Processing math: 2%

CBSE Questions for Class 11 Commerce Applied Mathematics Limits And Continuity     Quiz 3 - MCQExams.com

lf f(x)={a2[x]+{x}12[x]+{x};x0loga;x=0 where [. ] and {. } denote integral and fractional part respectively, then
  • f(x) is continuous at x=0
  • f(x) is discontinuous at x=0
  • f(x) is continuous xR
  • f(x) is differentiable at x=0

 lf \displaystyle { f }({ x })=\sqrt { \frac { { x }-\sin ^{ 2 }{ x }  }{ { x }+\cos { x }  }  } ,then \displaystyle \lim _{ x\rightarrow \infty  } f(x)=
  • \dfrac{1}{2}
  • -1
  • 0
  • 1
The value of \displaystyle \lim _{ x\rightarrow 0 }{ \frac { \sin { \left( \pi \cos ^{ 2 }{ x }  \right)  }  }{ { x }^{ 2 } }  } is
  • -\pi
  • \displaystyle \frac { \pi  }{ 2 }
  • \pi
  • \displaystyle \frac { 3\pi  }{ 2 }
Let f(x)=\cos2x.\cot\left (\displaystyle  \frac{\pi }{4}-x \right ) If f is continuous at x=\displaystyle \frac{\pi}{4} then the value of f(\displaystyle \frac{\pi}{4}) is equal to
  • 2
  • -2
  • \displaystyle \frac{-1}{2}
  • \displaystyle \frac{1}{2}
\displaystyle \lim_{x\rightarrow \infty }x\displaystyle \cos\left(\frac{\pi}{8x}\right)\sin\left(\frac{\pi}{8x}\right)=
  • \displaystyle \pi
  • \displaystyle \frac{\pi}{2}
  • \dfrac{\pi}{8}
  • \displaystyle \frac{\pi}{4}

\displaystyle \lim_{x\rightarrow \infty }(\sin\sqrt{x+1}-\sin\sqrt{x})=
  • 2
  • -2
  • 0
  • None of these

 \displaystyle \lim_{x\rightarrow\infty}\frac{\sin^{4}x-\sin^{2}x+1}{\cos^{4}x-\cos^{2}x+1} is equal to
  • 0
  • 1
  • \dfrac{1}{3}
  • \dfrac{1}{2}
f(x)=\left\{\begin{matrix}[x]+[-x], & \\  \lambda ,& \end{matrix}\right.\begin{matrix}x\neq 2 & \\  x=2& \end{matrix}, then f(x) is continuous at x=2 provided \lambda  is:
  • -1
  • 0
  • 1
  • 2

\displaystyle \lim_{x\rightarrow \infty }2^{-x}\sin(2^{x})
  • 1
  • 0
  • 2
  • does not exist
Let f : R\rightarrow R be any function, Define
g:R\rightarrow R by g(x)=|f(x)|\forall x, then
  • g is continuous if f is not continuous
  • g is not continuous if f is not continuous
  • g is continuous if f is continuous
  • g is differentiable if f is differentiable
\displaystyle \lim_{x\rightarrow \infty }\frac{2x+7\sin x}{4x+3\cos x}=
  • 1
  • -1
  • \dfrac{1}{2}
  • -\dfrac{1}{2}
The function y=3\sqrt{x}-|x-1| is continuous at
  • x<0
  • x\geq 1
  • 0\leq x\leq 1
  • x\geq 0

 lf \mathrm{f}(\mathrm{x})=\left\{\begin{matrix}1+x &x\leq 1 \\  3-ax^{2}& x>1\end{matrix}\right. is continuous at {x}=1 then {a}=({a}>0)
  • 1
  • 2
  • 0
  • 3

\displaystyle Lt_{x\rightarrow 0^+}(sinx)^{\tan x}=
  • {e}
  • e^{2}
  • -1
  • 1
The function \displaystyle \mathrm{f}({x})=\frac{1+\sin x-\cos x}{1-\sin x-\cos x} is not defined at {x}=0. The value of \mathrm{f}(\mathrm{0}) so that \mathrm{f}({x}) is continuous at {x}=0 is
  • 1
  • -1
  • 0
  • 2
lf the function \displaystyle \mathrm{f}({x})=\frac{e^{x^{2}}-\cos {x}}{x^{2}} for x \neq 0 is continuous at {x}=0 then \mathrm{f}(\mathrm{0})=
  • \dfrac{1}{2}
  • \dfrac{3}{2}
  • 2
  • \dfrac{1}{3}

\displaystyle \lim_{\mathrm{x}\rightarrow \pi }(1- 4 \tan \mathrm{x} )^{\mathrm{c}\mathrm{o}\mathrm{t}\mathrm{x}}=
  • \mathrm{e}
  • \mathrm{e}^{4}
  • \mathrm{e}^{-1}
  • \mathrm{e}^{-4}
\displaystyle \lim_{n\rightarrow \infty }(\pi n)^{2/n}=
  • 0
  • 1
  • 2
  • 3
\displaystyle f\left( x \right)=\begin{cases} \begin{matrix} \displaystyle\frac { { x }^{ 5 }-32 }{ x-2 } , & x\neq 2 \end{matrix} \\ \begin{matrix} k, & x=2 \end{matrix} \end{cases} is continuous at x=2, then the value of k is 
  • 10
  • 15
  • 35
  • 80
If \mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}\mathrm{a}^{2}\cos^{2}\mathrm{x}+\mathrm{b}^{2}\sin^{2}\mathrm{x},\mathrm{x}\leq 0\\\mathrm{e}^{\mathrm{a}\mathrm{x}+\mathrm{b}},\mathrm{x}>0\end{array}\right. is continuous at \mathrm{x}=0 then
  • 2\log|\mathrm{a}|=\mathrm{b}
  • 2\log|\mathrm{b}|=\mathrm{e}
  • \log a=2\log|\mathrm{b}|
  • \mathrm{a}=\mathrm{b}
\displaystyle \lim_{n\rightarrow \infty }\left(\displaystyle \frac{e^{n}}{\pi}\right)^{1/n}=
  • 0
  • 1
  • \mathrm{e}^{2}
  • \mathrm{e}
\displaystyle \lim_{x\rightarrow 1}(2-x)^{\displaystyle \tan( \frac{\pi x}{2})}=
  • e^{\displaystyle \frac{1}{\pi}}
  • e^{\displaystyle \frac{2}{\pi}}
  • -e^{\displaystyle \frac{2}{\pi}}
  • \mathrm{e}
lf the function defined by \mathrm{f}({x})=\displaystyle \frac{\sin 3(x-p)}{\sin 2(x-p)} for {x}\neq {p} is continuous at {x}={p} then \mathrm{f}({p})=
  • \dfrac{3}{2}
  • \dfrac{2}{3}
  • 6
  • \dfrac{1}{6}

If the function \displaystyle \mathrm{f}({x})=\begin{cases}\dfrac{2^{x+2}-16}{4^{x}-16}&&  for {x}\neq 2\\ \mathrm{A} && x =2\end{cases} is continuous at x =2, then \mathrm{A}=
  • 2
  • \dfrac{1}{2}
  • \dfrac{1}{4}
  • 0

 f(x)=x\left[3-\displaystyle \log\left(\frac{\sin {x}}{x}\right)\right]-2 to be continuous at {x}=0, then \mathrm{f}({0})=
  • 0
  • 2
  • -2
  • 3

 Let \displaystyle \mathrm{f}({x})=\begin{cases} \dfrac{(e^{kx}-1).\sin kx}{x^{2}} & for \ {x}\neq 0   \\ 4 & for \ {x} =0\end{cases} is continuous at {x}=0 then {k}=
  • \pm 1
  • \pm 2
  • 0
  • \pm 3

 lf f(x)= \left\{\begin{matrix} (1+|\sin x|)^{\displaystyle \frac{a}{|\sin x|}}&-\displaystyle \frac{\pi}{6}<x<0\\  b&x=0 \\ e^{\displaystyle \frac{\tan 2x}{\tan 3x}} &0<x<\displaystyle \frac{\pi}{6}\end{matrix}\right. is

continuous at \mathrm{x}=0 then
  • a=e^{2/3},b=\dfrac{2}{3}
  • a=\dfrac{2}{3},b=e^{2/3}
  • a=\dfrac{1}{3},b=e^{1/3}
  • a=e^{1/3},b=e^{1/3}
lf the function f(x)=\begin{cases}\dfrac{k\cos x}{\pi-2x}, & x\neq\dfrac{\pi}{2}\\ 3 & at x=\dfrac{\pi}{2}\end{cases}is continuous at \displaystyle {x}=\dfrac{\pi}{2} then {k}=
  • 2
  • 4
  • 6
  • 8
The function f(x)=\begin{cases} 0,&  \text{x  is irrational }\\  1,& \text{x is rational }\end{cases} is
  • continuous at x=1
  • discontinuous only at 0
  • discontinuous only at 0,1
  • discontinuous everywhere

The function \displaystyle \mathrm{f}(\mathrm{x})=\frac{\cos x-\sin x}{\cos 2x} is not defined at x=\displaystyle \frac{\pi}{4} The value of f\left(\displaystyle \frac{\pi}{4}\right) so that \mathrm{f}(\mathrm{x}) is continuous at x=\displaystyle \frac{\pi}{4} is
  • \displaystyle \frac{1}{\sqrt{2}}
  • \sqrt{2}
  • -\sqrt{2}
  • 1
The value of f(0) so that the function
f(x)=\dfrac{\displaystyle \log\left(1+\dfrac{x}{a}\right)-\log\left(\begin{array}{l}1-\dfrac{x}{b}\end{array}\right)}{x}, (x\neq 0) is continuous at x = 0 is :
  • \displaystyle \frac{a+b}{ab}
  • \displaystyle \frac{a-b}{ab}
  • \displaystyle \frac{ab}{a+b}
  • \displaystyle \frac{ab}{a-b}
The value of \mathrm{f}(\mathrm{0}) for the function \mathrm{f}({x})=\displaystyle \frac{2-\sqrt{(x+4)}}{\sin 2x}, x\ne 0 is continuous at {x}=0 is
  • \displaystyle \frac{1}{8}
  • \displaystyle \frac{1}{4}
  • \displaystyle \frac{-1}{8}
  • -\displaystyle \frac{1}{4}
lf f(x)=\left\{\begin{array}{l}\dfrac{1-\sqrt{2}\sin x}{\pi-4x}  x\neq\frac{\pi}{4}\\a,x=\frac{\pi}{4}\end{array}\right. is continuous at x=\displaystyle \frac{\pi}{4} then a=
  • 4
  • 2
  • 1
  • \dfrac{1}{4}
If  \displaystyle f(x)=\left\{\begin{array}{ll}\dfrac{\sqrt{1+kx}-\sqrt{1-x}}{x} & \mathrm{f}\mathrm{o}\mathrm{r}-\mathrm{l} \leq x<0\\2x^{2}+3x-2 & \mathrm{f}\mathrm{o}\mathrm{r} 0\leq x\leq 1\end{array}\right. is continuous at x = 0 then k is:
  • -4
  • -3
  • -5
  • -1
f(x)=\begin{cases}\dfrac{x^{3}+x^{2}-16x+20}{(x-2)^{2}} & if\  x\neq 2\\ k & if\  x=2\end{cases}
\mathrm{f}({x}) is continuous at {x}=2 then f(2)=
  • {k}=3
  • {k}=5
  • {k}=7
  • {k}=9
f(x)=\dfrac{p+q^{\frac{1}{x}}}{r+s^{\frac{1}{x}}}, s<1, q<1,r\neq 0, \mathrm{f}(\mathrm{0})=1, is left continuous at x =0 then
  • {p}=0
  • {p}={r}
  • {p}={q}
  • p\neq q
lf f : R\rightarrow R is defined by f(x)=\left\{\begin{array}{ll}\displaystyle \frac{\cos 3x-\cos x}{x^{2}} & \mathrm{f}\mathrm{o}\mathrm{r} x\neq 0\\\lambda & \mathrm{f}\mathrm{o}\mathrm{r} x=0\end{array}\right.and if \mathrm{f} is continuous at {x}=0 then \lambda=
  • -2
  • -4
  • -6
  • -8
lf f(x)=\displaystyle \frac{x(e^{1/x}-e^{-1/x})}{e^{1/x}+e^{-1/x}} x\neq 0 is continuous at {x}=0, then {f}(\mathrm{0})=
  • 1
  • 2
  • 0
  • 3
If f : R\rightarrow R is defined by f(x)=\left\{\begin{array}{ll}\dfrac{x+2}{x^{2}+3x+2} & x\in R-\{-1,-2\}\\-1 &  x=-2\\0 & x=-1\end{array}\right.then f is continuous on the set:
  • R
  • R-\{-2\}
  • R-\{-1\}
  • R-\{-1,-2\}
\underset { x\rightarrow 0 }{ lim } \left( \dfrac { \left( 1+x \right) ^{ \dfrac { 1 }{ x }  } }{ e }  \right) ^{ \dfrac { 1 }{ sinx }  } is equal to 
  • \sqrt { e }
  • e
  • \dfrac { 1 }{ \sqrt { e } }
  • 1/e
f(x)=\displaystyle \frac{e^{1/x^{2}}}{e^{1/x^{2}}-1} , x\neq 0, \mathrm{f}({0})=1, then \mathrm{f} at {x}=0 is:
  • discontinuous
  • left continuous
  • right continuous
  • both B and C

 \mathrm{A} function \mathrm{f}(\mathrm{x}) is defined as
f(x)=\left\{ \begin{matrix} ax-b & x\leq 1 \\ 3x, & 1<x<2 \\ bx^{ 2 }-a & x\geq 2 \end{matrix} \right.  is continuous at
x=1, 2 then:
  • \mathrm{a}=5,\ \mathrm{b}=2
  • \mathrm{a}=6,\ \mathrm{b}=3
  • \mathrm{a}=7,\ \mathrm{b}=4
  • \mathrm{a}=8,\ \mathrm{b}=5
f(x)=\displaystyle \min\{x,\ x^{2}\}\forall x\in R. Then f(x) is
  • discontinuous at 0
  • discontinuous at 1
  • continuous on R
  • continuous at 0, 1
Lt_{x \rightarrow 0}\dfrac{\sin 2x+a\sin x}{x^{3}} exists and finite then \mathrm{a}=
  • 2
  • -2
  • \displaystyle \frac{2}{3}
  • \displaystyle \frac{-2}{3}
The integer n for which \displaystyle \lim_{x\rightarrow 0}\frac{(\cos x-1)(\cos x-e^{x})}{x^{n}} is finite non zero number is
  • 1
  • 2
  • 3
  • 4
\displaystyle \lim_{x\rightarrow 1}\{1-x+[x+1]+[1-x]\} , where [x] denotes greatest integer function, is
  • 0
  • 1
  • -1
  • 2
Given that the function \mathrm{f} is defined by f(x)=\left\{\begin{array}{l}2x-1,x>2\\k, x=2\\x^{2}-1,x<2\end{array}\right.is continuous at x =Then {k} is:
  • 3
  • 2
  • 1
  • -3
lf the function \mathrm{f}({x})=\begin{cases}\dfrac{\sin 3x}{x} &(x\neq 0) \\ \dfrac{k}{2}&(x=0) \end{cases} is continuous at {x}=0, then {k} is:
  • 3
  • 6
  • 9
  • 2
The right-hand limit of the function \sec{x} at \displaystyle x=-\frac { \pi  }{ 2 } is
  • -\infty
  • -1
  • 0
  • \infty
\displaystyle \lim_{x\rightarrow 0}\frac{1}{x}\cos ^{ -1 }{ \left( \frac { 1-x^{ 2 } }{ 1+x^{ 2 } }  \right)  } =
  • 0
  • 1
  • 2
  • does not exist
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers