MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Commerce Applied Mathematics Limits And Continuity Quiz 13 - MCQExams.com
CBSE
Class 11 Commerce Applied Mathematics
Limits And Continuity
Quiz 13
If $$ \displaystyle \lim _{x \rightarrow 0} \dfrac{x^{n}-\sin x^{n}}{x-\sin ^{n} x} $$ is non-zero finite, then $$ n $$ must be equal
Report Question
0%
4
0%
1
0%
2
0%
3
If $$ L=\displaystyle \lim _{x \rightarrow 0} \dfrac{\sin x+a e^{x}+b e^{-x}+c \ln (1+x)}{x^{3}}=\infty $$
Equation $$ a x^{2}+b x+c=0 $$ has
Report Question
0%
real and equal roots
0%
complex roots
0%
unequal positive real roots
0%
unequal roots
$$\displaystyle \lim _{x \rightarrow \infty} \dfrac{2+2 x+\sin 2 x}{(2 x+\sin 2 x) e^{\sin x}} $$ is equal to
Report Question
0%
0
0%
1
0%
-1
0%
Does not exists
Value of $$L=\displaystyle\lim_{n\rightarrow \infty n}\dfrac{1}{4}\left[1.\left(\displaystyle\sum_{k=1}^{n}k\right)+2.\left(\sum_{k=1}^{n-1}k\right)+3.\left(\sum_{k=1}^{n-2}k\right)+...+n.1\right]$$ is
Report Question
0%
$$1/24$$
0%
$$1/12$$
0%
$$1/6$$
0%
$$1/3$$
Explanation
The value of $$\lim _{n \rightarrow \infty}\left[\tan \dfrac{\pi}{2 n} \tan \dfrac{2 \pi}{2 n} \cdots \tan \dfrac{n \pi}{2 n}\right]^{1 / n}$$ is
Report Question
0%
$$e$$
0%
$$e^2$$
0%
$$1$$
0%
$$e^3$$
Explanation
$$\operatorname{Let} A=\lim _{n \rightarrow \infty}\left[\tan \dfrac{\pi}{2 n} \tan \dfrac{2 \pi}{2 n} \cdots \tan \dfrac{n \pi}{2 n}\right]^{1 / n}\\$$
$$\therefore \log A=\lim _{n \rightarrow \infty} \dfrac{1}{n}\left[\log \tan \dfrac{\pi}{2 n}+\log \tan \dfrac{2 \pi}{2 n}\right.\\$$
$$+\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \dfrac{1}{n} \log \tan \dfrac{\pi r}{2 n}=\int_{0}^{1} \log \tan \left(\dfrac{\pi}{2} x\right) d x\\$$
$$=\dfrac{2}{\pi} \int_{0}^{\pi / 2} \log \tan y d y$$$$I=\int_{0}^{\pi / 2} \log \tan \left(\dfrac{1}{2} \pi-y\right) d y\\$$
$$(\text{ by Property } \mathrm{IV})\\$$
$$\begin{array}{l}=\int_{0}^{\pi / 2} \log \cot y d y \\=-\int_{0}^{\pi / 2} \log \tan y d y=-I\end{array}$$
$$\operatorname{or} I+I=0$$ or $$2 I=0$$ or $$I=0\\$$
from equation $$(1), \log A=0 \therefore A=e^{0}=1$$
$$\displaystyle \lim _{x \rightarrow \pi / 2} \dfrac{\sin (x \cos x)}{\cos (x \sin x)} $$ is equal to
Report Question
0%
0
0%
p/2
0%
p
0%
2p
The value of $$ \displaystyle \lim _{x \rightarrow 0} \dfrac{\sqrt{\dfrac{1}{2}(1-\cos 2 x)}}{x} $$ is
Report Question
0%
1
0%
-1
0%
0
0%
None of these
The value of $$\displaystyle \lim_{n\infty}\dfrac{1}{n^2}\left\{ sin^3\dfrac{\pi}{4n}+2sin^3\dfrac{2\pi}{4n} + ... + nsin^3\dfrac{n\pi}{4n}\right\}$$ is equal to
Report Question
0%
$$\dfrac{\sqrt{2}}{9\pi^2}(52-15 \pi )$$
0%
$$\dfrac{2}{9\pi^2}(52-15n)$$
0%
$$\dfrac{1}{9\pi^2}(15n-15)$$
0%
None of these
0:0:1
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
0
Answered
0
Not Answered
0
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page