Processing math: 100%

CBSE Questions for Class 11 Commerce Applied Mathematics Limits And Continuity     Quiz 4 - MCQExams.com


limx0(1+a3)+8e1/x1+(1b3)e1/x=2 then
  • a=1,b=(3)1/3
  • a=1,b=31/3
  • a=1,b=(3)1/3
  • a=1,b=0
If f(x)=(x)1x1 for x1 and f is continuous at x=1 then f(1)=
  • e
  • e1
  • e2
  • e2
Assertion (A): f(x)=sin{[x]π}1+x2 is continuous on R (where [x] denotes greatest integer function of x).
Reason (R): Every constant function is continuous on R
  • Both A and R are true and R is the correct explanation of A
  • Both A and R are true and R is not the correct explanation of A
  • A is true but R is false
  • R is true but A is false
The values of p and q for which the function f(x)={sin(p+1)x+sinxx,x<0q,x=0x+x2xx3/2,x>0
is continuous for all x in R, are
  • p=12, q=32
  • p=52,q=12
  • p=32, q=12
  • p=12,q=32
If f(x)={x+λ,1<x<34,x=33x5,x>3 is continuous at x=3 then tha value of λ is
  • 1
  • 0
  • 1
  • does not exits

The function f(x)={1sinx(π2x)2xπ2kx=π2 is continuous at x=π2 then k is equal to
  • 18
  • 4
  • 3
  • 1
The value of f(0) so that the function f(x)=1cos(1cosx)x4 is continuous everywhere is
  • 18
  • 12
  • 14
  • 13
limx01cos3x+sin3x+n(1+x3)+n(1+cosx)x21+2cos2x+tan4x+sin3x is equal to -
  • 34
  • ln2
  • ln24
  • 3/2
The value of p for which the function

f(x)={(4x1)3sinxplog(1+x23);x012(log4)3;x=0 is continuous at x=0, is
  • 4
  • 2
  • 3
  • 1
If f(x)=1x(3x+1) then at x=0,f(x) is
  • continuous
  • discontinuous
  • not determined
  • limx0f(x)=2
Assertion(A):
f(x)=x(1+e1/x1e1/x)(x0) , f(0)=0 is continuous at x=0.
Reason(R) A function is said to be continuous at a if both limits are exists and equal to f(a) .
  • Both A and R are true and R is the correct explanation of A
  • Both A and R are true and R is not the correct explanation of A
  • A is true but R is false
  • R is true but A is false

The value of f(0) so that the function f(x)=1+x31+xx becomes continuous is equal to
  • 16
  • 14
  • 2
  • 13
If f(x)=xsinxx+cos2x then limxf(x)  is
  • O
  • 1
  • None of these
limx(1x+2x+3x+.........+nx)1/x is
  • ln(n!)
  • n
  • n!
  • 0
limx(2x+1)40(4x1)5(2x+3)45 is equal to
  • 16
  • 24
  • 32
  • 8
If f(x)={8x4x2x+1xx2,x>0exsinx+πx+λln4,x0is continuous at x=0, then λ is a
  • rational number
  • irrational number
  • natural number
  • complex number
limnn(2n+1)2(n+2)(n2+3n1) is equal to
  • 0
  • 2
  • 4
Let f:RR be defined by f(x)={k2x,ifx12x+3,ifx>1 be continous. then find possible value of k is
  • 0
  • 12
  • 1
  • 1
limn(F(n)G(n))nlimn(f(n)g(n))n=

  • e3/2e
  • e3/2e1
  • e3/2
  • e1
If f(x)={x1,x12x22,x<1,g(x)={x+1,x>0x2+1,x0, and h(x)=|x|, then limx0f(g(h(x))) is
  • 0
  • 1
  • 2
  • 3
If limx0xnsinnxxsinnx is non-zero finite, then n must be equal
  • 4
  • 1
  • 2
  • 3
limx11x2sin2πx is equal to
  • 12π
  • 1π
  • 2π
  • None of these
limn3n+(1)n4n(1)n is equal to
  • 34
  • 0 if n is even
  • 34
  • none of these
If limx{x3+1x2+1(ax+b)}=2, then
  • a=1,b=1
  • a=1,b=2
  • a=1,b=2
  • None of these
If f(x)={x2+2,x21x,x<2 and g(x)={2x,x>13x,x1, then the value of limx1f(g(x)) is ............
  • 6
  • 4
  • 8
  • 2
limx2((x34xx38)1(x+2xx22x2)1) is equal to
  • 12
  • 2
  • 1
  • None of these
f(x)=3x2+ax+a+1x2+x2 and limx2f(x) exists. 
Then the value of (a4) is?
  • 9
  • 10
  • 11
  • 12
limnnCc(mn)x(1mn)nx equal to
  • Mxx !.em
  • Mxx !.em
  • 0
  • mx+1memx !
limx0(x3sin3x+ax2+b) exists and is equal to 0, then
  • a=3 and b=92
  • a=3 and b=92
  • a=3 and b=92
  • a=3 and b=92
limx(x2+2x12x23x2)2x+12x1 is equal to
  • 0
  • 12
  • None of these
If p(x)=a0+a1x+...+anxn and |p(x)||ex11| for all x0, then |a1+2a2+3a3+...+nan|
  • 1
  • 1
  • 0
  • 0
The value of limxcot1(xalogax)sec1axlogxa for (a>1) is equal to?
  • 1
  • 0
  • π2
  • Does not exist
The value of 
limxπ/62sin2x+sinx12sin2x3sinx+1
  • 3
  • 3
  • 6
  • 0
Let f(x)=sinxg(x)=[x+1] and g(f(x))=h(x), where [.] is the greatest integer function. Then h+(π2) is
  • non existent
  • 1
  • 1
  • none of these
Which one of the following statement is true?
  • if limxcf(x).g(x) and limxcf(x) exist, then limxcg(x) exists
  • if limxcf(x).g(x) exists, then limxcf(x) and limxcg(x) exist
  • if limxc(f(x)+g(x)) and limxcf(x) exist, then limxcg(x) exists
  • if limxc(f(x)+g(x)) exists, then limxcf(x) and limxcg(x) exists
limnnpsin2(n!)n+1, 0<p<1, is equal to
  • 0
  • 1
  • none of these
limx(x2+8x+3x2+4x+3)=
  • 0
  • 2
  • 12
Let f(x)={sinx,xnπ2,x=nπ, where nϵZ and
g(x)={x2+1,x23,x=2.
Then limx0g(f(x)) is
  • 0
  • 1
  • 3
  • none of these
f(x)={sinx;xnπ,n=0,±1,±2,±3.....2;otherwise and g(x)={x2+1;x04;x=0. 
Then limx0g(f(x)) is
  • 1
  • 4
  • 5
  • non-existent
limxπ2(1tanx2)(1sinx)(1+tanx2)(π2x)3 is

  • 0
  • 132
  • 18
Which one of the following statements is true?
  • If limxcf(x).g(x) and limxcf(x) exist, then limxcg(x) exists.
  • If limxcf(x).g(x) exists, then limxcf(x) and limxcg(x) exist.
  • If limxcf(x)+g(x) and limxcf(x) exist, then limxcg(x) also exists.
  • If limxcf(x)+g(x) exists, then limxcf(x) and limxcg(x) also exist.
If limx0(f(x)g(x)) exists for any functions f and g then
  • limxaf(x) and limxag(x) exist
  • limxaf(x) exist but limxag(x) may not exist
  • limxaf(x) may not exist but limxag(x) exist
  • limxaf(x) and limxag(x) may not exist
Evaluate limn[n!nn]1/n.
  • 1e
  • 1t
  • 1n
  • none of above
limx((1cosx)+(1cosx)+(1cosx)+...)1x2) equals to
  • 0
  • 12
  • 1
  • 2
State whether the given statement is true or false 
If f(x) satisfies the relation, f(x+y)=f(x)+f(y) for all x,yϵR and f(1)=5, then find mn=1f(n)
  • True
  • False
If [.] denotes, GIF , then ltx0([2018sin1xx]+[2020xtan1x])
  • 4038
  • 4037
  • 4036
  • 4039
The value of limx0(sinxx)1/x2 is 
  • e1/6
  • e1/6
  • e1/3
  • e1/3
  • Both Assertion and Reason are correct and Reason is the correct explanation for Assertion
  • Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion
  • Assertion is correct but Reason is incorrect
  • Assertion is incorrect but Reason is correct 
let a, b, c are non zero constant number then limrcosarcosbrcoscrsinbrsincr equals to
  • a2+b2c22bc
  • c2+a2b22bc
  • b2+c2a22bc
  • independent of a, b and c
Evaluate limn[(1+1n2)(1+22n2)(1+32n2)......(1+n2n2)]1/n
  • 2e(π42)
  • 2e(π22)
  • 2e(π44)
  • 2e(π43)
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers