Loading [MathJax]/jax/element/mml/optable/MathOperators.js

CBSE Questions for Class 11 Commerce Applied Mathematics Limits And Continuity     Quiz 4 - MCQExams.com


limx0(1+a3)+8e1/x1+(1b3)e1/x=2 then
  • a=1,b=(3)1/3
  • a=1,b=31/3
  • a=1,b=(3)1/3
  • a=1,b=0
If f(x)=(x)1x1 for x1 and f is continuous at x=1 then f(1)=
  • e
  • e1
  • e2
  • e2
Assertion (A): f(x)=sin{[x]π}1+x2 is continuous on R (where [x] denotes greatest integer function of x).
Reason (R): Every constant function is continuous on R
  • Both A and R are true and R is the correct explanation of A
  • Both A and R are true and R is not the correct explanation of A
  • A is true but R is false
  • R is true but A is false
The values of p and q for which the function f(x)={sin(p+1)x+sinxx,x<0q,x=0x+x2xx3/2,x>0
is continuous for all x in R, are
  • p=12, q=32
  • p=52,q=12
  • p=32, q=12
  • p=12,q=32
If \displaystyle f\left( x \right)=\begin{cases} \begin{matrix} x+\lambda , & -1<x<3 \end{matrix} \\ \begin{matrix} 4, & x=3 \end{matrix} \\ \begin{matrix} 3x-5, & x>3 \end{matrix} \end{cases} is continuous at x=3 then tha value of \lambda is
  • -1
  • 0
  • 1
  • does not exits

The function \displaystyle \mathrm{f}({x})=\begin{cases}\dfrac{1-\sin x}{(\pi-2x)^{2}} & x  \neq\dfrac{\pi}{2}\\ \mathrm{k}& {x}=\dfrac{\pi}{2}\end{cases} is continuous at \displaystyle {x}=\dfrac{\pi}{2} then \mathrm{k} is equal to
  • \dfrac{1}{8}
  • 4
  • 3
  • 1
The value of f(0) so that the function \mathrm{f}({x})=\displaystyle \frac{1-\cos(1-\cos x)}{x^{4}} is continuous everywhere is
  • \displaystyle \frac{1}{8}
  • \displaystyle \frac{1}{2}
  • \displaystyle \frac{1}{4}
  • \displaystyle \frac{1}{3}
\underset{x\rightarrow0}{lim}\displaystyle\frac{1-cos^{3}x+sin^{3}x+\ell n(1+x^{3})+\ell n(1+cos\,\,x)}{x^{2}-1+2\,cos^{2}x+tan^{4}x+sin^{3}x} is equal to -
  • \,\,\displaystyle\frac{3}{4}
  • \,\,ln2
  • \,\,\displaystyle\frac{ln2}{4}
  • \,\,3/2
The value of p for which the function

f(x)=\displaystyle \left\{ \begin{array}{rl} \dfrac { (4^{ { x } }-1)^{ 3 } }{ \sin\dfrac { { x } }{ { p } } \log(1+\dfrac { { x }^{ 2 } }{ 3 } ) }  & { ;\quad x\neq 0 } \\ 12(\log  4)^{ 3 } & { ;\quad x=0\quad  } \end{array} \right.  is continuous at {x}=0, is
  • 4
  • 2
  • 3
  • 1
If f(x)=\displaystyle \frac { 1 }{ x(3x+1) } then at {x}=0,\mathrm{f}({x}) is
  • continuous
  • discontinuous
  • not determined
  • \displaystyle \lim_{x\rightarrow 0 }f(x)=2
Assertion(A):
f(x)=x(\displaystyle \frac{1+e^{1/x}}{1-e^{1/x}})(x\neq 0) , {f}(0)=0 is continuous at {x}=0.
Reason(R) A function is said to be continuous at a if both limits are exists and equal to \mathrm{f}({a}) .
  • Both A and R are true and R is the correct explanation of A
  • Both A and R are true and R is not the correct explanation of A
  • A is true but R is false
  • R is true but A is false

The value of \mathrm{f}({0}) so that the function \displaystyle \mathrm{f}({x})=\frac{\sqrt{1+x}-\sqrt[3]{1+x}}{x} becomes continuous is equal to
  • \dfrac{1}{6}
  • \dfrac{1}{4}
  • 2
  • \dfrac{1}{3}
If \displaystyle f(x) = \sqrt {\frac{{x - \sin x}}{{x + {{\cos }^2}x}}} then \mathop {\lim }\limits_{x \to \infty } f(x)  is
  • O
  • \infty
  • 1
  • None of these
\displaystyle\lim_{x \rightarrow \infty}(1^x + 2^x + 3^x+.........+n^x)^{1/x} is
  • \ln (n!)
  • n
  • n!
  • 0
\displaystyle \lim_{x\to\infty}{\displaystyle \frac{(2x + 1)^{40}(4x - 1)^5}{(2x + 3)^{45}}} is equal to
  • 16
  • 24
  • 32
  • 8
If f(x) =\left\{\begin{matrix} \dfrac{8^{x}-4^{x}-2^{x}+1^{x}}{x^{2}},x>0 & \\ e^{x}\sin x+\pi x+\lambda \ln 4,x\leq 0 & \end{matrix}\right.is continuous at x= 0, then \lambda is a
  • rational number
  • irrational number
  • natural number
  • complex number
\displaystyle \lim_{n\to\infty}{\displaystyle \frac{n(2n + 1)^2}{(n + 2)(n^2 + 3n - 1)}} is equal to
  • 0
  • 2
  • 4
  • \infty
Let \mathrm{f}:\mathrm{R}\rightarrow \mathrm{R} be defined by \mathrm{f}(\mathrm{x})=\left\{\begin{array}{l} \mathrm{k}-2\mathrm{x}, \mathrm{i}\mathrm{f}   \mathrm{x}\leq-1\\ 2\mathrm{x}+3, \mathrm{i}\mathrm{f}   \mathrm{x}>-1 \end{array}\right. be continous. then find possible value of \mathrm{k} is
  • 0
  • \displaystyle -\frac{1}{2}
  • -1
  • 1
\lim_{n\rightarrow \infty }\left ( \frac{F\left ( n \right )}{G\left ( n \right )} \right )^{n}-\lim_{n\rightarrow \infty }\left ( \frac{f\left ( n \right )}{g\left ( n \right )} \right )^{n}=

  • e^{3/2}-e
  • e^{-3/2}-e^{-1}
  • e^{3/2}
  • e^{-1}
If f(x) = \displaystyle \left\{\begin{matrix}x - 1, & x \geq 1 \\ 2x^2 - 2, & x < 1\end{matrix}\right. , g(x) = \left\{\begin{matrix}x + 1, & x > 0 \\ -x^2 + 1, & x \leq 0\end{matrix}\right., and h(x) = |x|, then \displaystyle \lim_{x \rightarrow 0} f(g (h (x))) is
  • 0
  • 1
  • 2
  • 3
If \displaystyle \lim_{x\to0}{\displaystyle \frac{x^n - \sin^nx}{x - \sin^nx}} is non-zero finite, then n must be equal
  • 4
  • 1
  • 2
  • 3
\displaystyle \lim_{x\to1}{\displaystyle \frac{1-x^2}{\sin 2\pi x}} is equal to
  • \displaystyle \frac{1}{2\pi}
  • \displaystyle \frac{-1}{\pi}
  • \displaystyle \frac{-2}{\pi}
  • None of these
\displaystyle \lim_{n \rightarrow \infty} \frac{-3n + (-1)^n}{4n - (-1)^n} is equal to
  • \displaystyle \frac{3}{4}
  • 0 if n is even
  • \displaystyle- \frac{3}{4}
  • none of these
If \displaystyle \lim _{ x\to\infty  }\left\{\displaystyle \frac{x^3 + 1}{x^2 +1} - (ax + b)  \right\}  = 2, then
  • a = 1, b = 1
  • a = 1, b = 2
  • a = 1, b = -2
  • None of these
If \displaystyle f(x) = \left\{\begin{matrix}x^2+2, & x \geq 2\\ 1-x, & x < 2\end{matrix}\right. and g(x) = \left\{\begin{matrix}2x, & x > 1\\ 3-x, & x \leq 1\end{matrix}\right., then the value of \displaystyle \lim_{x \rightarrow 1} f(g(x)) is ............
  • 6
  • 4
  • 8
  • 2
\displaystyle \lim_{x\to2} \left( \left( \displaystyle \frac{x^3 - 4x}{x^3 - 8} \right)^{-1} - \left( \displaystyle \frac{x + \sqrt{2x}}{x - 2} - \displaystyle \frac{\sqrt {2}}{\sqrt{x} - \sqrt{2}} \right)^{-1} \right) is equal to
  • \dfrac{1}{2}
  • 2
  • 1
  • None of these
\displaystyle f(x) = \frac{3x^2 + ax + a + 1}{x^2 + x - 2} and \displaystyle \lim_{x \rightarrow - 2} f(x) exists. 
Then the value of (a- 4) is?
  • 9
  • 10
  • 11
  • 12
\displaystyle \lim_{n \rightarrow \infty} {^{n}C_{c}}\left(\dfrac {m}{n}\right)^{x}\left(1-\dfrac {m}{n}\right)^{n-x} equal to
  • \dfrac {M^{x}}{x\ !}.e^{-m}
  • \dfrac {M^{x}}{x\ !}.e^{m}
  • 0
  • \dfrac {m^{x+1}}{me^{m}x\ !}
\displaystyle \lim_{x\to0}\left( x^{-3}\sin{3x} + ax^{-2} + b \right) exists and is equal to 0, then
  • a = -3 and b = \dfrac{9}{2}
  • a = 3 and b = \dfrac{9}{2}
  • a = -3 and b = -\dfrac{9}{2}
  • a = 3 and b = -\dfrac{9}{2}
\displaystyle \lim _{ x\to\infty } \left( \frac { x^{ 2 }+2x-1 }{ 2x^2-3x-2 }  \right) ^{\LARGE  \frac { 2x+1 }{ 2x-1 }  } is equal to
  • 0
  • \infty
  • \dfrac{1}{2}
  • None of these
If p\left( x \right) ={ a }_{ 0 }+{ a }_{ 1 }x+...+{ a }_{ n }{ x }^{ n } and \left| p\left( x \right)  \right| \le \left| { e }^{ x-1 }-1 \right| for all x\ge 0, then \left| { a }_{ 1 }+2{ a }_{ 2 }+3{ a }_{ 3 }+...+n{ a }_{ n } \right|
  • \le 1
  • \ge 1
  • \ge 0
  • \le 0
The value of \displaystyle\lim_{x\rightarrow\infty}{\frac{\cot^{-1}{(x^{-a}\log_a{x})}}{\sec^{-1}{a^x\log_x{a}}}} for (a>1) is equal to?
  • 1
  • 0
  • \displaystyle\frac{\pi}{2}
  • Does not exist
The value of 
\displaystyle \lim_{x \rightarrow \pi/6} \frac{2 \sin^2 x + \sin  x-1}{2 \sin^2 x - 3  \sin  x + 1}
  • 3
  • -3
  • 6
  • 0
Let f(x)=\sin xg(x)=\left [ x+1 \right ] and g(f(x))=h(x), where [.] is the greatest integer function. Then h^+\left ( \displaystyle \dfrac{\pi }{2} \right ) is
  • non existent
  • 1
  • -1
  • none of these
Which one of the following statement is true?
  • if \displaystyle \lim_{x\to c}f(x).g(x) and \displaystyle \lim_{x\to c}f(x) exist, then \displaystyle \lim_{x\to c}g(x) exists
  • if \displaystyle \lim_{x\to c}f(x).g(x) exists, then \displaystyle \lim_{x\to c}f(x) and \displaystyle \lim_{x\to c}g(x) exist
  • if \displaystyle \lim_{x\to c}(f(x)+g(x)) and \displaystyle \lim_{x\to c}f(x) exist, then \displaystyle \lim_{x\to c}g(x) exists
  • if \displaystyle \lim_{x\to c}(f(x)+g(x)) exists, then \displaystyle \lim_{x\to c}f(x) and \displaystyle \lim_{x\to c}g(x) exists
\displaystyle \lim_{n\to\infty }\frac{n^{p}\sin ^{2}\left ( n! \right )}{n+1}, 0<p<1, is equal to
  • 0
  • \infty
  • 1
  • none\ of\ these
\displaystyle \lim_{x \rightarrow \infty} (\sqrt{x^2 + 8x + 3} - \sqrt{x^2 + 4x + 3}) =
  • 0
  • \infty
  • 2
  • \dfrac{1}{2}
Let f\left ( x \right )=\begin{cases}\sin x, x\neq n\pi                     \\ 2,  x=n\pi \end{cases}, where n\epsilon \mathbb{Z} and
g\left ( x \right )=\begin{cases}x^{2}+1, x\neq 2 \\               3, x=2 \end{cases}.
Then \displaystyle \lim_{x\to 0}g\left ( f\left ( x \right ) \right ) is
  • 0
  • 1
  • 3
  • none of these
f\left( x \right)=\begin{cases} \sin { x } \qquad ;\qquad x\neq n\pi ,n=0,\pm 1,\pm 2,\pm 3..... \\ 2\qquad \qquad ;\qquad otherwise \end{cases} and g\left( x \right) =\begin{cases} { x }^{ 2 }+1\qquad ;\qquad x\neq 0 \\ 4\qquad \qquad ;\qquad x=0 \end{cases}. 
Then \lim _{ x\rightarrow 0 }{ g\left( f\left( x \right)\right)} is
  • 1
  • 4
  • 5
  • non-existent
\displaystyle \lim_{x\rightarrow \dfrac{\pi}{2}}\dfrac{\left ( 1-\tan \dfrac{x}{2} \right )\left ( 1-\sin x \right )}{\left ( 1+\tan \dfrac{x}{2} \right )\left ( \pi -2x \right )^{3}} is

  • 0
  • \displaystyle \frac{1}{32}
  • \infty
  • \displaystyle \frac{1}{8}
Which one of the following statements is true?
  • If \displaystyle\lim_{x\rightarrow c}{f(x).g(x)} and \displaystyle\lim_{x\rightarrow c}{f(x)} exist, then \displaystyle\lim_{x\rightarrow c}{g(x)} exists.
  • If \displaystyle\lim_{x\rightarrow c}{f(x).g(x)} exists, then \displaystyle\lim_{x\rightarrow c}{f(x)} and \displaystyle\lim_{x\rightarrow c}{g(x)} exist.
  • If \displaystyle\lim_{x\rightarrow c}{f(x)+g(x)} and \displaystyle\lim_{x\rightarrow c}{f(x)} exist, then \displaystyle\lim_{x\rightarrow c}{g(x)} also exists.
  • If \displaystyle\lim_{x\rightarrow c}{f(x)+g(x)} exists, then \displaystyle\lim_{x\rightarrow c}{f(x)} and \displaystyle\lim_{x\rightarrow c}{g(x)} also exist.
If \displaystyle \lim_{x\rightarrow 0}(f(x)\:g(x)) exists for any functions f and g then
  • \displaystyle \lim_{x\rightarrow a}f(x) and \displaystyle \lim_{x\rightarrow a}g(x) exist
  • \displaystyle \lim_{x\rightarrow a}f(x) exist but \displaystyle \lim_{x\rightarrow a}g(x) may not exist
  • \displaystyle \lim_{x\rightarrow a}f(x) may not exist but \displaystyle \lim_{x\rightarrow a}g(x) exist
  • \displaystyle \lim_{x\rightarrow a}f(x) and \displaystyle \lim_{x\rightarrow a}g(x) may not exist
Evaluate \displaystyle \lim_{n\rightarrow \infty }\left [ \frac{n!}{n^{n}} \right ]^{1/n}.
  • \displaystyle\frac{1}{e}
  • \displaystyle\frac{1}{t}
  • \displaystyle\frac{1}{n}
  • none\ of\ above
\displaystyle \lim_{x\rightarrow\infty}\left(\frac{\sqrt{(1 - \cos x)+ \sqrt{(1 - \cos x)+ \sqrt(1 - \cos x)+...\infty) - 1}}}{x^2}\right) equals to
  • 0
  • \displaystyle\frac{1}{2}
  • 1
  • 2
State whether the given statement is true or false 
If f(x) satisfies the relation, f(x+y)=f(x)+f(y) for all x, y\epsilon R and f(1)=5, then find \sum_{n=1}^{m}f\left ( n \right )
  • True
  • False
If [.] denotes, GIF , then \underset{x \rightarrow 0}{lt} \left( \left[\dfrac{2018 sin^{-1} x}{x}\right] + \left[\dfrac{2020x}{tan^{-1} x}\right]\right)
  • 4038
  • 4037
  • 4036
  • 4039
The value of \displaystyle \lim_{x \rightarrow 0} \left(\dfrac{\sin x}{x}\right)^{1/x^{2}} is 
  • e^{-1/6}
  • e^{1/6}
  • e^{-1/3}
  • e^{1/3}
  • Both Assertion and Reason are correct and Reason is the correct explanation for Assertion
  • Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion
  • Assertion is correct but Reason is incorrect
  • Assertion is incorrect but Reason is correct 
let a, b, c are non zero constant number then \lim_{r\rightarrow\infty}\displaystyle\frac{cos\displaystyle\frac{a}{r}-cos\displaystyle\frac{b}{r}cos\displaystyle\frac{c}{r}}{sin\displaystyle\frac{b}{r}sin\displaystyle\frac{c}{r}} equals to
  • \displaystyle\frac{a^2 + b^2 - c^2}{2bc}
  • \displaystyle\frac{c^2 + a^2 - b^2}{2bc}
  • \displaystyle\frac{b^2 + c^2 - a^2}{2bc}
  • independent of a, b and c
Evaluate \displaystyle \lim_{n\rightarrow \infty }\left [ \left ( 1+\frac{1}{n^{2}} \right )\left ( 1+\frac{2^{2}}{n^{2}} \right )\left ( 1+\frac{3^{2}}{n^{2}} \right )......\left ( 1+\frac{n^{2}}{n^{2}} \right ) \right ]^{1/n}
  • 2e ^\left(\dfrac{\pi - 4}{2}\right)
  • 2e ^\left(\dfrac{\pi - 2}{2}\right)
  • 2e^ \left(\dfrac{\pi - 4}{4}\right)
  • 2e^ \left(\dfrac{\pi - 4}{3}\right)
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers