CBSE Questions for Class 11 Commerce Applied Mathematics Limits And Continuity     Quiz 2 - MCQExams.com

If $$x$$ is very large, then $$\dfrac {2x}{1+x}$$ is
  • close to $$0$$
  • arbitrarily large
  • lie between $$2$$ and $$3$$
  • close to $$2$$
What is $$\displaystyle\lim _{ x\rightarrow 0 }{ \frac { \cos { x }  }{ \pi -x }  } $$ equal to?
  • $$0$$
  • $$\pi $$
  • $$\dfrac { 1 }{ \pi } $$
  • $$1$$
$$\underset{x \rightarrow 0}{lim}(1+ax)^{\large{\frac{b}{x}}}$$ is equal to
  • $$e^{ab}$$
  • $$e^{a+b}$$
  • non-existent
  • none of these
$$\displaystyle{\lim_{x \to 0}}$$ $$\Bigg(\dfrac{(1+x)^{2}}{e^{x}}\Bigg)^\dfrac{4}{\sin x}$$ is:
  • $$e^2$$
  • $$e^{4}$$
  • $$e^8$$
  • $$e^{-8}$$
If a sequence $$< a_{n} >$$ is such that $$a_{1},a_{n+1}=\dfrac {2+3a_{n}}{1+2a_{n}}$$ and $$\displaystyle \lim_{n \rightarrow \infty}a_{n}$$ exists, then $$a_{n}$$ is equal to
  • $$\cos 36^{o}$$
  • $$2\cos 36^{o}$$
  • $$\sin 18^{o}$$
  • $$2\sin 36^{o}$$
$$\lim_{x\rightarrow\ 0}\dfrac{\sin7x}{\sin3x}$$ equals
  • $$\dfrac{7}{3}$$
  • $$\dfrac{10}{3}$$
  • $$\dfrac{14}{3}$$
  • $$\dfrac{1}{3}$$
$$\displaystyle \lim_{x\rightarrow 0}{(1+\sin x)^{\cos x}}$$ is equal to 
  • $$0$$
  • $$e$$
  • $$1$$
  • $$\dfrac{1}{e}$$
Evaluate the following limit :
$$lim_{x\rightarrow 0} \dfrac{1-\cos 2x}{x^2}$$
  • $$0$$
  • $$1$$
  • $$2$$
  • none of these
Evaluate $$\displaystyle \lim_{n\rightarrow \infty} \dfrac{1+2+3+...+n}{n^2}$$
  • $$\cfrac { 1 }{ 2 } $$
  • $$1$$
  • $${ 3 }^{ 2 }$$
  • $$\cfrac { 1 }{ { 2 }^{ 2 } } $$
Which of the following statement is not correct
  • $$\displaystyle \lim _{ x\rightarrow c }{ \left[ f\left( x \right) +g\left( x \right) \right] } =\lim _{ x\rightarrow c }{ f\left( x \right) } +\lim _{ x\rightarrow c }{ g\left( x \right) } $$
  • $$\displaystyle \lim _{ x\rightarrow c }{ \left[ f\left( x \right) -g\left( x \right) \right] } =\lim _{ x\rightarrow c }{ f\left( x \right) } -\lim _{ x\rightarrow c }{ g\left( x \right) } $$
  • $$\displaystyle \lim _{ x\rightarrow c }{ \left[ f\left( x \right) .g\left( x \right) \right] } =\lim _{ x\rightarrow c }{ f\left( x \right) } .\lim _{ x\rightarrow c }{ g\left( x \right) } $$
  • $$\displaystyle \lim _{ x\rightarrow c }{ \dfrac { f\left( x \right) }{ g\left( x \right) } } =\displaystyle \dfrac { \lim _{ x\rightarrow c }{ f\left( x \right) } }{ \lim _{ x\rightarrow c }{ g\left( x \right) } } $$
What is the value of $$\underset{x\rightarrow 0}{lim}\dfrac{\sin\,x}{\tan \,3x}$$
  • $$\dfrac{1}{4}$$
  • $$\dfrac{1}{3}$$
  • $$\dfrac{1}{2}$$
  • $$1$$
If $$f(x)=\left\{\begin{array}{l}x-5;\>x\leq 1\\4x^{2}-9;\>1<x\le2\\3x^{2}+4;\>x>2\end{array}\right.$$
Then $$f(2^{+})-f(2^{-})=$$
  • $$0$$
  • $$2$$
  • $$9$$
  • $$4$$
 If $$\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}2\mathrm{x}+\mathrm{b}(\mathrm{x}<\alpha)\\\mathrm{x}+\mathrm{d}(\mathrm{x}\geq\alpha)\end{array}\right.$$is such that
$$\displaystyle \lim_{x\rightarrow \alpha}f(x) =L$$, then $$L=$$
  • $$2d-b$$
  • $$b-d$$
  • $$d+b$$
  • $$b-2d$$

$$\displaystyle \lim_{x\rightarrow 1}(1-x)\tan(\displaystyle \frac{\pi x}{2})=$$
  • $$\pi$$
  • $$ 2\pi$$
  • $$\displaystyle \frac{\pi}{2}$$
  • $$\displaystyle \frac{2}{\pi}$$
lf $$f(x)=x,x<0;f(x)=0,x=0$$; $$f(x)=x^{2};x>0$$, then $$\displaystyle \lim_{x\rightarrow 0}f(x)$$ is equal to
  • Does not exist
  • $$0$$
  • $$-1$$
  • $$1$$
$$f(x)=2x+1, a=1,l=3$$ and $$\epsilon=0.001$$, then $$\delta>0$$ satisfying $$0<|x-a|<\delta$$ such that $$|f(x)-l|<\epsilon$$, is

  • $$0.0005$$
  • $$0.005$$
  • $$0.001$$
  • $$0.0001$$
 Evaluate: $$\displaystyle \lim_{h\rightarrow 0}\left(\frac{1}{h\sqrt[3]{8+h}}-\frac{1}{2h}\right)$$
  • $$\displaystyle \frac{1}{12}$$
  • $$-\displaystyle \frac{4}{3}$$
  • $$-\displaystyle \frac{16}{3}$$
  • $$-\displaystyle \frac{1}{48}$$
 lf $$\displaystyle \lim_{x\rightarrow a^+}f(x)=L$$, then for each $$\epsilon>0$$, there exists $$\delta>0$$ so that
  • $$ 0<|x-a|<\delta\Rightarrow |f(x)-L|\geq\epsilon$$
  • $$ 0<|x-a|<\delta\Rightarrow |f(x)-L|<\epsilon$$
  • $$a < x < a+\delta\Rightarrow f(x) - L <\epsilon$$
  • $$ a-\delta < x < a\Rightarrow |f(x)-L| < \epsilon$$
$$\displaystyle \lim_{x\rightarrow 0}\frac{1-\cos x}{x\log(1+x)}=$$
  • $$1$$
  • $$0$$
  • $$-1$$
  • $$\displaystyle \dfrac{1}{2}$$
$$\displaystyle \lim_{x\rightarrow 0}\frac{(1-e^{x})\sin x}{x^{2}+x^{3}}=$$
  • $$-1$$
  • $$0$$
  • $$1$$
  • $$2$$
lf $$f(x)=2x-3,a=2,l=1$$ and $$\epsilon =0.001$$ then $$\delta>0$$ satisfying$$ 0<|x-a|<\delta, \ \ |f(x)-l|<\epsilon$$, is:
  • $$0.005$$
  • $$0.0005$$
  • $$0.001$$
  • $$0.0001$$
$$\displaystyle \lim_{x\rightarrow 0}\frac{e^{x}-e^{\sin x}}{2(x-\sin x)}=$$
  • $$-\dfrac{1}{2}$$
  • $$\dfrac{1}{2}$$
  • $$1$$
  • $$\dfrac{3}{2}$$

$$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{x\tan 2x-2x\tan x}{(1-\cos 2x)^{2}}$$=
  • $$2$$
  • $$-2$$
  • $$\displaystyle \frac{1}{2}$$
  • $$-\displaystyle \frac{1}{2}$$
lf $$ \displaystyle \lim _{ x\rightarrow 0 } \left(\displaystyle  \frac { \cos  4x+a\cos  2x+b }{ x^{ 4 } }  \right) $$ is finite then the value of $$a,b$$ respectively are
  • $$5\, -4$$
  • $$-5,\ -4$$
  • $$-4,\ 3$$
  • $$4,\ 5$$

$$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{1-\cos^{3}x}{x\sin 2x}$$=
  • $$\displaystyle \frac{1}{2}$$
  • $$\displaystyle \frac{3}{2}$$
  • $$\displaystyle \frac{3}{4}$$
  • $$\displaystyle \frac{1}{4}$$

$$\displaystyle \lim_{x\rightarrow \dfrac{\pi }{2}}\displaystyle \dfrac{(\dfrac{\pi}{2}-x)\sec x}{cosecx}$$=
  • 1
  • 0
  • -1
  • $$\displaystyle \dfrac{1}{\pi}$$
Solve : $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \dfrac{\sin x\sin\left(\dfrac{\pi}{3}+x\right)\sin\left(\dfrac{\pi}{3}-x\right)}{x}$$
  • $$\displaystyle \frac{3}{4}$$
  • $$\displaystyle \frac{1}{4}$$
  • $$\displaystyle \frac{4}{3}$$
  • $$0$$
$$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{(1-\cos 2x)\sin 5x}{x^{2}\sin 3x}=$$
  • $$\dfrac{10}{3}$$
  • $$\dfrac{3}{10}$$
  • $$\dfrac{6}{5}$$
  • $$\dfrac{5}{6}$$
The value of $$\displaystyle \lim _{ \alpha \rightarrow \beta  }{ \left[ \frac { \sin ^{ 2 }{ \alpha  } -\sin ^{ 2 }{ \beta  }  }{ { \alpha  }^{ 2 }-{ \beta  }^{ 2 } }  \right]  } $$ is:
  • $$0$$
  • $$1$$
  • $$\displaystyle \frac { \sin { \beta  }  }{ \beta  } $$
  • $$\displaystyle \frac { \sin { 2\beta  }  }{ 2\beta  } $$
Evaluate: $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{\sec 4x-\sec 2x}{\sec 3x-\sec x}$$
  • $$\displaystyle \frac{3}{2}$$
  • $$\displaystyle \frac{2}{3}$$
  • $$\displaystyle \frac{1}{3}$$
  • $$\displaystyle \frac{3}{4}$$

$$\displaystyle \lim_{x \rightarrow\frac{\pi}{2}}\displaystyle \dfrac{cosecx-\cot x}{x}$$=
  • $$1$$
  • $$\displaystyle \frac{2}{\pi}$$
  • $$\displaystyle \frac{1}{2}$$
  • $$\displaystyle \frac{1}{5}$$
$$\displaystyle \lim_{x\rightarrow \dfrac{\pi }{4}}\displaystyle \frac{\sec x.\tan(4x-\pi)}{\sin(4x-\pi)}$$=
  • $$\sqrt{2}$$
  • $$\displaystyle \frac{1}{\sqrt{2}}$$
  • $$-\sqrt{2}$$
  • $$\displaystyle \frac{-1}{\sqrt{2}}$$
$$\displaystyle \lim_{x\rightarrow \frac{\pi }{6}}\frac{3\sin x-\sqrt{3}\cos x}{6x-\pi }=$$
  • $$\sqrt{3}$$
  • $$\dfrac{1}{\sqrt{3}}$$
  • $$-\sqrt{3}$$
  • $$-\dfrac{1}{\sqrt{3}}$$
$$\displaystyle \lim_{x\rightarrow 0}\frac{tan x^{0}}{x}=$$
  • 0
  • 1
  • $$\displaystyle \frac{\pi}{180}$$
  • $$\pi$$

$$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{3\sin x-\sin 3x}{x^{3}}$$=
  • $$0$$
  • $$1$$
  • $$(\displaystyle \frac{\pi}{180})^{3}$$
  • $$4.(\displaystyle \frac{\pi}{180})^{3}$$
Solve:
$$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{3\tan x-\tan 3x}{2x^{3}}$$
  • $$\dfrac{1}{4}$$
  • $$\dfrac{3}{4}$$
  • $$4$$
  • $$-4$$

$$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{a^{x}-b^{x}}{{x}}$$=
  • $$\displaystyle \log(\frac{a}{b})$$
  • $$\displaystyle \log(\frac{b}{a})$$
  • $$\log(ab)$$
  • $${\log_{b}}{a}$$
$$\displaystyle \lim_{x\rightarrow 0}(\frac{\sin x-x}{x})(\sin\frac{1}{x})$$ is:
  • does not exist
  • is equal to 0
  • is equal to 1
  • exists and different from 0 and 1

$$\displaystyle \lim_{x\rightarrow \frac{\pi }{4}}\displaystyle \frac{\cos x-\sin x}{(\frac{\pi}{4}-x)(\cos x+\sin x)}$$=
  • $$2$$
  • $$1$$
  • $$0$$
  • $$3$$

$$\displaystyle \lim_{x\rightarrow \displaystyle \frac{\pi }{2}}\displaystyle \frac{1-\sin\theta}{\cos\theta\left(\dfrac{\pi}{2}-{\theta}\right)}=$$
  • $$1$$
  • $$-1$$
  • $$-\displaystyle \frac{1}{2}$$
  • $$\displaystyle \frac{1}{2}$$

$$\displaystyle \lim_{x\rightarrow \dfrac{\pi }{2}}\displaystyle \frac{1-\sin x}{(\pi-2x)^{2}}$$=
  • $$\displaystyle \frac{1}{3}$$
  • $$\displaystyle \frac{1}{4}$$
  • $$\displaystyle \frac{1}{6}$$
  • $$\displaystyle \frac{1}{8}$$
$$\displaystyle \lim_{x\rightarrow \infty }\frac{x+\sin x}{x+ \cos x}=$$
  • $$1$$
  • $$-1$$
  • $$\dfrac{1}{3}$$
  • $$0$$
$$ \displaystyle f(x)=\left\{ \begin{matrix} \dfrac { 3 }{ { x }^{ 2 } } \sin { 2{ x }^{ 2 } } ,\; x<0 \\ \dfrac { { x }^{ 2 }+2x+C }{ 1-3{ x }^{ 2 } } ,\; x\ge 0,\; x\neq \frac { 1 }{ \sqrt { 3 }  }  \\ 0,\; x=\frac { 1 }{ \sqrt { 3 }  }  \end{matrix} \right. $$
$$\displaystyle \lim_{x\rightarrow 0^{+}}f(x)=$$
  • $$\frac{C}{4}$$
  • 2C
  • $$\frac{C}{3}$$
  • C
Let $$f(x)=\begin{cases}x^{2}-1,0 < x < 2\\2x+3,2 \leq x < 3\end{cases},$$ 
The quadratic equation whose roots are $$\displaystyle \lim_{x\rightarrow 2^{-}}f(x)$$ and $$\displaystyle \lim_{x\rightarrow 2^{+}}f(x)$$ is
  • $$x^{2}-10x+21=0$$
  • $$x^{2}-6x+9=0$$
  • $$x^{2}-14x+49=0$$
  • $$x^{2}+6x+9=0$$
The value of $$\sqrt{e}$$e upto four decimal places is?
  • $$1.6484$$
  • $$1.5237$$
  • $$1.2589$$
  • $$1.9190$$
If $$f(x) = \displaystyle \frac {x^2+6x}{\sin x}$$ , then $$\displaystyle \lim_{x\rightarrow 0^{-}}f(x)=$$
  • $$2$$
  • $$4$$
  • $$6$$
  • $$8$$

$$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{\log(1+ax)-\log(1+bx)}{x}$$=
  • $$a+b$$
  • $$a-b$$
  • $$-(a+b)$$
  • $$ab$$
Let $$f$$ be a continuous function on [1,3]. lf $$f$$ takes only rational values for all $$x$$ and $$f(2)=10$$ then $$f(1.5)$$ is equal to
  • $$8$$
  • $$\displaystyle \frac{f(1)+f(3)}{3}$$
  • $$20$$
  • $$10$$
Evaluate: $$\displaystyle \underset{x\rightarrow 0}{\lim}\ \ \frac{\sin3x^{2}}{\cos(2x^{2}-x)}$$
  • $$0$$
  • $$-1$$
  • $$4$$
  • $$-6$$
$$\displaystyle \lim _{ x\rightarrow { 0 }^{ - } }{ \dfrac { 3\sin(2{ x }^{ 2 }) }{ { x }^{ 2 } }  } =A$$
then the value of $$A$$ is
  • $$2$$
  • $$4$$
  • $$6$$
  • $$8$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers