Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Questions for Class 11 Commerce Applied Mathematics Limits And Continuity     Quiz 11 - MCQExams.com

The value of limx027x9x3x+154+cosx
  • 5(log3)2
  • 85log3
  • 165log3
  • 85(log3)2
limx0sin4xtan7x=
  • 1
  • 47
  • 74
  • 0
The value of limx027x9x3x+154+cosx is 
  • 5(log3)2
  • 85log3
  • 165log3
  • 85(log3)2
limx0|cos(sin(3x))|1x2   equals
  • 92
  • 32
  • 32
  • 92
limxπ4cosxsinx(π4x)(cosx+sinx)=?
  • 2
  • 1
  • 0
  • 3
limx0{loge(1+x)x2+x1x} is equal to?
  • 12
  • 12
  • 1
  • None of these
Let [x] denote the greatest integer less than or equal to x. Then :
limx0tan(πsin2x)+(|x|sin)(x[x])2x2:
  • does not exist
  • equal π
  • equal 0
  • equal π + 1
limxπ2cotxcosx(π2x)3 equals :
  • 18
  • 14
  • 124
  • 116
limnn2(x1nx1n+1),x>0 is equal to 
  • 0
  • ex
  • logex
  • None of these
If limx0[1+ax+bx2](2/x)=e3, then 
  • a=3, b=0
  • a=32, b1
  • a=32, b=R
  • a=2, b=3
If [.] deotes the greatest integer function then
limxπ/2[xπ2cosx] is equal to
  • 1
  • 1
  • 2
  • 2
If limx0x(1+acosx)bsinxx3=1 then value of a + b 
  • -4
  • -6
  • 1
  • None of these
xlima(sinxa2tanπx2a)
  • a/π
  • a/π
  • π/a
  • π/a
Value of limx031+tanx31tanxx is
  • 12
  • 23
  • 13
  • 0
Value of limxπ2tanx.nsinx is 
  • 0
  • 12
  • 34
  • None of these
The value of limx0(sinx)1x+(1+x)(sinx))=0, where x>0, is :
  • 0
  • 1
  • 1
  • 2
The value of limx0 [xsinx], where [.] represents the greatest inter function , is 
  • 1
  • 0
  • 1`
  • none of these
limx0(1+tanx1+sinx)cosecx is equal to
  • e
  • 1e
  • 1
  • None of these
The value of limx0(1x2cotx) equals
  • 1
  • 0
  • Does not exist
Ltθ03tanθtan3θ2θ3=
  • -4
  • 1/4`
  • 3/4
  • 4
Ltx0secx1(secx+1)2=
  • 1/8
  • 11/4
  • 3.2
  • 2
Ltx0(1+sinx)cotx= 
  • e
  • e2
  • e3
  • e4
For a>1 then limxaxaxax+ax=?
  • 1
  • 1/2
  • 1/3
  • 1/15
The value of limh0{1h.(8+h)1/312h} equals
  • 0
  • 43
  • 163
  • 148
limx0(cosecx)1logx is equal to
  • 0
  • 1
  • 1e
  • None of these
limh0(2+h)cos(2+h)2cos2h=
  • cos2-2sin2
  • cos2+2sin2
  • sin2-2cos2
  • sin2+2cos2
limx01e2tan(π4+x)1/x
  • 0
  • 1
  • -1
  • e
limx11+sinπ(3x1+x2)1+cosπx is equal to
  • 0
  • 1
  • 2
  • 4
limx0x([x]+x)sin[x]x is equal to
  • sin1
  • 0
  • 1
  • sin1
The value of limx(|x2|+x)log(xcot1x) is :
  • 13
  • 13
  • 23
  • 23
limxπ2sinxcos1[14(3sinxsin3x)], where [.] denotes greatest integer function is :
  • 2π
  • 1
  • 4π
  • does not exist
limxπ2(1+cosx1cosx)secx=
  • e
  • e2
  • e3
  • e/4
Im(11cosθ+isinθ) is equal to
  • 12tanθ2
  • 12cotθ2
  • 12tanθ2`
  • 12cotθ2
The value of limx0(ex+ex2x2)1/x2 equals
  • e1/2
  • e1/4
  • e1/3
  • e1/12
limx031+sinx31sinxx=
  • 0
  • 1
  • 3/2
  • 2/3
Ltxπ42cosxsinx(4xπ)2=?
  • 1162
  • 1322
  • 116
  • 18
limx0ln(sin3x)ln(sinx) is equal to
  • 0
  • 1
  • 2
  • none of these
Ltx5xsin(a5x)=
  • 0
  • 5
  • log5
  • None of these.
Limx0sec4xsec2xsec3xsecx=
  • 3/2
  • 2/3
  • 1/3
  • 3/4
the value of limx0sinαXsinβXeαXeβX equals
  • 0
  • 1
  • -1
  • αβ
limh0sin(a+3h)3sin(a+2h)+3sin(a+h)sinah3 is equal to 
  • cosa
  • cosa
  • sina
  • sinacosa
limxx4sin1x+x21+|x|3=
  • 1
  • -1
  • 2
  • -3
Limx(sinx+1sinx)=
  • 2
  • -2
  • 0
  • 1
limx01cos3xxsin2x=
  • 1/2
  • 3/2
  • 3/4
  • 1/4
The value of limx0((sinx)1/x+(1x)sinx) equals
  • 0
  • 1
  • -1
Ltx0cos5xcos3xx(sin5xsin3x)
  • 4
  • 4
  • 14
  • 14
limxπ/2[xtanx(π2)secx] is equal to
  • 1
  • -1
  • 0
  • None of these
The value of limx0((sinx)1/x+(1x)sinx)
  • 0
  • 1
  • 1
The value of θ,is
limoocos2{1cos2(1cos2.....(cos2{1cos2θ}))}sin(π(θ+42θ)
  • 24
  • 2
  • 1
  • 2
Limx(sinx+1sinx)=
  • 2
  • -2
  • 0
  • 1
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers