Loading [MathJax]/jax/element/mml/optable/MathOperators.js

CBSE Questions for Class 11 Commerce Applied Mathematics Limits And Continuity     Quiz 6 - MCQExams.com

xn=(113)2(116)2(1110)2...(11n(n+1)2)2,n2. Then the value of limnxn
  • 1/3
  • 1/9
  • 1/81
  • 0 (zero)
limn12+22+32+....+n2n3 is equal to
  • 1
  • 1/2
  • 1/3
  • 0
The value of k which makes f(x)={sin1x,x0k,x=0 continuous at x=0 is?
  • 8
  • 1
  • 1
  • None
If f(x)=2x95x8+7x615x4+5x+7, then limx0f(1α)f(1)α3+3α is 
  • 353
  • 353
  • 373
  • 373
The value of limx01+sinxcosx+log(1x)x3, is
  • 1
  • 1/2
  • 1/2
  • 1
If f(x)=3x107x8+5x621x3+3x27, then lima0f(1α)f(1)α3+3α is 
  • 533
  • 533
  • 553
  • 553
Let f(x)=x0|2t3|dt, then f is 
  • continuous at x=32
  • continuous at x=3
  • differentiable at x=32
  • differentiable at x=0
The value of limxo12(1cos2x)x
  • 1
  • -1
  • 0
  • none of these
solve the limit 
\mathop {\lim }\limits_{x \to 3} \dfrac{2}{{x - 3}} 
  • 2
  • 3
  • 4
  • Does not exist
The value of \underset { x\longrightarrow \infty  }{ Lim } \dfrac{d}{dx}\overset { \sqrt { 3 }  }{ \underset { -\sqrt { 3 }  }{ \int }  } \dfrac{r^3}{(r+1)(r-1)}dr,is
  • 0
  • 1
  • \dfrac{1}{2}
  • non existent
\mathop {\lim }\limits_{x \to 0} \dfrac{1}{x}{\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) is equal to
  • 1
  • 0
  • 2
  • 1/2
\underset{x \rightarrow \frac{\pi}{2}}{\lim} \dfrac{\cot x - \cos x}{\left(\dfrac{\pi}{2} -x \right)^3} =
  • \dfrac{-1}{2}
  • \dfrac{1}{2}
  • 2
  • -2
\mathop {\lim }\limits_{x \to 0} \,\dfrac{1}{x}\,{\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) is equal to
  • 1
  • 0
  • 2
  • \dfrac{1}{2}
Solve

\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 5x}}{{\tan 3x}}
  • -\dfrac{5}{3}
  • \dfrac{5}{3}
  • \dfrac{7}{3}
  • None of these
\mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {2x - 3} \right)\left( {\sqrt x  - 1} \right)}}{{2{x^2} + x - 3}} =
  • \dfrac{1}{{10}}
  • \dfrac{{ - 1}}{{10}}
  • \dfrac{2}{5}
  • - \dfrac{2}{5}
If \mathrm { L } = \lim _ { \mathrm { x } ^ { 2 } \rightarrow \mathrm { a } } \frac { \mathrm { b } - \cos \left( \mathrm { x } ^ { 2 } - \mathrm { a } \right) } { \left( \mathrm { x } ^ { 2 } - \mathrm { a } \right) \sin \left( \mathrm { cx } ^ { 2 } - \mathrm { a } \right) } is non-
zero finite ( \mathrm { a } > 0 ) , then-
  • L = 2 , b = 1 , c = 1
  • L = \frac { 1 } { 2 } , b = 1 , c = 1
  • L = 4 , b = - 1 , c = - 1
  • L = \frac { 1 } { 4 } , b = - 1 , c = - 1
If   {z_r} = \cos \dfrac{{r\alpha }}{{{n^2}}} + i\sin \dfrac{{r\alpha }}{{{n^2}}}, where r= 1, 2, 3, ....n, then \mathop {\lim }\limits_{n \to \infty } \left( {{z_1}.{z_2}.....{z_n}} \right) is equal to 
  • \cos \alpha + i\sin \alpha
  • \sin \frac{\alpha }{2} + i\cos \frac{\alpha }{2}
  • {e^{i\alpha /2}}
  • \sqrt {{e^{i\alpha }}}
Solve:
\displaystyle \int_{0}^{1}\dfrac{dx}{\sqrt{x+1}+\sqrt{x}}dx=
  • \dfrac{4}{3}(\sqrt{2}+1)
  • \dfrac{4}{3}(\sqrt{2}-1)
  • \dfrac{3}{4}(\sqrt{2}-1)
  • \dfrac{3}{4}(\sqrt{2}-2)
If f(x) is the integral of \dfrac{2\sin{x}-\sin{2x}}{x^{3}},\ x\neq 0. Find \lim _{ x\rightarrow 0 }{ f^{ ' }\left( x \right)  } , where f^{ ' }\left( x \right) =\dfrac{df{(x)}}{dx}
  • \dfrac{1}{2}
  • 1
  • \dfrac{1}{3}
  • 2
\lim_{x\to \infty} \dfrac{\sqrt{x^2 + sin^2x}}{x+cosx} equals
  • 1
  • 0
  • \infty
  • does not exist
Find the value of limit \displaystyle \lim _{ x\rightarrow \frac { \pi  }{ 6 }  }{ \frac { 2\sin ^{ 2 }{ x } +\sin { x-1 }  }{ 2\sin ^{ 2 }{ x } -3\sin { x+1 }  } = } .
  • 0
  • 3
  • -3
  • 1
\lim\limits_{x\rightarrow0}\dfrac{x\tan 2x-2x\tan x}{\left(1-\cos 2x\right)^{2}}=
  • 2
  • \dfrac{1}{2}
  • -2
  • -\dfrac{1}{2}
\displaystyle\lim_{h\rightarrow 0}\dfrac{\sin\sqrt{x+h}-\sin\sqrt{x}}{h}=__________.
  • \cos\sqrt{x}
  • \dfrac{1}{2\sin \sqrt{x}}
  • \dfrac{\cos \sqrt{x}}{2\sqrt{x}}
  • \sin\sqrt{x}
The value of \displaystyle lim_{x\to 0} \dfrac{cos (sin x) - cos x}{x^4} is equal to
  • 1/5
  • 1/6
  • 1/4
  • 1/2
The value of \lim_{x \rightarrow 1} \sec \dfrac{\pi}{2x} \log x is-
  • \pi /2
  • 2 /\pi
  • -\pi/2
  • -2/ \pi
The value of \displaystyle \lim_{\theta \rightarrow 0^{+}} \dfrac {\sin \sqrt {\theta}}{\sqrt {\sin  \theta}} is equal to
  • 0
  • 1
  • -1
  • 4
For x>y, \displaystyle\lim_{x\rightarrow 0}{\left[\left(\sin{x}\right)^{1/x}+\left(\cfrac{1}{x}\right)^{\sin{x}}\right]} is :
  • 0
  • -1
  • 1
  • 2
\underset{x\rightarrow 0}{lim} \dfrac{\sqrt{a^2 -ax+x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} -\sqrt{a-x}} is equal to (a > 0)
  • \sqrt{a}
  • -\sqrt{a}
  • a \sqrt{a}
  • -a\sqrt{a}
The function f\left( x \right) = \dfrac{{4 - {x^2}}}{{4x - {x^3}}} is
  • discontinuous at only one point
  • discontinuous exactly at two points
  • discontinuous exactly at three points
  • None of these
\displaystyle\lim _{ x\rightarrow \dfrac { x }{ 2 }  }{ \dfrac { \cot { x } -\cos { x }  }{ \left( \pi -2x \right) ^{ 3 } }  } is equal to 
  • \dfrac{1}{24}
  • \dfrac{1}{16}
  • \dfrac{1}{8}
  • \dfrac{1}{4}
\lim _ { x \rightarrow 1 } \{ 1 - x + [ x + 1 ] + [ 1 - x ] \} , \text { where } [ x ] denotes greatest integer function is
  • 0
  • 1
  • -1
  • 2
 \underset { x\rightarrow 0 }{ lim } \cfrac { 1+cos\left( \pi x \right)  }{ \left( 1-x \right)^ 2 }    is equal to :
  • \cfrac { \pi} {2}
  • - \cfrac { \pi ^2} {2}
  • \cfrac { \pi ^2} {2}
  • \cfrac { \pi} {3}
Evaluate: \underset{x\rightarrow 0}{lim} \dfrac{e^{1/x} - 1}{e^{1/x }+ 1}
  • 0
  • 1
  • -1
  • does not exist
If \underset { x\rightarrow { 0 } }{ lim } \dfrac { \left( ax+b \right) -\sqrt { 4+\sin x }  }{ \tan\quad x } =\dfrac { 27 }{ 4 } ~where ~a,b\in R then the value of 
  • a = 2~ and~ b = 7
  • a = -2~and~ b = 7
  • a = 7~ and~ b = 2
  • a=7~ and ~b = -2
Evaluate: \underset { x\rightarrow 0 }{ \lim } \dfrac { x\tan2x-2x\tan x }{ \left( 1-\cos2x \right) ^{ 2 } }  
  • \dfrac { 1 }{ 4 }
  • 1
  • \dfrac { 1 }{ 2 }
  • -\dfrac { 1 }{ 2 }
\lim _ { x \rightarrow \frac { \pi } { 2 } } \frac { \cot x - \cos x } { ( \pi - 2 x ) ^ { 3 } } equals:

  • \frac { 1 } { 24 }
  • \frac { 1 } { 16 }
  • 0
  • \frac { 1 } { 4 }
Evaluate: \underset { x\rightarrow { 0 } }{ lim } \dfrac { x\tan 2x-2x \tan\ x\quad  }{ (1-\cos2x)^{ 2 } }
  • \dfrac { 1 }{ 4 }
  • 1
  • \dfrac { 1 }{ 2 }
  • -\dfrac { 1 }{ 2 }
\underset {x\rightarrow0}{ lim } \dfrac{x \tan 2 x - 2 x \tan x}{(1 - \cos 2 x)^2} equals 
  • \dfrac{1}{4}
  • 1
  • \dfrac{1}{2}
  • -\dfrac{1}{2}
Solve:
\underset{x \rightarrow 2}{Lt} \dfrac{x^{\sqrt{2}} - 2^{\sqrt{2}}}{x - 2} =
  • \sqrt{2}.2^{\sqrt{2}}
  • 2^{\sqrt{2}- 1}
  • 2^{\sqrt{2} - \dfrac{1}{2}}
  • 2^{\sqrt{2}}
Let f(x)=\begin{cases} { x }^{ 2 }+k,\quad \quad  when\quad x\ge 0 \\ -{ x }^{ 2 }-k,\quad \quad when \quad x<0 \end{cases}. If the function f(x) be continous at x=0, then k=
  • 0
  • 1
  • 2
  • -2
If 2f(\sin x)+\sqrt {2}f(\cos x)=\tan x,\ (x> 0), then \displaystyle \lim _{ x\rightarrow 1 }{ \sqrt { 1-x } f\left( x \right) = } 
  • \sqrt {2}
  • \dfrac {1}{\sqrt {2}}
  • -\sqrt {2}
  • -\dfrac {1}{\sqrt {2}}
Evaluate the following limits.
\displaystyle\lim_{x\rightarrow a}\dfrac{x-a}{\sqrt{x}-\sqrt{a}}.
  • 2\sqrt{a}
  • 2{a}
  • 2{a^{\frac 13}}
  • None of these
Lt_{x\to 0} \dfrac{sin x - x+\dfrac{x^3}{6}}{x^5}=_________
  • \dfrac{1}{120}
  • \dfrac{-1}{120}
  • 0
  • \dfrac{1}{6}
The value of \displaystyle \lim _{ x\rightarrow 0 }{ f\left( x \right) }  where f(x)=\dfrac {\cos (\sin x)-\cos x}{x^{4}}, is
  • 2
  • \dfrac {1}{6}
  • \dfrac {2}{3}
  • -\dfrac {1}{3}
\lim _{ x\rightarrow \infty  }{ \frac { 1 }{ x } \int _{ 0 }^{ x }{ \left( \sqrt { { t }^{ 2 }+5t } -t \right) dt }  } 
  • 0
  • 1
  • \dfrac{5}{2}
  • 5
The value of \displaystyle \lim _{ x\rightarrow a }{ \frac { \sqrt { x-b } -\sqrt { a-b }  }{ { x }^{ 2 }-{ a }^{ 2 } }  } \left( a>b \right)  is
  • \dfrac {1}{4a}
  • \dfrac {1}{a\sqrt {a-b}}
  • \dfrac {1}{2a\sqrt {a-b}}
  • \dfrac {1}{4a\sqrt {a-b}}
\underset { x\rightarrow 1 }{ Lim } \left[ { \left[ \frac { 4 }{ { x }^{ 2 }-{ x }^{ -1 } } -\frac { { 1-3x+x }^{ 2 } }{ { 1-x }^{ 3 } }  \right]  }^{ -1 }+\frac { 3\left( { x }^{ 4 }-1 \right)  }{ { x }^{ 3 }-{ x }^{ -1 } }  \right] =
  • \frac { 1 }{ 3 }
  • 3
  • \frac { 1 }{ 2 }
  • \frac { 3 }{ 2 }
The value of \displaystyle \lim _{ x\rightarrow 0 }{ \frac { x }{ 5 }  } \left[ \frac { x }{ 2 }  \right] (where [.] denotes the greatest integer function) is
  • \dfrac{2}{5}
  • -\dfrac{2}{5}
  • 0
  • \infty
The value of \displaystyle \lim_{x\rightarrow 0} \dfrac{(1-\cos 2x)\sin 5x}{x^{2}\sin 3x} is
  • 10/3
  • 3/10
  • 6/5
  • 5/6
Let  U_{ { n } }=\dfrac { n! }{ (n+2)! }   where  n \in N .  If  S_{ { n } }=\sum _{ { n-1 } }^{ { n } } U_{ { n } }  then  \lim _ { n \rightarrow \infty } \mathrm { S } _ { n }  equals :
  • 2
  • 1
  • 1/2
  • 1/3
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers