Processing math: 2%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Commerce Applied Mathematics Limits And Continuity Quiz 3 - MCQExams.com
CBSE
Class 11 Commerce Applied Mathematics
Limits And Continuity
Quiz 3
lf
f
(
x
)
=
{
a
2
[
x
]
+
{
x
}
−
1
2
[
x
]
+
{
x
}
;
x
≠
0
log
a
;
x
=
0
where
[
.
]
and
{
.
}
denote integral and fractional part respectively, then
Report Question
0%
f
(
x
)
is continuous at
x
=
0
0%
f
(
x
)
is discontinuous at
x
=
0
0%
f
(
x
)
is continuous
∀
x
∈
R
0%
f
(
x
)
is differentiable at
x
=
0
Explanation
Given definition of
f
(
x
)
can be written as
f
(
x
)
=
{
a
[
x
]
+
x
[
x
]
+
x
;
x
≠
0
log
a
;
x
=
0
(
\because \{x\}=x-[x]
)
To check continuity of
f(x)
at
x=0
f(0^{+})=f(0^{-})=f(0)
f(0^{+})=\lim_{h\rightarrow 0}\dfrac{a^{h+[h]}}{\left [ h \right ]+h}
=\lim_{h\rightarrow 0}\dfrac{a^{h}-1}{h}=\log(a)
f(0^-)=\lim_{h\rightarrow 0}\dfrac{a^{[-h] -h}}{[-h]-h}
=\lim_{h\rightarrow 0}\dfrac{a^{-1-h}-1}{-1-h}
=1-\dfrac{1}{a}
f(0^{+})\neq f(0^{-})
So,
f(x)
is discontinuous at
x=0
lf
\displaystyle { f }({ x })=\sqrt { \frac { { x }-\sin ^{ 2 }{ x } }{ { x }+\cos { x } } }
,then
\displaystyle \lim _{ x\rightarrow \infty } f(x)
=
Report Question
0%
\dfrac{1}{2}
0%
-1
0%
0
0%
1
Explanation
\displaystyle \lim _{ x\rightarrow \infty } f(x)
\displaystyle = \lim _{ x\rightarrow \infty }\sqrt { \dfrac { { x }-\sin ^{ 2 }{ x } }{ { x }+\cos { x } } }=\lim _{ x\rightarrow \infty }\sqrt { \dfrac { 1-\dfrac{\sin^2x}{x}}{ 1+\dfrac{\cos x}{x} }}=\sqrt{\dfrac{1-0}{1-0}}=1
The value of
\displaystyle \lim _{ x\rightarrow 0 }{ \frac { \sin { \left( \pi \cos ^{ 2 }{ x } \right) } }{ { x }^{ 2 } } }
is
Report Question
0%
-\pi
0%
\displaystyle \frac { \pi }{ 2 }
0%
\pi
0%
\displaystyle \frac { 3\pi }{ 2 }
Explanation
\displaystyle \lim _{ x\rightarrow 0 }{ \frac { \sin { \left( \pi \cos ^{ 2 }{ x } \right) } }{ { x }^{ 2 } } }=\lim _{ x\rightarrow 0 }{ \frac { \sin { \left[ \pi (1-\sin ^{ 2 }{ x }) \right] } }{ { x }^{ 2 } } }
\quad =\displaystyle \lim _{ x\rightarrow 0 }{ \frac { \sin { \left[ \pi-\pi\sin ^{ 2 }{ x } \right] } }{ { x }^{ 2 } } }=\displaystyle \lim _{ x\rightarrow 0 }{ \frac { \sin { \left[ \pi\sin ^{ 2 }{ x } \right] } }{ { x }^{ 2 } } }, [\because \sin(\pi-\theta)=\sin\theta]
\quad \displaystyle =\pi\lim _{ x\rightarrow 0 }{ \frac { \sin { \left[ \pi\sin ^{ 2 }{ x } \right] } }{ \pi\sin^2x } }\left( \frac{\sin x}{x}\right)^2 =\pi\cdot 1\cdot 1=\pi
Let
f(x)=\cos2x.\cot\left (\displaystyle \frac{\pi }{4}-x \right )
If
f
is continuous at
x=\displaystyle \frac{\pi}{4}
then the value of
f(\displaystyle \frac{\pi}{4})
is equal to
Report Question
0%
2
0%
-2
0%
\displaystyle \frac{-1}{2}
0%
\displaystyle \frac{1}{2}
Explanation
f(x)=cos2x.cot\left ( \frac{\pi }{4}-x \right )
Given
f(x)
is continuous at
x=\displaystyle \frac{\pi}{4}
\displaystyle \lim _{ x\rightarrow \frac { \pi }{ 4 } } f(x)=f(\frac { \pi }{ 4 } )
\displaystyle=\lim _{ x\rightarrow \frac { \pi }{ 4 } } \frac { \cos { 2x } }{ \tan { (\frac { \pi }{ 4 } -x) } }
It is of the form
\displaystyle \frac{0}{0}
, so applying L-Hospital's rule
\displaystyle=\lim _{ x\rightarrow \frac { \pi }{ 4 } } \frac { -2\sin { 2x } }{ -\sec ^{ 2 }{ (\frac { \pi }{ 4 } -x) } }
=2
\displaystyle \lim_{x\rightarrow \infty }x\displaystyle \cos\left(\frac{\pi}{8x}\right)\sin\left(\frac{\pi}{8x}\right)=
Report Question
0%
\displaystyle \pi
0%
\displaystyle \frac{\pi}{2}
0%
\dfrac{\pi}{8}
0%
\displaystyle \frac{\pi}{4}
Explanation
As
x \rightarrow \infty , \cos \left (\dfrac{\pi}{8x}\right) \rightarrow 1
Looking at the rest of the part,
\underset{ x \rightarrow \infty}{\lim} \dfrac{\pi}{8x} \rightarrow 0
\underset{ x \rightarrow \infty}{\lim} x.\sin (\dfrac{\pi}{8x})
=\underset{ x \rightarrow \infty}{\lim} \dfrac{\sin (\dfrac{\pi}{8x})}{\dfrac{1}{x}}
We multiply and divide by
\dfrac{\pi}{8}
=\underset{ x \rightarrow \infty}{\lim} , \dfrac{\sin \left (\dfrac{\pi}{8x}\right)}{\dfrac{\pi}{8x}} \times \dfrac{\pi}{8x}
Now using the property of a limit,
\underset{ y \rightarrow 0}{\lim} , \dfrac{\sin y}{y}
= 1
We get, applying the limit,
= 1 \times
\dfrac{\pi}{8}
=
\dfrac{\pi}{8}
\displaystyle \lim_{x\rightarrow \infty }(\sin\sqrt{x+1}-\sin\sqrt{x})=
Report Question
0%
2
0%
-2
0%
0
0%
None of these
Explanation
\displaystyle \lim _{ x\rightarrow \infty }{ \left( \sin { \sqrt { x+1 } } -\sin { \sqrt { x } } \right) }
=\displaystyle \lim _{ x\rightarrow \infty }{ 2\cos { \left( \cfrac { \sqrt { x+1 } +\sqrt { x } }{ 2 } \right) \sin { \left( \cfrac { \sqrt { x+1 } -\sqrt { x } }{ 2 } \right) } } }
Now for
\displaystyle \lim _{ x\rightarrow \infty }{ { \sin { \left( \cfrac { \sqrt { x+1 } -\sqrt { x } }{ 2 } \right) } } }
=\displaystyle \lim _{ x\rightarrow \infty }{ \cfrac { \sin { \left( \cfrac { \sqrt { x+1 } -\sqrt { x } }{ 2 } \right) } }{ \cfrac { \sqrt { x+1 } -\sqrt { x } }{ 2 } } \times \cfrac { \sqrt { x+1 } -\sqrt { x } }{ 2 } }
(sandwich theorem)
=\displaystyle \lim _{ x\rightarrow \infty }{ \cfrac { \sqrt { x+1 } -\sqrt { x } }{ 2 } }
=\cfrac { 1 }{ 2 } \displaystyle \lim _{ x\rightarrow \infty }{ \cfrac { \sqrt { x+1 } -\sqrt { x } }{ \sqrt { x+1 } +\sqrt { x } } \cdot \cfrac { \sqrt { x+1 } +\sqrt { x } }{ 1 } }
=\cfrac { 1 }{ 2 } \displaystyle \lim _{ x\rightarrow \infty }{ \cdot \cfrac { 1 }{ \sqrt { x+1 } +\sqrt { x } } } =\cfrac { 1 }{ 2 } \times 0=0
Now,
2\cos { \left( \cfrac { \sqrt { x+1 } +\sqrt { x } }{ 2 } \right) }
is always finite and lies between
\left[ -2,2 \right]
\therefore \displaystyle \lim _{ x\rightarrow \infty }{ 2\cos { \left( \cfrac { \sqrt { x+1 } +\sqrt { x } }{ 2 } \right) \sin { \left( \cfrac { \sqrt { x+1 } -\sqrt { x } }{ 2 } \right) } } } =finite\times 0
=0
\displaystyle \lim_{x\rightarrow\infty}\frac{\sin^{4}x-\sin^{2}x+1}{\cos^{4}x-\cos^{2}x+1}
is equal to
Report Question
0%
0
0%
1
0%
\dfrac{1}{3}
0%
\dfrac{1}{2}
Explanation
For all
x
,
{sin}^{4} x = {({sin}^{2} x)}^{2}
= {(1 - {cos}^{2} x)}^{2}
= 1 - 2 {cos}^{2} x + {cos}^{4} x
Thus numerator
= 1 - 2 {cos}^{2} x + {cos}^{4} x + {cos}^{2} x = 1 - {cos}^{2} x + {cos}^{4} x
Hence, for all x, numerator
=
denominator.
Thus the limit
= 1
for all
x
f(x)=\left\{\begin{matrix}[x]+[-x], & \\ \lambda ,& \end{matrix}\right.\begin{matrix}x\neq 2 & \\ x=2& \end{matrix},
then f(x) is continuous at
x=2
provided
\lambda
is:
Report Question
0%
-1
0%
0
0%
1
0%
2
Explanation
RHL=\lim_{x\rightarrow 2^{+}} [x]+[-x]
=\lim_{h \rightarrow 0}[2+h]+[-(2+h)]
= 2 - 3
\Rightarrow RHL= - 1
Now,
LHL=\lim_{x\rightarrow 2^{-}} [x]+[-x]
=\lim_{h\rightarrow 0}[2-h]+[-(2-h)]
= 1 -2
\Rightarrow LHL= -1
Since,
f(x)
is continuous at
x=2
LHL=RHL=f(2)
\Rightarrow \lambda =-1
\displaystyle \lim_{x\rightarrow \infty }2^{-x}\sin(2^{x})
Report Question
0%
1
0%
0
0%
2
0%
does not exist
Explanation
\displaystyle \lim_{x\rightarrow \infty }2^{-x}\sin(2^{x})=\lim_{x\rightarrow \infty }\frac{\sin(2^{x})}{2^x}=\frac{\mbox{Any finite value between -1 and 1}}{\infty} = 0
Let
f : R\rightarrow R
be any function, Define
g:R\rightarrow R
by
g(x)=|f(x)|\forall x
, then
Report Question
0%
g
is continuous if
f
is not continuous
0%
g
is not continuous if
f
is not continuous
0%
g
is continuous if
f
is continuous
0%
g
is differentiable if
f
is differentiable
Explanation
From the property of the modulus function, it is clear that it is continuous along the entire number line.
Thus, the function defined by
g(x) = |f(x)|
is continuous if
f(x)
is a continuous function.
\displaystyle \lim_{x\rightarrow \infty }\frac{2x+7\sin x}{4x+3\cos x}=
Report Question
0%
1
0%
-1
0%
\dfrac{1}{2}
0%
-\dfrac{1}{2}
Explanation
We divide both the numerator and denominator by x.
Since, from the property of trigonometric functions we know that
sin x
and
cos x
can only have their values between
-1
and
1
Thus, the expression transforms to,
lim _{x \rightarrow \infty } \dfrac{2 + 7\dfrac{sin x}{x}}{4 + 3\dfrac{cos x}{x}}
Now applying the limit,
= \dfrac{2 +0}{4+0}
= \dfrac{1}{2}
Hence, option 'C' is correct.
The function
y=3\sqrt{x}-|x-1|
is continuous at
Report Question
0%
x<0
0%
x\geq 1
0%
0\leq x\leq 1
0%
x\geq 0
Explanation
Since,
|x|
is a function that is continuous along the entire number line, therefore,
|x-1|
is continuous for all
x
Now, we know that a negative value cannot go inside the square root sign. So
x >= 0
Thus the function
f(x)
defined by
3{x}^{0.5} - |x -1|
is continuous for all
x >= 0
lf
\mathrm{f}(\mathrm{x})=\left\{\begin{matrix}1+x &x\leq 1 \\ 3-ax^{2}& x>1\end{matrix}\right.
is continuous at
{x}=1
then
{a}=({a}>0)
Report Question
0%
1
0%
2
0%
0
0%
3
Explanation
For the function to be continuous at
x = 1
The LHL should be equal to RHL
LHL
\lim_{ x \rightarrow {1}^{-}} f(x)
= \lim_{ x \rightarrow {1}^{-}} 1 + x
= 2
RHL
\lim_{x \rightarrow {1}^{+}} f(x)
=\lim_{ x \rightarrow {1}^{+}} 3 - a{x}^{2}
= 3-a
Since, LHL = RHL
So,
2 = 3-a
Hence,
a = 1
\displaystyle Lt_{x\rightarrow 0^+}(sinx)^{\tan x}=
Report Question
0%
{e}
0%
e^{2}
0%
-1
0%
1
Explanation
\displaystyle Lt_{x\rightarrow 0^+}(sinx)^{\tan x}
\log { k } =Lt_{ x\rightarrow 0^+ }\tan { x } \log { \sin { x } }
k={ e }^{ Lt_{ x\rightarrow 0^+ }\tan { x } \log { \sin { x } } }
k={ e }^{ Lt_{ x\rightarrow 0^+ }\displaystyle \frac { \log { \sin { x } } }{ \cot { x } } }
It is of the form
\displaystyle \frac{\infty}{\infty}
, so applying L-Hospital's rule
k={ e }^{ Lt_{ x\rightarrow 0^+ }\displaystyle \frac { \cot { x } }{ -\csc ^{ 2 }{ x } } }
k={ e }^{ 0 }=1
The function
\displaystyle \mathrm{f}({x})=\frac{1+\sin x-\cos x}{1-\sin x-\cos x}
is not defined at
{x}=0
. The value of
\mathrm{f}(\mathrm{0})
so that
\mathrm{f}({x})
is continuous at
{x}=0
is
Report Question
0%
1
0%
-1
0%
0
0%
2
Explanation
Since, on applying the limit, the function is of
\dfrac{0}{0}
form,
we apply the L-Hospital's Rule and differentiate both the numerator and the denominator individually.
Thus, the question transforms to,
\displaystyle\lim_{x \rightarrow 0} \dfrac{cos x +sin x}{sin x - cos x}
Now applying the limit, we get
\Rightarrow \dfrac{0+1}{0-1} = -1
Thus, for the function to be continuous at
x = 0
,
f(0) = -1
lf the function
\displaystyle \mathrm{f}({x})=\frac{e^{x^{2}}-\cos {x}}{x^{2}}
for
x \neq 0
is continuous at
{x}=0
then
\mathrm{f}(\mathrm{0})=
Report Question
0%
\dfrac{1}{2}
0%
\dfrac{3}{2}
0%
2
0%
\dfrac{1}{3}
Explanation
{ f }({ x })=\dfrac { e^{ x^{ 2 } }-{ c }{ o }{ s }{ x } }{ x^{ 2 } }
Given f(x) is continuous at
x=0
\displaystyle \lim _{ x\rightarrow 0 } f(x)=f(0)
\displaystyle=\lim _{ x\rightarrow 0 } \dfrac { e^{ x^{ 2 } }-{ c }{ o }{ s }{ x } }{ x^{ 2 } }
It is of the form
\displaystyle \dfrac{0}{0}
, so applying L-Hospital's rule
\displaystyle =\lim _{ x\rightarrow 0 } \dfrac { 2xe^{ x^{ 2 } }+\sin { x } }{ 2x }
\displaystyle \lim_{x\to 0} e^{x^2}+\lim_{x\to 0} \dfrac{\sin x}{2x}
\displaystyle =1+\dfrac{1}{2}=\dfrac{3}{2}
\displaystyle \lim_{\mathrm{x}\rightarrow \pi }(1- 4 \tan \mathrm{x} )^{\mathrm{c}\mathrm{o}\mathrm{t}\mathrm{x}}=
Report Question
0%
\mathrm{e}
0%
\mathrm{e}^{4}
0%
\mathrm{e}^{-1}
0%
\mathrm{e}^{-4}
Explanation
Let,
\text{L}= \displaystyle \lim_{\mathrm{x}\rightarrow \pi }(1- 4 \tan \mathrm{x} )^{\mathrm{c}\mathrm{o}\mathrm{t}\mathrm{x}}
Put
y=\pi-x\Rightarrow x\to \pi\Leftrightarrow y\to 0
\therefore \text{L}= \displaystyle \lim_{\mathrm{y}\rightarrow 0 }(1- 4 \tan \mathrm{(\pi-y)} )^{\mathrm{c}\mathrm{o}\mathrm{t}\mathrm{(\pi-y)}}
\quad \quad = \displaystyle \lim_{\mathrm{y}\rightarrow 0 }(1+4 \tan \mathrm{y} )^{-\mathrm{c}\mathrm{o}\mathrm{t}\mathrm{y}}[\because \tan (\pi-y)=-\tan y]
Clearly form of the limit is
1^{\infty}
\therefore \text{L}= \displaystyle \lim_{\mathrm{y}\rightarrow 0 }(1+4 \tan \mathrm{y} )^{\dfrac{1}{4\tan y}\times(-4)}=e^{-4}
\displaystyle \lim_{n\rightarrow \infty }(\pi n)^{2/n}=
Report Question
0%
0
0%
1
0%
2
0%
3
Explanation
Let
l = \displaystyle \lim_{n\rightarrow \infty }(\pi n)^{2/n}
Take log both sides,
\displaystyle \log l = 2\lim_{n\to \infty}\frac{\log(\pi n)}{n}=2\lim_{n\to \infty}\frac{\log(n)+\log(\pi)}{n}
Clearly form of the limit is
\dfrac{\infty}{\infty}
Applying L'Hospital's rule,
\Rightarrow \displaystyle \log l =2\lim_{n\to \infty}\frac{1/n}{1} =0
\Rightarrow l =e^0=1
\displaystyle f\left( x \right)=\begin{cases} \begin{matrix} \displaystyle\frac { { x }^{ 5 }-32 }{ x-2 } , & x\neq 2 \end{matrix} \\ \begin{matrix} k, & x=2 \end{matrix} \end{cases}
is continuous at
x=2
, then the value of
k
is
Report Question
0%
10
0%
15
0%
35
0%
80
Explanation
Function
\displaystyle f\left( x \right)=\begin{cases} \begin{matrix} \dfrac { { x }^{ 5 }-32 }{ x-2 } , & x\neq 2 \end{matrix} \\ \begin{matrix} k, & x=2 \end{matrix} \end{cases}
is continuous at
x=2
We know that
\displaystyle \lim _{ x\rightarrow 2 }{ f\left( x \right) } =\lim _{ x\rightarrow 2 }{ \left( \frac { { x }^{ 5 }-32 }{ x-2 } \right) } =\lim _{ x\rightarrow 2 }{ \left( \frac { { x }^{ 5 }-{ 2 }^{ 5 } }{ x-2 } \right) }
We also know that
\displaystyle \lim _{ x\rightarrow a }{ \left( \frac { { x }^{ n }-{ a }^{ n } }{ x-a } \right) } =n{ a }^{ n-1 }
Therefore,
\displaystyle \lim _{ x\rightarrow 2 }{ f\left( x \right) } =5\times { 2 }^{ 4 }=80
Since
f(2)=k
and
f(x)
is continuous at
x=2,
therefore
\displaystyle \lim _{ x\rightarrow 2 }{ f\left( x \right) } =f\left( 2 \right) \Rightarrow k=80.
If
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}\mathrm{a}^{2}\cos^{2}\mathrm{x}+\mathrm{b}^{2}\sin^{2}\mathrm{x},\mathrm{x}\leq 0\\\mathrm{e}^{\mathrm{a}\mathrm{x}+\mathrm{b}},\mathrm{x}>0\end{array}\right.
is continuous at
\mathrm{x}=0
then
Report Question
0%
2\log|\mathrm{a}|=\mathrm{b}
0%
2\log|\mathrm{b}|=\mathrm{e}
0%
\log a=2\log|\mathrm{b}|
0%
\mathrm{a}=\mathrm{b}
Explanation
Since
f(x)
is continuous at
x = 0
LHL = RHL
\displaystyle\lim _{ x \rightarrow {0}^{-}} f(x) = \displaystyle\lim _{x \rightarrow {0}^{+}} f(x)
\displaystyle\lim _{ x \rightarrow {0}^{-}} {a}^{2}{cos}^{2} x + {b}^{2}{sin}^{2}x =\displaystyle \lim_{ x \rightarrow {0}^{+} } {e}^{ax+b}
\Rightarrow a^{2} = {e}^{b}
\Rightarrow 2log|a|=b
\displaystyle \lim_{n\rightarrow \infty }\left(\displaystyle \frac{e^{n}}{\pi}\right)^{1/n}=
Report Question
0%
0
0%
1
0%
\mathrm{e}^{2}
0%
\mathrm{e}
Explanation
Let
y
=
\displaystyle\lim _{ n\rightarrow \infty }{ { \left(\displaystyle \frac { e^{ n } }{ \pi } \right) }^{\displaystyle \frac { 1 }{ n } } }
Applying logarithm on both sides
\log { y }
=
\displaystyle\lim _{ n\rightarrow \infty }{ \log { { \left(\displaystyle \frac { e^{ n } }{ \pi } \right) }^{ {\displaystyle \frac { 1 }{ n } } } } } =\quad \lim _{ n\rightarrow \infty }{\displaystyle \frac { 1 }{ n } \log { { \left( \displaystyle\frac { e^{ n } }{ \pi } \right) } } }
\log { y }
=
\lim _{ n\rightarrow \infty }{\displaystyle \frac { 1 }{ n } \left( n\log e-\log { \pi } \right) }
By L'Hospital Rule
\log y=\log e
\Rightarrow \quad y = e
\therefore \quad \displaystyle\lim _{ n\rightarrow \infty }{ { \left(\displaystyle \frac { e^{ n } }{ \pi } \right) }^{\displaystyle \frac { 1 }{ n } } } = e
\displaystyle \lim_{x\rightarrow 1}(2-x)^{\displaystyle \tan( \frac{\pi x}{2})}=
Report Question
0%
e^{\displaystyle \frac{1}{\pi}}
0%
e^{\displaystyle \frac{2}{\pi}}
0%
-e^{\displaystyle \frac{2}{\pi}}
0%
\mathrm{e}
Explanation
Let
k=\lim _{ x\rightarrow 1 } (2-x)^{ \tan \left(\dfrac { \pi x }{ 2 } \right) }
\log { k } =\lim _{ x\rightarrow 1 } tan\left( \dfrac { \pi x }{ 2 } \right) \log { \left( 2-x \right) }
\displaystyle k={ e }^{ \lim _{ x\rightarrow 1 } tan\left( \displaystyle\dfrac { \pi x }{ 2 } \right) \log { \left( 2-x \right) } }
\displaystyle k={ e }^{ \lim _{ x\rightarrow 1 } \displaystyle \dfrac { \log { \left( 2-x \right) } }{ \cot { \left( \dfrac { \pi x }{ 2 } \right) } } }
k={ e }^{ \lim _{ x\rightarrow 1 } \displaystyle \dfrac { -1 }{ -(2-x)\csc ^{ 2 }{ \left( \dfrac { \pi x }{ 2 } \right) \left( \dfrac { \pi }{ 2 } \right) } } }
\Rightarrow k={e}^{\displaystyle\dfrac{2}{\pi}}
lf the function defined by
\mathrm{f}({x})=\displaystyle \frac{\sin 3(x-p)}{\sin 2(x-p)}
for
{x}\neq {p}
is continuous at
{x}={p}
then
\mathrm{f}({p})=
Report Question
0%
\dfrac{3}{2}
0%
\dfrac{2}{3}
0%
6
0%
\dfrac{1}{6}
Explanation
Since, it is given the function is continuous at
x = p,
we calculate
\lim _{ x \rightarrow p } \dfrac{sin 3(x-p)}{sin 2(x-p)}
= lim _{ x \rightarrow p } \dfrac{sin 3(x-p)}{3(x-p)} \times \dfrac{2(x-p)}{sin 2(x-p)} \times \dfrac{3}{2}
Using the property of limits,
f(p) = 1 \times 1 \times \dfrac{3}{2}
If the function
\displaystyle \mathrm{f}({x})=\begin{cases}\dfrac{2^{x+2}-16}{4^{x}-16}&& for {x}\neq 2\\ \mathrm{A} && x =2\end{cases}
is continuous at
x =2
, then
\mathrm{A}=
Report Question
0%
2
0%
\dfrac{1}{2}
0%
\dfrac{1}{4}
0%
0
Explanation
Since, the function is continuous at
x = 2
A = \displaystyle\lim _{x \rightarrow 2 } f(x)
Since, on applying the limit this is of the
\dfrac{0}{0}
form, we apply L-Hospital's Rule
\Rightarrow\displaystyle\lim_{ x \rightarrow 2}\dfrac{4.{2}^{x}log 2}{{4}^{x} log 4}
Now applying the limit,
A = \dfrac{1}{2}
f(x)=x\left[3-\displaystyle \log\left(\frac{\sin {x}}{x}\right)\right]-2
to be continuous at
{x}=0
, then
\mathrm{f}({0})=
Report Question
0%
0
0%
2
0%
-2
0%
3
Explanation
USing the property of limits,
\underset{ x \rightarrow 0 }{Lim} \dfrac{sin x}{x} = 1
Thus, applying the limit to the expression,
\underset{ x \rightarrow 0 }{Lim} \ \ x\left[3 - log\left(\dfrac{sin x}{x}\right)\right] -2
= 0(3 - log 1) - 2
= 0 - 2
= -2
Let
\displaystyle \mathrm{f}({x})=\begin{cases} \dfrac{(e^{kx}-1).\sin kx}{x^{2}} & for \ {x}\neq 0 \\ 4 & for \ {x} =0\end{cases}
is continuous at
{x}=0
then
{k}=
Report Question
0%
\pm 1
0%
\pm 2
0%
0
0%
\pm 3
Explanation
For a given function to be continuous at
x=0
\displaystyle \lim_{x\to 0} = f(0)\Rightarrow \lim_{x\to 0}\frac{(e^{kx}-1).\sin kx}{x^2} =4
\Rightarrow \displaystyle k^2. \lim_{x\to 0}\frac{e^{kx}-1}{kx}.\frac{\sin kx}{kx} =4
\Rightarrow k^2 = 4\Rightarrow k = \pm 2
lf
f(x)= \left\{\begin{matrix} (1+|\sin x|)^{\displaystyle \frac{a}{|\sin x|}}&-\displaystyle \frac{\pi}{6}<x<0\\ b&x=0 \\ e^{\displaystyle \frac{\tan 2x}{\tan 3x}} &0<x<\displaystyle \frac{\pi}{6}\end{matrix}\right.
is
continuous at
\mathrm{x}=0
then
Report Question
0%
a=e^{2/3},b=\dfrac{2}{3}
0%
a=\dfrac{2}{3},b=e^{2/3}
0%
a=\dfrac{1}{3},b=e^{1/3}
0%
a=e^{1/3},b=e^{1/3}
Explanation
For the function
f(x)
to be continuous at
x = 0
\lim_{ x \rightarrow {0}^{-}} f(x) = f(0) = \lim_{ x \rightarrow {0}^{+}} f(x)
LHL
\lim_{ x \rightarrow {0}^{-}} exp( |\sin x| \times \dfrac{a}{|\sin x|}) = e^a
f(0) = b
RHL
\lim_{ x \rightarrow {0}^{+} } exp(\dfrac{\tan 2x}{\tan 3x})
= \lim_{ x \rightarrow {0}^{+}} exp(\dfrac{\tan 2x}{2x\ tan3x} \times {3x} \times \dfrac{2}{3}) = e ^{\frac{2}{3}}
Thus,
exp(a) = b = exp( \dfrac{2}{3} )
Hence,
a = \dfrac{2}{3}
and
b = exp( \dfrac{2}{3} )
lf the function
f(x)=\begin{cases}\dfrac{k\cos x}{\pi-2x}, & x\neq\dfrac{\pi}{2}\\ 3 & at x=\dfrac{\pi}{2}\end{cases}
is continuous at
\displaystyle {x}=\dfrac{\pi}{2}
then
{k}=
Report Question
0%
2
0%
4
0%
6
0%
8
Explanation
On applying the limits, since the function is of the form
\dfrac{0}{0}
, We apply L-Hospital's rule,
\displaystyle\lim_{ x \rightarrow \dfrac{\pi}{2}} \dfrac{-ksin x}{-2}
Since, the function has to be continuous at
x = \dfrac{\pi}{2}
\Rightarrow\dfrac{k}{2} = 3
\Rightarrow k = 6
The function
f(x)=\begin{cases} 0,& \text{x is irrational }\\ 1,& \text{x is rational }\end{cases}
is
Report Question
0%
continuous at
x=1
0%
discontinuous only at
0
0%
discontinuous only at 0,1
0%
discontinuous everywhere
Explanation
From the number theory, we already know that between any 2 rational numbers there exists an irrational number and vice versa.
Thus, for the function f(x) as defined above it will take both the values 0 and 1 in the neighbourhood of every point x = a.
Thus, function can never be continuous.
The function
\displaystyle \mathrm{f}(\mathrm{x})=\frac{\cos x-\sin x}{\cos 2x}
is not defined at
x=\displaystyle \frac{\pi}{4}
The value of
f\left(\displaystyle \frac{\pi}{4}\right)
so that
\mathrm{f}(\mathrm{x})
is continuous at
x=\displaystyle \frac{\pi}{4}
is
Report Question
0%
\displaystyle \frac{1}{\sqrt{2}}
0%
\sqrt{2}
0%
-\sqrt{2}
0%
1
Explanation
It is given that the function is not defined at x =
\dfrac{\pi}{4}
So,
f\left( \dfrac{\pi}{4} \right)
=
\underset{x \rightarrow \dfrac{\pi}{4}}{Lim}\ \dfrac{cos x - sin x}{cos 2x}
Since, this is of the
\dfrac{0}{0}
form, we apply L-Hospital's Rule,
\underset{x \rightarrow \dfrac{\pi}{4}}{Lim} \ \ \dfrac{-sin x - cos x}{-2sin 2x}
Now, applying the limit,
f\left( \dfrac{\pi}{4}\right)
=
\dfrac{1}{{2}^{0.5}}
The value of
f(0)
so that the function
f(x)=\dfrac{\displaystyle \log\left(1+\dfrac{x}{a}\right)-\log\left(\begin{array}{l}1-\dfrac{x}{b}\end{array}\right)}{x}, (x\neq 0)
is continuous at
x = 0
is :
Report Question
0%
\displaystyle \frac{a+b}{ab}
0%
\displaystyle \frac{a-b}{ab}
0%
\displaystyle \frac{ab}{a+b}
0%
\displaystyle \frac{ab}{a-b}
Explanation
\displaystyle\lim_{x\to0}f(x) = \lim_{x\to0}\dfrac{\log \left(1+\dfrac{x}{a}\right) - \log \left(1-\dfrac{x}{b}\right)}{x}
\displaystyle\because \lim_{x\to0}\dfrac{\log (1+x)}{x} = 1
Using this in the above limit,
\displaystyle\lim_{x\to0}\dfrac{\dfrac{x}{a}\cdot\dfrac{\log \left(1+\dfrac{x}{a}\right)}{\dfrac{x}{a}} + \dfrac{x}{b}\cdot\dfrac{\log \left(1-\dfrac{x}{b}\right)}{\dfrac{-x}{b}}}{x}
=\dfrac {x\left (\dfrac1a+\dfrac 1b\right )}{x}
= \dfrac{1}{a} + \dfrac{1}{b}
= \dfrac{a+b}{ab}
The value of
\mathrm{f}(\mathrm{0})
for the function
\mathrm{f}({x})=\displaystyle \frac{2-\sqrt{(x+4)}}{\sin 2x}, x\ne 0
is continuous at
{x}=0
is
Report Question
0%
\displaystyle \frac{1}{8}
0%
\displaystyle \frac{1}{4}
0%
\displaystyle \frac{-1}{8}
0%
-\displaystyle \frac{1}{4}
Explanation
Since, on applying the limits, the function is of
\dfrac{0}{0}
form,
We apply L-Hospital's Rule,
f(0) = \lim_{ x \rightarrow 0} \dfrac{0 - \dfrac{1}{2{(x +4)}^{0.5}}}{2 cos 2x}
Now applying the limit, we get
f(0) = \dfrac{\dfrac{-1}{2 \times 2}}{2} = \dfrac{-1}{8}
lf
f(x)=\left\{\begin{array}{l}\dfrac{1-\sqrt{2}\sin x}{\pi-4x} x\neq\frac{\pi}{4}\\a,x=\frac{\pi}{4}\end{array}\right.
is continuous at
x=\displaystyle \frac{\pi}{4}
then
a=
Report Question
0%
4
0%
2
0%
1
0%
\dfrac{1}{4}
Explanation
Since it is continuous at
x=\dfrac{\pi}{4}
Therefore,
\displaystyle f\left( \frac { \pi }{ 4 } \right) =\lim _{ x\rightarrow \frac { \pi }{ 4 } }{ \frac { { 1-\sqrt { 2 } \sin x } }{ \pi -4x } }
It is of the
\dfrac{0}{0}
By
L-Hospital's rule
\displaystyle a=\lim _{ x\rightarrow \frac { \pi }{ 4 } }{ \frac { { -\sqrt { 2 } \cos { x } } }{ -4 } }
=\dfrac { 1 }{ 4 }
If
\displaystyle f(x)=\left\{\begin{array}{ll}\dfrac{\sqrt{1+kx}-\sqrt{1-x}}{x} & \mathrm{f}\mathrm{o}\mathrm{r}-\mathrm{l} \leq x<0\\2x^{2}+3x-2 & \mathrm{f}\mathrm{o}\mathrm{r} 0\leq x\leq 1\end{array}\right.
is continuous at
x = 0
then
k
is:
Report Question
0%
-4
0%
-3
0%
-5
0%
-1
Explanation
Given,
f(x)
is continuous at
x=0
\displaystyle \lim _{ x\rightarrow 0 }{ f(x) } =f(0)
Here
f(0)=-2
LHL =\displaystyle \lim _{ x\rightarrow { 0 }^{ - } }{ \dfrac { \sqrt { 1+kx } -\sqrt { 1-x } }{ x } }
=\displaystyle \lim _{ x\rightarrow { 0 }^{ - } }{ \dfrac { \sqrt { 1+kx } -\sqrt { 1-x } }{ x }\times \dfrac { \sqrt { 1+kx } +\sqrt { 1-x } }{ \sqrt { 1+kx } +\sqrt { 1-x } } }
=\displaystyle \lim _{ x\rightarrow { 0 }^{ - } }{ \dfrac { (k+1)x }{ x }\times \dfrac { 1 }{ \sqrt { 1+kx } +\sqrt { 1-x } } }
= \dfrac { (k+1) }{ 2 }
Since,
f(x)
is continuous at
x=0
So,
LHL=f(0)
\Rightarrow \dfrac{k+1}{2}=-2
\Rightarrow k=-5
Hence option
'C'
is the answer.
f(x)=\begin{cases}\dfrac{x^{3}+x^{2}-16x+20}{(x-2)^{2}} & if\ x\neq 2\\ k & if\ x=2\end{cases}
\mathrm{f}({x})
is continuous at
{x}=2
then
f(2)=
Report Question
0%
{k}=3
0%
{k}=5
0%
{k}=7
0%
{k}=9
Explanation
Since,
f
is continuous at
x=2
Therefore,
\lim _{ x\rightarrow 2 }{ \dfrac { x^{ 3 }+x^{ 2 }-16x+20 }{ (x-2)^{ 2 } } } =f\left( 2 \right)
it is
\dfrac{0}{0}
form using
L-Hospital's rule
\Rightarrow \lim _{ x\rightarrow 2 }{ \dfrac { 3x^{ 2 }+2x-16 }{ 2(x-2) } } =k
It is
\dfrac{0}{0}
form using L-Hospital's rule
\lim _{ x\rightarrow 2 }{ \dfrac { 6x+2 }{ 2 } } =k
Therefore,
k=7
f(x)=\dfrac{p+q^{\frac{1}{x}}}{r+s^{\frac{1}{x}}}, s<1, q<1,r\neq 0, \mathrm{f}(\mathrm{0})=1
, is left continuous at
x =0
then
Report Question
0%
{p}=0
0%
{p}={r}
0%
{p}={q}
0%
p\neq q
Explanation
f\left( x \right) =\cfrac { p+{ q }^{ { 1 }/{ x } } }{ r+{ s }^{ { 1 }/{ x } } }
If
f\left( x \right)
is right continuous
\Rightarrow \displaystyle \lim _{ x\rightarrow { 0 }^{ + } }{ f\left( x \right) } =f\left( 0 \right) =1
\Rightarrow \displaystyle \lim _{ x\rightarrow { 0 }^{ + } }{ \cfrac { p+{ q }^{ { 1 }/{ x } } }{ r+{ s }^{ { 1 }/{ x } } } } =1
as
x\rightarrow { 0 }^{ + };\cfrac { 1 }{ x } \rightarrow +\infty
Given
s<1
\Rightarrow s=\cfrac { 1 }{ a } ,a>1
Similarly,
q=\cfrac { 1 }{ b } ,b>1
=\displaystyle \lim _{ x\rightarrow { 0 }^{ + } }{ \cfrac { p+{ \left( \cfrac { 1 }{ b } \right) }^{ \cfrac { 1 }{ x } } }{ r+{ \left( \cfrac { 1 }{ a } \right) }^{ \cfrac { 1 }{ x } } } }
=\cfrac { p+\cfrac { 1 }{ { b }^{ \infty } } }{ r+\cfrac { 1 }{ { a }^{ \infty } } } =\cfrac { p+0 }{ r+0 } =\cfrac { p }{ r } =1
\Rightarrow p=r
Question should be changed to right continuous instead of left continuous.
lf
f
:
R\rightarrow R
is defined by
f(x)=\left\{\begin{array}{ll}\displaystyle \frac{\cos 3x-\cos x}{x^{2}} & \mathrm{f}\mathrm{o}\mathrm{r} x\neq 0\\\lambda & \mathrm{f}\mathrm{o}\mathrm{r} x=0\end{array}\right.
and if
\mathrm{f}
is continuous at
{x}=0
then
\lambda=
Report Question
0%
-2
0%
-4
0%
-6
0%
-8
lf
f(x)=\displaystyle \frac{x(e^{1/x}-e^{-1/x})}{e^{1/x}+e^{-1/x}} x\neq 0
is continuous at
{x}=0
, then
{f}(\mathrm{0})=
Report Question
0%
1
0%
2
0%
0
0%
3
Explanation
Given
f(x)
is continuous at
x=0
LHL=RHL=f(0)
f(x)=\displaystyle \frac{x(e^{1/x}-e^{-1/x})}{e^{1/x}+e^{-1/x}}
f(x)=\displaystyle \frac { x(1-e^{ -2/x }) }{ 1+e^{ -2/x } }
So,
\displaystyle \lim _{ x\rightarrow 0 }{ \frac { x(1-e^{ -2/x }) }{ 1+e^{ -2/x } } } =0
\Rightarrow f(0)=0
If
f
:
R\rightarrow R
is defined by
f(x)=\left\{\begin{array}{ll}\dfrac{x+2}{x^{2}+3x+2} & x\in R-\{-1,-2\}\\-1 & x=-2\\0 & x=-1\end{array}\right.
then
f
is continuous on the set:
Report Question
0%
R
0%
R-\{-2\}
0%
R-\{-1\}
0%
R-\{-1,-2\}
Explanation
The function f(x) can be written as,
f(x) =
\dfrac{x + 2}{(x+2)(x+1)}
f(x) =
\dfrac{1}{x+1}
Now the only point of discontinuity can be x = -1 and x = -2 where the function changes
At,
x = -1
the function is not defined hence, it is discontinuous.
At
x = -2
,
f(x) = -1
Thus it is continuous at x = -2
So the function is discontinuous at only 1 point ie at x = -1
\underset { x\rightarrow 0 }{ lim } \left( \dfrac { \left( 1+x \right) ^{ \dfrac { 1 }{ x } } }{ e } \right) ^{ \dfrac { 1 }{ sinx } }
is equal to
Report Question
0%
\sqrt { e }
0%
e
0%
\dfrac { 1 }{ \sqrt { e } }
0%
1/e
f(x)=\displaystyle \frac{e^{1/x^{2}}}{e^{1/x^{2}}-1}
,
x\neq 0
,
\mathrm{f}({0})=1
, then
\mathrm{f}
at
{x}=0
is:
Report Question
0%
discontinuous
0%
left continuous
0%
right continuous
0%
both B and C
Explanation
Given:
f(x)=\displaystyle \frac{e^{1/x^{2}}}{e^{1/x^{2}}-1}
Divide by
e^{1/x^2}
to numerator and denominator
The function can be written in the form of,
\displaystyle\lim_{ x \rightarrow 0} \dfrac{1}{1 - {e}^{\frac{-1}{{x}^{2}}}}
Applying the limit,
\displaystyle f(0) = \lim_{ x \rightarrow 0} \dfrac{1}{1 - {e}^{\frac{-1}{{x}^{2}}}} = 1
Hence, the function is continuous at
x = 0
So, the function is both left and right continuous.
\mathrm{A}
function
\mathrm{f}(\mathrm{x})
is defined as
f(x)=\left\{ \begin{matrix} ax-b & x\leq 1 \\ 3x, & 1<x<2 \\ bx^{ 2 }-a & x\geq 2 \end{matrix} \right.
is continuous at
x=1, 2
then:
Report Question
0%
\mathrm{a}=5,\ \mathrm{b}=2
0%
\mathrm{a}=6,\ \mathrm{b}=3
0%
\mathrm{a}=7,\ \mathrm{b}=4
0%
\mathrm{a}=8,\ \mathrm{b}=5
Explanation
Given
f(x)
is continuous at
x=1
\displaystyle \lim _{ x\rightarrow { 1 } } f(x)=f(1)
Now
LHL=\displaystyle\lim _{ x\rightarrow { 1 }^{ - } } f(x)
=\displaystyle\lim _{ x\rightarrow { 1 }^{ - } } ax-b
LHL=a-b
And
f(1)=3
\Rightarrow a-b=3
.....(i)
Given
f(x)
is continuous at
x=2.
\displaystyle \lim _{ x\rightarrow { 2 } } f(x)=f(2)
Now
LHL=\displaystyle \lim _{ x\rightarrow { 2 }^{ - } } f(x)
=\displaystyle \lim _{ x\rightarrow { 2 }^{ - } } 3x
LHL=6
And
f(2)=4b-a
\Rightarrow 4b-a=6
.....(ii)
Solving (i) and (ii)
\Rightarrow b=3, a=6
f(x)=\displaystyle \min\{x,\ x^{2}\}\forall x\in R
. Then
f(x)
is
Report Question
0%
discontinuous at 0
0%
discontinuous at 1
0%
continuous on R
0%
continuous at 0, 1
Explanation
If we look at the function f(x),
We can divide the entire number line into 3 sections.
for x < 0 f(x) = x
for 0 < x < 1 f(x) =
{x}^{2}
for x > 1 f(x) = x
For checking the continuity, the doubtful points are x = 0 and x = 1
At x = 0
lim
x \rightarrow {0}^{-} f(x) =x= 0
lim
x \rightarrow {0}^{+} f(x) =x^2= 0
At x = 1
lim
x \rightarrow {1}^{-} f(x) = x^2=1
lim
x \rightarrow {1}^{+} f(x) = x=1
Hence, the function is continuous on the entire number line
Lt_{x \rightarrow 0}\dfrac{\sin 2x+a\sin x}{x^{3}}
exists and finite then
\mathrm{a}=
Report Question
0%
2
0%
-2
0%
\displaystyle \frac{2}{3}
0%
\displaystyle \frac{-2}{3}
Explanation
Lt_{x \rightarrow 0}\dfrac{\sin 2x+a\sin x}{x^{3}}
Lt_{ x\rightarrow 0 }\dfrac { \sin x(2\cos { x } +a) }{ x^{ 3 } }
=Lt_{ x\rightarrow 0 }\dfrac { (2\cos { x } +a) }{ x^{ 2 } }
As
x\rightarrow 0
, denominator tends to 0, so the numerator also tends to 0.
\Rightarrow Lt_{ x\rightarrow 0 } 2\cos { x } +a=0
\Rightarrow a=-2
Hence, option 'B' is correct.
The integer
n
for which
\displaystyle \lim_{x\rightarrow 0}\frac{(\cos x-1)(\cos x-e^{x})}{x^{n}}
is finite non zero number is
Report Question
0%
1
0%
2
0%
3
0%
4
Explanation
\displaystyle \lim _{ x\rightarrow 0 }{ \cfrac { (\cos { x } -1)\left( \cos { x } -{ e }^{ x } \right) }{ { x }^{ n } } } =\displaystyle \lim _{ x\rightarrow 0 }{ \left[ \cfrac { \left( \cos { x } -1 \right) }{ { x }^{ 2 } } \right] } \times \cfrac { { \cos { x } -{ e }^{ x } } }{ { x }^{ n-2 } }
=-\cfrac { 1 }{ 2 } \displaystyle \lim _{ x\rightarrow 0 }{ \cfrac { { \cos { x } -{ e }^{ x } } }{ { x }^{ n-2 } } } =\cfrac { 0 }{ 0 }
form
=-\cfrac { 1 }{ 2 } \displaystyle \lim _{ x\rightarrow 0 }{ \cfrac { { -\sin { x } -{ e }^{ x } } }{ (n-2){ x }^{ n-3 } } } =\cfrac { 1 }{ 2(n-2) } \displaystyle \lim _{ x\rightarrow 0 }{ \cfrac { { 1 } }{ { x }^{ n-3 } } }
\therefore
for the above limit to be finite
n-3=0
\Rightarrow n=3
\displaystyle \lim_{x\rightarrow 1}\{1-x+[x+1]+[1-x]\}
, where
[x]
denotes greatest integer function, is
Report Question
0%
0
0%
1
0%
-1
0%
2
Explanation
Substitute
x=1+t
L.H.S
\lim_{t\rightarrow o^{-}} (-t+[2+t]+[-t])
=0+1+0=1
R.H.S
\lim_{t\rightarrow o^{+}} (-t+[2+t]+[-t])
=0+2-1=1
L.H.S
=
R.H.S
Given that the function
\mathrm{f}
is defined by
f(x)=\left\{\begin{array}{l}2x-1,x>2\\k, x=2\\x^{2}-1,x<2\end{array}\right.
is continuous at x =Then
{k}
is:
Report Question
0%
3
0%
2
0%
1
0%
-3
Explanation
Given
f(2)=k
RHL =\lim _{ x\rightarrow { 2 }^{ + } }2x-1
=\lim_{h\rightarrow 0}2(2+h)-1
=3
Given, f(x) is continuous at x=2.
LHL=RHL =f(2)
\Rightarrow k=3
lf the function
\mathrm{f}({x})=\begin{cases}\dfrac{\sin 3x}{x} &(x\neq 0) \\ \dfrac{k}{2}&(x=0) \end{cases}
is continuous at
{x}=0
, then
{k}
is:
Report Question
0%
3
0%
6
0%
9
0%
2
Explanation
Since
f(x)
is continuous at
x = 0
LHL = RHL
\underset{x \rightarrow {0}^{-}}{Lim}\ f(x) = lim x \rightarrow {0}^{+} f(x)
\underset{x \rightarrow {0}^{-}}{Lim} \ \dfrac{sin 3x}{x} = lim x \rightarrow {0}^{+} \dfrac{k}{2}
\underset{ x \rightarrow {0}^{-}}{Lim} \ \dfrac{sin 3x}{3x} \times 3 = lim x \rightarrow {0}^{+} \dfrac{k}{2}
\Rightarrow 3 = \dfrac{k}{2}
Hence,
k = 6
The right-hand limit of the function
\sec{x}
at
\displaystyle x=-\frac { \pi }{ 2 }
is
Report Question
0%
-\infty
0%
-1
0%
0
0%
\infty
Explanation
Function
\displaystyle f\left( x \right)=\sec { x }
and point
\displaystyle x=-\left( \frac { \pi }{ 2 } \right)
.
We know that right
-
hand limit of the function
f(x)
at
x=-\left( \frac { \pi }{ 2 } \right)
is
\displaystyle \lim _{ x\rightarrow { \left[ -\left( \pi /2 \right) \right] }^{ + } }{ f\left( x \right) } =\lim _{ x\rightarrow { \left[ -\left( \pi /2 \right) \right] } }{ \sec { x } } .
Substituting
\displaystyle x=h+\left( -\frac { \pi }{ 2 } \right)
and
h\rightarrow 0,
we get
\displaystyle \lim _{ h\rightarrow 0 }{ \sec { \left[ h+\left( -\frac { \pi }{ 2 } \right) \right] } = } \lim _{ h\rightarrow 0 }{ \sec { \left( \frac { \pi }{ 2 } -h \right) } } =\lim _{ h\rightarrow 0 }{ \csc { h } } =\csc { 0 } =\infty
\displaystyle \left[ \because \sec { \left( -\theta \right) = } \sec { \theta } \right]
\displaystyle \lim_{x\rightarrow 0}\frac{1}{x}\cos ^{ -1 }{ \left( \frac { 1-x^{ 2 } }{ 1+x^{ 2 } } \right) } =
Report Question
0%
0
0%
1
0%
2
0%
does not exist
Explanation
\lim_{x\rightarrow 0^{-}} \dfrac{-2}{\dfrac{2x}{(1+x^{2})}}\dfrac{sin^{-1}}{(1+x^{2})}\dfrac{(2x)}{1+x^{2}}=-2
\lim_{x\rightarrow 0^{+}} \dfrac{2}{(\dfrac{2x}{1+x^{2}})(1+x^{2})} sin^{-1}(\dfrac{2x}{1+x^{2}})=2
L.H.S\neq R.H.S
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
0
Answered
1
Not Answered
49
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page