Processing math: 100%

CBSE Questions for Class 11 Commerce Applied Mathematics Limits And Continuity     Quiz 3 - MCQExams.com

lf f(x)={a2[x]+{x}12[x]+{x};x0loga;x=0 where [. ] and {. } denote integral and fractional part respectively, then
  • f(x) is continuous at x=0
  • f(x) is discontinuous at x=0
  • f(x) is continuous xR
  • f(x) is differentiable at x=0

 lf f(x)=xsin2xx+cosx,then limxf(x)=
  • 12
  • 1
  • 0
  • 1
The value of limx0sin(πcos2x)x2 is
  • π
  • π2
  • π
  • 3π2
Let f(x)=cos2x.cot(π4x) If f is continuous at x=π4 then the value of f(π4) is equal to
  • 2
  • 2
  • 12
  • 12
limxxcos(π8x)sin(π8x)=
  • π
  • π2
  • π8
  • π4

limx(sinx+1sinx)=
  • 2
  • -2
  • 0
  • None of these

 limxsin4xsin2x+1cos4xcos2x+1 is equal to
  • 0
  • 1
  • 13
  • 12
f(x)={[x]+[x],λ,x2x=2, then f(x) is continuous at x=2 provided λ is:
  • 1
  • 0
  • 1
  • 2

limx2xsin(2x)
  • 1
  • 0
  • 2
  • does not exist
Let f:RR be any function, Define
g:RR by g(x)=|f(x)|x, then
  • g is continuous if f is not continuous
  • g is not continuous if f is not continuous
  • g is continuous if f is continuous
  • g is differentiable if f is differentiable
limx2x+7sinx4x+3cosx=
  • 1
  • 1
  • 12
  • 12
The function y=3x|x1| is continuous at
  • x<0
  • x1
  • 0x1
  • x0

 lf f(x)={1+xx13ax2x>1 is continuous at x=1 then a=(a>0)
  • 1
  • 2
  • 0
  • 3

Ltx0+(sinx)tanx=
  • e
  • e2
  • 1
  • 1
The function f(x)=1+sinxcosx1sinxcosx is not defined at x=0. The value of f(0) so that f(x) is continuous at x=0 is
  • 1
  • 1
  • 0
  • 2
lf the function f(x)=ex2cosxx2 for x0 is continuous at x=0 then f(0)=
  • 12
  • 32
  • 2
  • 13

limxπ(14tanx)cotx=
  • e
  • e4
  • e1
  • e4
limn(πn)2/n=
  • 0
  • 1
  • 2
  • 3
f(x)={x532x2,x2k,x=2 is continuous at x=2, then the value of k is 
  • 10
  • 15
  • 35
  • 80
If f(x)={a2cos2x+b2sin2x,x0eax+b,x>0 is continuous at x=0 then
  • 2log|a|=b
  • 2log|b|=e
  • loga=2log|b|
  • a=b
limn(enπ)1/n=
  • 0
  • 1
  • e2
  • e
limx1(2x)tan(πx2)=
  • e1π
  • e2π
  • e2π
  • e
lf the function defined by f(x)=sin3(xp)sin2(xp) for xp is continuous at x=p then f(p)=
  • 32
  • 23
  • 6
  • 16

If the function f(x)={2x+2164x16forx2Ax=2 is continuous at x=2, then A=
  • 2
  • 12
  • 14
  • 0

 f(x)=x[3log(sinxx)]2 to be continuous at x=0, then f(0)=
  • 0
  • 2
  • 2
  • 3

 Let f(x)={(ekx1).sinkxx2for x04for x=0 is continuous at x=0 then k=
  • ±1
  • ±2
  • 0
  • ±3

 lf f(x)={(1+|sinx|)a|sinx|π6<x<0bx=0etan2xtan3x0<x<π6 is

continuous at x=0 then
  • a=e2/3,b=23
  • a=23,b=e2/3
  • a=13,b=e1/3
  • a=e1/3,b=e1/3
lf the function f(x)={kcosxπ2x,xπ23atx=π2is continuous at x=π2 then k=
  • 2
  • 4
  • 6
  • 8
The function f(x)={0,x  is irrational 1,x is rational  is
  • continuous at x=1
  • discontinuous only at 0
  • discontinuous only at 0,1
  • discontinuous everywhere

The function f(x)=cosxsinxcos2x is not defined at x=π4 The value of f(π4) so that f(x) is continuous at x=π4 is
  • 12
  • 2
  • 2
  • 1
The value of f(0) so that the function
f(x)=log(1+xa)log(1xb)x,(x0) is continuous at x=0 is :
  • a+bab
  • abab
  • aba+b
  • abab
The value of f(0) for the function f(x)=2(x+4)sin2x,x0 is continuous at x=0 is
  • 18
  • 14
  • 18
  • 14
lf f(x)={12sinxπ4xxπ4a,x=π4 is continuous at x=π4 then a=
  • 4
  • 2
  • 1
  • 14
If f(x)={1+kx1xxforlx<02x2+3x2for0x1 is continuous at x=0 then k is:
  • 4
  • 3
  • 5
  • 1
f(x)={x3+x216x+20(x2)2if x2kif x=2
f(x) is continuous at x=2 then f(2)=
  • k=3
  • k=5
  • k=7
  • k=9
f(x)=p+q1xr+s1x,s<1,q<1,r0,f(0)=1, is left continuous at x=0 then
  • p=0
  • p=r
  • p=q
  • pq
lf f : RR is defined by f(x)={cos3xcosxx2forx0λforx=0and if f is continuous at x=0 then λ=
  • 2
  • 4
  • 6
  • 8
lf f(x)=x(e1/xe1/x)e1/x+e1/xx0 is continuous at x=0, then f(0)=
  • 1
  • 2
  • 0
  • 3
If f : RR is defined by f(x)={x+2x2+3x+2xR{1,2}1x=20x=1then f is continuous on the set:
  • R
  • R{2}
  • R{1}
  • R{1,2}
limx0((1+x)1xe)1sinx is equal to 
  • e
  • e
  • 1e
  • 1/e
f(x)=e1/x2e1/x21 , x0, f(0)=1, then f at x=0 is:
  • discontinuous
  • left continuous
  • right continuous
  • both B and C

 A function f(x) is defined as
f(x)={axbx13x,1<x<2bx2ax2 is continuous at
x=1,2 then:
  • a=5, b=2
  • a=6, b=3
  • a=7, b=4
  • a=8, b=5
f(x)=min{x, x2}xR. Then f(x) is
  • discontinuous at 0
  • discontinuous at 1
  • continuous on R
  • continuous at 0, 1
Ltx0sin2x+asinxx3 exists and finite then a=
  • 2
  • 2
  • 23
  • 23
The integer n for which limx0(cosx1)(cosxex)xn is finite non zero number is
  • 1
  • 2
  • 3
  • 4
limx1{1x+[x+1]+[1x]} , where [x] denotes greatest integer function, is
  • 0
  • 1
  • 1
  • 2
Given that the function f is defined by f(x)={2x1,x>2k,x=2x21,x<2is continuous at x =Then k is:
  • 3
  • 2
  • 1
  • 3
lf the function f(x)={sin3xx(x0)k2(x=0) is continuous at x=0, then k is:
  • 3
  • 6
  • 9
  • 2
The right-hand limit of the function secx at x=π2 is
  • 1
  • 0
limx01xcos1(1x21+x2)=
  • 0
  • 1
  • 2
  • does not exist
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers