Explanation
$$\displaystyle\lim_{x\to\infty}\frac{(2x+1)^{40}(4x-1)^5 }{(2x+3)^{45}}$$
$$=\displaystyle\lim_{x\to\infty}\frac{\left(2+\Large \frac{1}{x}\right)^{40}\left(4-\Large \frac{1}{x}\right)^5}{\left(2+\Large \frac{3}{x}\right)^{45}}$$$$=\displaystyle \frac{2^{40}4^5}{2^{45}}\\$$
$$=2^5 = 32$$
$$\displaystyle\lim_{x\to1}\frac{1-x^2}{\sin2\pix}= -\displaystyle \lim_{x\to1}\frac{2\pi(1-x)(1+x)}{-2\pi\sin(2\pi-2\pi x)} $$
$$=\displaystyle \lim_{x \to 1}\left( \frac{(2\pi-2\pi x}{\sin(2\pi-2\pi x)}\right).\frac{1+x}{-2\pi}=-\frac{1}{\pi}$$
$$\displaystyle\lim_{x\to\infty}\left(\frac{x^3+1}{x^2+1}-(ax+b)\right)= 2\\$$
$$or\displaystyle\lim_{x\to\infty}\frac{x^3(1-a)-bx^2-ax+(1-b)}{x^2+1} = 2\\$$
As we have finite limit so degree of $$x$$ in the numerator must be less than equal to the degree of $$x$$ in the denominator.
So the term containing $$x^3$$ must have coefficient $$0$$ i.e $$(1-a) = 0$$
Hence $$a =1$$.Divide Numerator and denominator by $$x^3$$ to get the value of $$b$$
$$ -b = 2$$
$$\mbox{a = 1,b = -2}\\$$
Hence, option 'C' is correct.
$$\displaystyle\lim_{x\to\infty}\left(\displaystyle \frac{x^2+2x-1}{2x^2-3x-2}\right)^{\displaystyle \frac{2x+1}{2x-1}}\\$$
$$=\displaystyle\lim_{x\to\infty}\left(\displaystyle \frac{1+\displaystyle \frac{2}{x}-\displaystyle \frac{1}{x^2}}{2-\displaystyle \frac{3}{x}-\displaystyle \frac{2}{x^3}}\right)^{\displaystyle \frac{2+{{1}/{x}}}{2-{{1}/{x}}}}\\$$
$$=1/2$$
Please disable the adBlock and continue. Thank you.