrac{1}{\sin h^2x}\right)=?$$
Report Question
0%
$$2_{\displaystyle /3}$$
0%
$$0$$
0%
$$1_{\displaystyle /3}$$
0%
$$-2_{\displaystyle /3}$$
Consider $$\lim _ { x \rightarrow 0 } \dfrac { a x + b e ^ { - x } + \sin x + 1 } { a x - b \sin x } = \ell ( \ell$$ is a finite number)
Report Question
0%
$$\ell = 0 , \text { if } a = - 2 , b = - 1$$
0%
$$\ell = 5 , i f a = 1 , b = - 1$$
0%
$$\ell = 1 , \text { if } a = b = - 1$$
0%
None of these
$$\displaystyle\lim_{x\rightarrow 0}\dfrac{\sin(\pi \cos^2x)}{x^2}$$ is equal to?
Report Question
0%
$$-\pi$$
0%
$$\pi$$
0%
$$\pi/2$$
0%
$$1$$
If $$f(x)$$ is odd linear polynomial with $$f(1)=1$$, then $$\underset{x \to 0} {\lim} \dfrac{2^{f(\tan x)}-2^{f(\sin x)}}{x^{2}f(\sin x)}$$ is
Report Question
0%
$$1$$
0%
$$\ln 2$$
0%
$$\dfrac{1}{2}\ln 2$$
0%
$$\cos 2$$
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
0
Answered
0
Not Answered
0
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page