Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Questions for Class 11 Commerce Applied Mathematics Limits And Continuity     Quiz 12 - MCQExams.com

limxsinxsin(π3+x)sin(π3x)x=
  • 34
  • 14
  • 43
  • 0
If α,β, in(π2,0) such that (sinα+sinβ)+sinαsinβ=0 and (sinα+sinβ)sinαsinβ=1 and λ=limn1+(2sintheta)2n(2sinbeta)2n then
  • 2α+3β=5π6
  • λπ+α+β=5π6
  • αβ=π3
  • α+β=π3
limx027x9x3x+121+cosx=
  • 0
  • 82(log3)2
  • 8(log3)2
  • 1
limx0{(sinxx)/x3)} equals: 
  • 1/3
  • 1/3
  • 1/6
  • 1/6
limx01x8[1cos(x22)][1cos(x24)]
  • 18
  • 182
  • 183
  • 184
limxa(2ax)tan(πx2a)
  • eaπ
  • e2aπ
  • e2x
  • 1
Solve 
Limx08x8(1cosx22cosx24+cosx22.cosx24)=
  • 116
  • 115
  • 132
  • 1
If f(x)=11x2, then f(x) is
  • continuous on[1,1]
  • differentiable on (1,0)(0,1)
  • both (a) and (b)
  • None of the above
limx08x8(1cosx22cosx24+cosx22.cosx24)=
  • 116
  • 115
  • 132
  • 1
limx0[100tanx.sinxx2] where [.] represents greatest integer function is 
  • 99
  • 100
  • 0
  • 98
The value of  limx122sin1xπ212x2  is equal to
  • 1
  • 0
  • 1
  • 2
f(x)=log12x(1+2x)    for x0
          =k                              for x=0
is continuous at x=0, find k.
  • 1
  • 1
  • 0
  • 12
The value of limxπ2tan2(2sin2x+3sinx+4sin2x+6sinx+2) is equal to
  • 0
  • 111
  • 112
  • 18
limx(x2sin(1x)x1|x|)=
  • 0
  • 1
  • -1`
  • 2
limx0(ex+ex2x2)1/x2
  • e1/2
  • e1/4
  • e1/3
  • e1/12
The value of limx0logcos2xcosx+logcos2xcos2x equals 
  • 54
  • 174
  • 1316
  • 2910
limx0(cos+sinx)1/x is equal to
  • e
  • e2
  • e1
  • 1
limx0sin[cosx]1+[cosx] is (where [] is G.I.F)
  • 1
  • 0
  • does not exist
  • 2
limxa(sinxa2tanπx2a)
  • a/π
  • a/π
  • π/a
  • π/a
Let a(0,π2), then the value of
lima01a3a0n(1+tanatanx)dx is equal to 
  • 13
  • 12
  • 16
  • 1
limx0sinxx=y
  • y>1
  • y<1
  • y1
  • y1
The value of Limitx0cos(sinx)cosxx4 is equal to 
  • 1/5
  • 1/6
  • 1/4
  • 1/2
limx01cos3xxsibxcosx  is equal to 
  • 2/5
  • 3/5
  • 3/2
  • 3/4
The value of limx0sin3(x)ln(1+3x)(tan1x)2(e5(x)1)x is equal to
  • 15
  • 35
  • 25
  • 45
Limx0sinxx=y
  • y>1
  • y<1
  • y1
  • y1
Ltx1(1x)tanπx=
  • 1
  • 0
  • 1
  • 2
limxa(2ax)tan(πx2a) is equal to 
  • eaπ
  • e2aπ
  • e2π
  • 1
limx0(ex+ex2x2)1/x2 is
  • e1/2
  • e1/4
  • e1/3
  • e1/12
Let x be an irrational, then limmlimn{cos(n!πx)}2m equals
  • 0
  • -1
  • 1
  • Indeterminate
Lim1cos2xxsin2x
  • 1/2
  • 3/2
  • 3/4
  • 1/4
xlim5(1cos(2x10)sin(x5))
  • 2
  • 2
  • does not exist
  • none of these
The value of limx0sec5xsec3xsec3xsecx
  • -2
  • 1
  • 2
  • -1/2
limx0x0(tan1t)21+x2dt  is equal to
  • π2
  • π22
  • π24
  • None of these
the value of limxX4sin(1x)+x31+|x|3
  • 1
  • -1
  • 2
  • does not exist
limx1[cosecπx2]1/(1x) (where [.] represents the greatest integer function) is equal to
  • 0
  • 1
  • Does not exist
f(X)=|x|+|x-1| is continuous at 
  • '0' only
  • 0,1 only
  • Every where
  • No where
Find:
limx01cos3xxsin2x=
  • 1/2
  • 3/2
  • 3/4
  • 1/4
limx0sinxxx3 is equal to
  • 16
  • 13
  • 12
  • 1
limx01cosxxlog(1+x) =
  • 1
  • 0
  • -1
  • 1/2
If α and β be the roots of the equation ax2+bx+c=0 then limx1α1cos2(cx2+bx+a)4(1αx)2
  • Does not exist
  • Equals |c2α(1α+1β)|
  • Equals |c2α(1α1β)|
  • Equals |c2(1α+1β)|
The value of limx12xcos(sin1x)1tan(sin1x)is
  • 12
  • 12
  • 2
  • 2
limxπ/2sin(x cosx)cos(x sinx) is equal to
  • 1
  • π2
  • 2π
  • does not exist
limx0xcot(4x)sin2xcot2(2x) is equal to 
  • 0
  • 2
  • 1
  • 4
limx0sec4xsec2xsec3xsecx=
  • 3/2
  • 2/3
  • 1/3
  • 3/4
The value of limx1(2x)tan(πx2) is
  • e2/pi
  • e1/pi
  • e2/pi
  • e1/pi
limx1x21sin2x+cosxcos(x+2)cos2(x+1) is-
  • 0
  • 1cos1
  • 2sin2
  • 12cos1
limx11x2/31x1/3
  • 2
  • 1
  • 0
  • does not exist
limn3n+(1)n4n(1)n is equal to
  • $$-\dfrac{3]{4}$$
  • o if n is even
  • 34 if n is odd
  • None of these
limx1(x4+x2+x+1x2x+1)1cos(x+1)(x+1)2 is equal to:
  • 1
  • (2/3)1/2
  • (3/2)1/2
  • e1/2
 limx0(1x+2x+3x++nxn)1/x is equal to
  • (n!)n
  • (n!)1/n
  • n!
  • ln(n!)
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers