Loading [MathJax]/jax/element/mml/optable/MathOperators.js

CBSE Questions for Class 11 Commerce Applied Mathematics Limits And Continuity     Quiz 13 - MCQExams.com

If limx0xnsinxnxsinnx is non-zero finite, then n must be equal
  • 4
  • 1
  • 2
  • 3
If L=limx0sinx+aex+bex+cln(1+x)x3=

Equation ax2+bx+c=0 has
  • real and equal roots
  • complex roots
  • unequal positive real roots
  • unequal roots
limx2+2x+sin2x(2x+sin2x)esinx is equal to
  • 0
  • 1
  • -1
  • Does not exists
Value of L=limnn14[1.(nk=1k)+2.(n1k=1k)+3.(n2k=1k)+...+n.1] is
  • 1/24
  • 1/12
  • 1/6
  • 1/3
The value of limn[tanπ2ntan2π2ntannπ2n]1/n is
  • e
  • e2
  • 1
  • e3
\displaystyle  \lim _{x \rightarrow \pi / 2} \dfrac{\sin (x \cos x)}{\cos (x \sin x)}  is equal to
  • 0
  • p/2
  • p
  • 2p
The value of \displaystyle \lim _{x \rightarrow 0} \dfrac{\sqrt{\dfrac{1}{2}(1-\cos 2 x)}}{x}  is
  • 1
  • -1
  • 0
  • None of these
The value of \displaystyle \lim_{n\infty}\dfrac{1}{n^2}\left\{ sin^3\dfrac{\pi}{4n}+2sin^3\dfrac{2\pi}{4n} + ... + nsin^3\dfrac{n\pi}{4n}\right\} is equal to 
  • \dfrac{\sqrt{2}}{9\pi^2}(52-15 \pi )
  • \dfrac{2}{9\pi^2}(52-15n)
  • \dfrac{1}{9\pi^2}(15n-15)
  • None of these
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers