Processing math: 97%

CBSE Questions for Class 11 Commerce Applied Mathematics Limits And Continuity     Quiz 6 - MCQExams.com

xn=(113)2(116)2(1110)2...(11n(n+1)2)2,n2. Then the value of limnxn
  • 1/3
  • 1/9
  • 1/81
  • 0 (zero)
limn12+22+32+....+n2n3 is equal to
  • 1
  • 1/2
  • 1/3
  • 0
The value of k which makes f(x)={sin1x,x0k,x=0 continuous at x=0 is?
  • 8
  • 1
  • 1
  • None
If f(x)=2x95x8+7x615x4+5x+7, then limx0f(1α)f(1)α3+3α is 
  • 353
  • 353
  • 373
  • 373
The value of limx01+sinxcosx+log(1x)x3, is
  • 1
  • 1/2
  • 1/2
  • 1
If f(x)=3x107x8+5x621x3+3x27, then lima0f(1α)f(1)α3+3α is 
  • 533
  • 533
  • 553
  • 553
Let f(x)=x0|2t3|dt, then f is 
  • continuous at x=32
  • continuous at x=3
  • differentiable at x=32
  • differentiable at x=0
The value of limxo12(1cos2x)x
  • 1
  • -1
  • 0
  • none of these
solve the limit 
limx32x3 
  • 2
  • 3
  • 4
  • Does not exist
The value of Limxddx33r3(r+1)(r1)dr,is
  • 0
  • 1
  • 12
  • non existent
limx01xsin1(2x1+x2) is equal to
  • 1
  • 0
  • 2
  • 1/2
limxπ2cotxcosx(π2x)3=
  • 12
  • 12
  • 2
  • 2
limx01xsin1(2x1+x2) is equal to
  • 1
  • 0
  • 2
  • 12
Solve

limx0sin5xtan3x
  • 53
  • 53
  • 73
  • None of these
limx1(2x3)(x1)2x2+x3=
  • 110
  • 110
  • 25
  • 25
If L=limx2abcos(x2a)(x2a)sin(cx2a) is non-
zero finite (a>0), then-
  • L = 2 , b = 1 , c = 1
  • L=12,b=1,c=1
  • L = 4 , b = - 1 , c = - 1
  • L=14,b=1,c=1
If   zr=cosrαn2+isinrαn2, where r=1,2,3,....n, then limn(z1.z2.....zn) is equal to 
  • cosα+isinα
  • sinα2+icosα2
  • eiα/2
  • eiα
Solve:
10dxx+1+xdx=
  • 43(2+1)
  • 43(21)
  • 34(21)
  • 34(22)
If f(x) is the integral of 2sinxsin2xx3, x0. Find limx0f(x), where f(x)=df(x)dx
  • 12
  • 1
  • 13
  • 2
limxx2+sin2xx+cosx equals
  • 1
  • 0
  • does not exist
Find the value of limit limxπ62sin2x+sinx12sin2x3sinx+1=.
  • 0
  • 3
  • 3
  • 1
limx0xtan2x2xtanx(1cos2x)2=
  • 2
  • 12
  • 2
  • 12
limh0sinx+hsinxh=__________.
  • cosx
  • 12sinx
  • cosx2x
  • sinx
The value of limx0cos(sinx)cosxx4 is equal to
  • 1/5
  • 1/6
  • 1/4
  • 1/2
The value of limx1secπ2xlogx is-
  • π/2
  • 2/π
  • π/2
  • 2/π
The value of limθ0+sinθsinθ is equal to
  • 0
  • 1
  • 1
  • 4
For x>y, limx0[(sinx)1/x+(1x)sinx] is :
  • 0
  • -1
  • 1
  • 2
limx0a2ax+x2a2+ax+x2a+xax is equal to (a > 0)
  • a
  • a
  • aa
  • aa
The function f(x)=4x24xx3 is
  • discontinuous at only one point
  • discontinuous exactly at two points
  • discontinuous exactly at three points
  • None of these
limxx2cotxcosx(π2x)3 is equal to 
  • 124
  • 116
  • 18
  • 14
limx1{1x+[x+1]+[1x]}, where [x] denotes greatest integer function is
  • 0
  • 1
  • 1
  • 2
limx01+cos(πx)(1x)2 is equal to :
  • π2
  • π22
  • π22
  • π3
Evaluate: limx0e1/x1e1/x+1
  • 0
  • 1
  • 1
  • does not exist
If limx0(ax+b)4+sinxtanx=274 where a,bR then the value of 
  • a=2 and b=7
  • a=2 and b=7
  • a=7 and b=2
  • a=7 and b=2
Evaluate: limx0xtan2x2xtanx(1cos2x)2 
  • 14
  • 1
  • 12
  • 12
limxπ2cotxcosx(π2x)3 equals:

  • 124
  • 116
  • 0
  • 14
Evaluate: limx0xtan2x2xtan x(1cos2x)2
  • 14
  • 1
  • 12
  • 12
limx0xtan2x2xtanx(1cos2x)2 equals 
  • 14
  • 1
  • 12
  • 12
Solve:
Ltx2x222x2=
  • 2.22
  • 221
  • 2212
  • 22
Let f(x)={x2+k,whenx0x2k,whenx<0. If the function f(x) be continous at x=0, then k=
  • 0
  • 1
  • 2
  • 2
If 2f(sinx)+2f(cosx)=tanx, (x>0), then limx11xf(x)= 
  • 2
  • 12
  • 2
  • 12
Evaluate the following limits.
limxaxaxa.
  • 2a
  • 2a
  • 2a13
  • None of these
Ltx0sinxx+x36x5=_________
  • 1120
  • 1120
  • 0
  • 16
The value of limx0f(x) where f(x)=cos(sinx)cosxx4, is
  • 2
  • 16
  • 23
  • 13
limx1xx0(t2+5tt)dt 
  • 0
  • 1
  • 52
  • 5
The value of limxaxbabx2a2(a>b) is
  • 14a
  • 1aab
  • 12aab
  • 14aab
Limx1[[4x2x113x+x21x3]1+3(x41)x3x1]=
  • 13
  • 3
  • 12
  • 32
The value of limx0x5[x2] (where [.] denotes the greatest integer function) is
  • 25
  • 25
  • 0
The value of limx0(1cos2x)sin5xx2sin3x is
  • 10/3
  • 3/10
  • 6/5
  • 5/6
Let  U_{ { n } }=\dfrac { n! }{ (n+2)! }   where  n \in N .  If  S_{ { n } }=\sum _{ { n-1 } }^{ { n } } U_{ { n } }  then  \lim _ { n \rightarrow \infty } \mathrm { S } _ { n }  equals :
  • 2
  • 1
  • 1/2
  • 1/3
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers