CBSE Questions for Class 11 Commerce Applied Mathematics Limits And Continuity     Quiz 12 - MCQExams.com

$$\lim _{ x\rightarrow \infty  }{ \frac { \sin { x } \sin { (\frac { \pi  }{ 3 } +x) } \sin { (\frac { \pi  }{ 3 } -x) }  }{ x }  } =$$
  • $$\frac { 3 }{ 4 } $$
  • $$\frac { 1 }{ 4 } $$
  • $$\frac { 4 }{ 3 } $$
  • $$0$$
If $$ \alpha , \beta , \ in (-\frac{\pi}{2},0) $$ such that $$(sin \alpha +sin \beta ) +\frac{sin \alpha }{sin \beta} =0 $$ and $$(sin \alpha +sin \beta ) \frac{sin \alpha}{sin \beta }=-1 $$ and $$\lambda =\begin{matrix} lim \\ n\rightarrow \infty  \end{matrix}\frac { 1+(2sin\quad theta\quad ){  }^{ 2n } }{ (2sin\quad \quad beta\quad ){  }^{ 2n } } $$ then
  • $$2 \alpha +3 \beta = \frac{-5 \pi }{6}$$
  • $$ \lambda \pi +\alpha +\beta =\frac{5 \pi}{6}$$
  • $$ \alpha - \beta = \frac{ \pi }{3}$$
  • $$ \alpha + \beta = \frac{- \pi }{3}$$
$$\lim _{ x\rightarrow 0 }{ \frac { { 27 }^{ x }-{ 9 }^{ x }-{ 3 }^{ x }+1 }{ \sqrt { 2 } -\sqrt { 1+\cos { x }  }  } = } $$
  • $$0$$
  • $$8\sqrt { 2 } { (\log { 3 } ) }^{ 2 }$$
  • $$8{ (\log { 3 } ) }^{ 2 }$$
  • $$1$$
$$\lim _{ x\rightarrow  }{ 0 } \{ (sinx-x)/{ x }^{ 3 })\} $$ equals: 
  • $$1/3$$
  • $$-1/3$$
  • $$1/6$$
  • $$-1/6$$
$$\lim _{ x\rightarrow 0 }{ \frac { 1 }{ { x }^{ 8 } } [1-\cos { (\frac { { x }^{ 2 } }{ 2 } ) } ] } [1-\cos { (\frac { { x }^{ 2 } }{ 4 } ) } ]$$
  • $$\frac { 1 }{ 8 } $$
  • $$\frac { 1 }{ { 8 }^{ 2 } } $$
  • $$\frac { 1 }{ { 8 }^{ 3 } } $$
  • $$\frac { 1 }{ { 8 }^{ 4 } } $$
$$ \lim _{x \rightarrow a}\left(2-\frac{a}{x}\right)^{\tan \left(\frac{\pi x}{2 a}\right)} $$
  • $$

    e^{-\frac{a}{\pi}}

    $$
  • $$

    e^{-\frac{2 a}{\pi}}

    $$
  • $$

    e^{-\frac{2}{x}}

    $$
  • 1
Solve 
$$\underset { x\rightarrow 0 }{ Lim } \frac { 8 }{ { x }^{ 8 } } \left( 1-cos\frac { { x }^{ 2 } }{ 2 } -cos\frac { { x }^{ 2 } }{ 4 } +cos\cfrac { { x }^{ 2 } }{ 2 } .cos\cfrac { { x }^{ 2 } }{ 4 }  \right) =$$
  • $$\cfrac { 1 }{ 16 } $$
  • $$\cfrac { 1 }{ 15 } $$
  • $$\cfrac { 1 }{ 32 } $$
  • $$1$$
If $$f\left( x \right) =\sqrt { 1-\sqrt { 1-{ x }^{ 2 } }  } $$, then $$f(x)$$ is
  • continuous on$$[-1,1]$$
  • differentiable on $$(-1,0)\cup (0,1)$$
  • both (a) and (b)
  • None of the above
$$\underset { x\rightarrow 0 }{ lim } \cfrac { 8 }{ { x }^{ 8 } } \left( 1-cos\cfrac { { x }^{ 2 } }{ 2 } -cos\cfrac { { x }^{ 2 } }{ 4 } +cos\cfrac { { x }^{ 2 } }{ 2 } .cos\cfrac { { x }^{ 2 } }{ 4 }  \right) =$$
  • $$\cfrac { 1 }{ 16 } $$
  • $$\cfrac { 1 }{ 15 } $$
  • $$\cfrac { 1 }{ 32 } $$
  • $$1$$
$$\displaystyle \lim _{ x\rightarrow 0 }{ \left[ \dfrac { 100\tan { x } .\sin { x }  }{ { x }^{ 2 } }  \right]  } $$ where $$[.]$$ represents greatest integer function is 
  • $$99$$
  • $$100$$
  • $$0$$
  • $$98$$
The value of  $$\lim _ { x \rightarrow \dfrac { 1 } { 2 } } \dfrac { 2 \sin ^ { - 1 } x - \dfrac { \pi } { 2 } } { 1 - 2 x ^ { 2 } }$$  is equal to
  • $$-1$$
  • $$0$$
  • $$1$$
  • $$2$$
$$f(x) = \log_{1 - 2x}(1 + 2x)$$    for $$ x \ne 0$$
          $$= k$$                              for $$x = 0$$
is continuous at $$x = 0$$, find $$k.$$
  • $$1$$
  • $$-1$$
  • $$0$$
  • $$\frac{1}{2}$$
The value of $$\lim _{ x\rightarrow \frac { \pi  }{ 2 }  }{ \tan ^{ 2 }{ \left( \sqrt { 2\sin ^{ 2 }{ x } +3\sin { x } +4 } -\sqrt { \sin ^{ 2 }{ x } +6\sin { x } +2 }  \right)  }  } $$ is equal to
  • 0
  • $$\cfrac{1}{11}$$
  • $$\cfrac{1}{12}$$
  • $$\cfrac{1}{8}$$
$$\mathop {\lim }\limits_{x \to \infty } \left( {\dfrac{{{x^2}\sin \left( {\dfrac{1}{x}} \right) - x}}{{1 - \left| x \right|}}} \right) = $$
  • 0
  • 1
  • -1`
  • 2
$$ \lim _{x \rightarrow 0}\left(\frac{e^{x}+e^{-x}-2}{x^{2}}\right)^{1 / x^{2}} $$
  • $$

    e^{1 / 2}

    $$
  • $$

    e^{1 / 4}

    $$
  • $$

    e^{1 / 3}

    $$
  • $$

    e^{1 / 12}

    $$
The value of $$\displaystyle \lim _{ x\rightarrow 0 }\log_{\cos{2x}}{\cos{x}}+\log_{\cos{2x}}{\cos{2x}}$$ equals 
  • $$\dfrac{5}{4}$$
  • $$\dfrac{17}{4}$$
  • $$\dfrac{13}{16}$$
  • $$\dfrac{29}{10}$$
$$\begin{matrix} lim \\ x\rightarrow 0 \end{matrix}(cos\quad +\quad sinx{ ) }^{ 1/x }$$ is equal to
  • e
  • $${ e }^{ 2 }$$
  • $${ e }^{ -1 }$$
  • 1
$$\lim _{ x\rightarrow 0 }{ \frac { \sin { [\cos { x } ] }  }{ 1+[\cos { x } ] }  } $$ is (where [] is G.I.F)
  • 1
  • 0
  • does not exist
  • 2
$$\underset { x\rightarrow a }{ lim } \left( \sin { \dfrac { x-a }{ 2 } \tan { \dfrac { \pi x }{ 2a }  }  }  \right)$$
  • $$a/\pi$$
  • $$-a/\pi$$
  • $$\pi/a$$
  • $$-\pi/a$$
Let $$a \in \left( 0 , \frac { \pi } { 2 } \right)$$, then the value of
$$ \lim _ { a \rightarrow 0 } \frac { 1 } { a ^ { 3 } } \int _ { 0 } ^ { a } \ell n (1+tan a tan x)dx$$ is equal to 
  • $$\frac { 1 }{ 3 } $$
  • $$\frac { 1 }{ 2 } $$
  • $$\frac { 1 }{ 6 } $$
  • 1
$$ \lim _ { x \rightarrow 0 } \frac { \sin x } { x } = y $$
  • $$

    y > 1

    $$
  • $$

    y < 1

    $$
  • $$

    y \geq 1

    $$
  • $$

    y \leq 1

    $$
The value of $$\mathop {{\text{Limit}}}\limits_{x \to 0} \frac{{\cos \left( {\sin x} \right) - \cos x}}{{{x^4}}}$$ is equal to 
  • 1/5
  • 1/6
  • 1/4
  • 1/2
$$\lim_{x\rightarrow 0}\frac{1-cos^{3}x}{x sib x cos x }$$  is equal to 
  • 2/5
  • 3/5
  • 3/2
  • 3/4
The value of $$ \lim _ { x \rightarrow 0 } \dfrac { \sin^3 ( \sqrt { x } ) \ln ( 1 + 3 x ) } { \left( \tan ^ { - 1 } \sqrt { x } \right) ^ { 2 } \left( e ^ { 5 ( \sqrt { x } ) } - 1 \right)x } $$ is equal to
  • $$

    \frac { 1 } { 5 }

    $$
  • $$

    \frac { 3 } { 5 }

    $$
  • $$

    \frac { 2 } { 5 }

    $$
  • $$

    \frac { 4 } { 5 }

    $$
$$\underset {x\rightarrow 0}{Lim} \frac {sin x}{x} = y $$
  • $$y>1$$
  • $$y<1$$
  • $$y\ge 1$$
  • $$y \le 1$$
$$\mathop {Lt}\limits_{x \to 1} {\left( {1 - x} \right)^{\tan \pi x}} = $$
  • $$-1$$
  • $$0$$
  • $$1$$
  • $$2$$
$$\begin{matrix} lim \\ x\rightarrow a \end{matrix}(2-\frac { a }{ x } ){  }^{ tan(\frac { \pi x }{ 2a } ) }$$ is equal to 
  • $$ e^{-\frac{a}{\pi}}$$
  • $$ e^{-\frac{2a}{\pi}}$$
  • $$ e^{-\frac{2}{\pi}}$$
  • 1
$$ \lim _{x \rightarrow0}\left(\frac{e^{x}+e^{-x}-2}{x^{2}}\right)^{1 / x^{2}}  $$ is
  • $$

    e^{1 / 2}

    $$
  • $$

    e^{1 / 4}

    $$
  • $$

    e^{1 / 3}

    $$
  • $$

    e^{1 / 12}

    $$
Let x be an irrational, then $$\underset { m\rightarrow \infty  }{ lim } \underset { n\rightarrow \infty  }{ lim } \left\{ cos(n!\pi x) \right\} ^{ 2m }$$ equals
  • 0
  • -1
  • 1
  • Indeterminate
$$\underset { \rightarrow  }{ Lim } \frac { 1-{ cos }^{ 2 }x }{ xsin2x } $$
  • 1/2
  • 3/2
  • 3/4
  • 1/4
$$\displaystyle x\xrightarrow { lim } 5\quad \left(\frac{\sqrt{1-\cos(2x-10)}}{\sin (x-5)}  \right) $$
  • $$-\sqrt{2}$$
  • $$\sqrt{2}$$
  • does not exist
  • none of these
The value of $$\mathop {\lim }\limits_{x \to 0} \frac{{\sec 5x - \sec 3x}}{{\sec 3x - \sec x}}$$
  • -2
  • 1
  • 2
  • -1/2
$$\lim _ { x \rightarrow 0 } \int _ { 0 } ^ { x } \dfrac { \left( \tan ^ { - 1 } t \right) ^ { 2 } } { \sqrt { 1 + x ^ { 2 } } } d t$$  is equal to
  • $$\pi ^ { 2 }$$
  • $$\dfrac { \pi ^ { 2 } } { 2 }$$
  • $$\dfrac { \pi ^ { 2 } } { 4 }$$
  • None of these
the value of $$\underset { x\longrightarrow \infty  }{ lim } \frac { { X }^{ 4 }sin\left( \frac { 1 }{ x }  \right) +{ x }^{ 3 } }{ 1+\left| x \right| ^{ 3 } } $$
  • 1
  • -1
  • 2
  • does not exist
$$\underset { x\rightarrow 1 }{ lim } { \left[ cosec { \dfrac { \pi x }{ 2 }  }  \right]  }^{ { 1 }/{ \left( 1-x \right)  } }$$ (where $$[.]$$ represents the greatest integer function) is equal to
  • $$0$$
  • $$1$$
  • $$\infty$$
  • $$Does \ not \ exist$$
f(X)=|x|+|x-1| is continuous at 
  • '0' only
  • 0,1 only
  • Every where
  • No where
Find:
$$\underset { x\rightarrow 0 }{ lim } \quad \dfrac { 1-cos^{ 3 }x }{ xsin2x } =\quad $$
  • 1/2
  • 3/2
  • 3/4
  • 1/4
$$\displaystyle \lim_{x\rightarrow 0}\dfrac {\sin x - x}{x^{3}}$$ is equal to
  • $$-\dfrac {1}{6}$$
  • $$-\dfrac {1}{3}$$
  • $$-\dfrac {1}{2}$$
  • $$-1$$
$$\lim _{ x\rightarrow 0 }{ \dfrac { 1-\cos { x }  }{ { { x\log { (1+x) }  } } }  } $$ =
  • 1
  • 0
  • -1
  • 1/2
If $$\alpha$$ and $$\beta$$ be the roots of the equation $$ax^{2} + bx + c = 0$$ then $$\displaystyle \lim_{x\rightarrow \dfrac {1}{\alpha}} \sqrt {\dfrac {1 - \cos^{2} (cx^{2} + bx + a)}{4(1 - \alpha x)^{2}}}$$
  • Does not exist
  • Equals $$\left |\dfrac {c}{2\alpha} \left (\dfrac {1}{\alpha} +\dfrac {1}{\beta}\right )\right |$$
  • Equals $$\left |\dfrac {c}{2\alpha} \left (\dfrac {1}{\alpha} - \dfrac {1}{\beta}\right )\right |$$
  • Equals $$\left |\dfrac {c}{2} \left (\dfrac {1}{\alpha} +\dfrac {1}{\beta}\right )\right |$$
The value of $$\begin{matrix} lim \\ x\rightarrow \frac { 1 }{ \sqrt { 2 }  }  \end{matrix}\dfrac { x-cos\left( { sin }^{ -1 }x \right)  }{ 1-tan\left( { sin }^{ -1 }x \right)  } is$$
  • $$-\dfrac { 1 }{ \sqrt { 2 } } $$
  • $$\dfrac { 1 }{ \sqrt { 2 } } $$
  • $$\sqrt { 2 } $$
  • $$-\sqrt { 2 } $$
$$\overset {lim}{x \rightarrow \pi/2} \dfrac{\sin(x \ cos x)}{cos(x\, \ sin x)}$$ is equal to
  • $$1$$
  • $$\dfrac{\pi}{2}$$
  • $$\dfrac{2}{\pi}$$
  • does not exist
$$\begin{matrix} lim \\ x\rightarrow 0 \end{matrix}\frac { xcot(4x) }{ { sin }^{ 2 }x{ cot }^{ 2 }\left( 2x \right)  } $$ is equal to 
  • 0
  • 2
  • 1
  • 4
$$\underset { x\rightarrow 0 }{ lim } \dfrac { sec4x-sec2x }{ sec3x-secx } =$$
  • 3/2
  • 2/3
  • 1/3
  • 3/4
The value of $$\underset{x\rightarrow 1}{lim}(2-x)^{tan\left(\dfrac{\pi x}{2}\right)}$$ is
  • $$e^{-2/pi}$$
  • $$e^{1/pi}$$
  • $$e^{2/pi}$$
  • $$e^{-1/pi}$$
$$\underset{x \rightarrow 1} {lim}\dfrac{x^2-1}{\sin^2x+\cos x\cos (x+2)-\cos^2(x+1)}$$ is-
  • $$0$$
  • $$\dfrac{1}{\cos 1}$$
  • $$\dfrac{2}{\sin 2}$$
  • $$\dfrac{1}{2\cos 1}$$
$$\lim_{x\rightarrow 1}\frac{1-x^{-2/3}}{1-x^{-1/3}}$$
  • 2
  • 1
  • 0
  • does not exist
$$lim_{n \to \infty}\dfrac{-3n + (-1)^n}{4n - (-1)^n}$$ is equal to
  • $$-\dfrac{3]{4}$$
  • o if n is even
  • $$-\dfrac{3}{4}$$ if n is odd
  • None of these
$$\displaystyle \lim _{x \rightarrow 1}\left(\dfrac{x^{4}+x^{2}+x+1}{x^{2}-x+1}\right)^{\dfrac{1-\cos (x+1)}{(x+1)^{2}}} $$ is equal to:
  • 1
  • $$(2 / 3)^{1 / 2} $$
  • $$ (3 / 2)^{1 / 2} $$
  • $$ e^{1 / 2} $$
 $$ \displaystyle \lim _{x \rightarrow 0}\left(\dfrac{1^{x}+2^{x}+3^{x}+\cdots+n^{x}}{n}\right)^{1 / x} $$ is equal to
  • $$ (n !)^{n} $$
  • $$ (n !)^{1 / n} $$
  • $$ n ! $$
  • $$ \ln (n !) $$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers