Processing math: 100%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Commerce Applied Mathematics Limits And Continuity Quiz 8 - MCQExams.com
CBSE
Class 11 Commerce Applied Mathematics
Limits And Continuity
Quiz 8
lim
x
→
0
cos
(
tan
x
)
−
cos
x
x
4
is equal to
Report Question
0%
1/6
0%
-1/3
0%
1/2
0%
1
Explanation
cos
(
tan
x
)
−
cos
x
=
2
sin
(
x
+
tan
x
2
)
sin
(
x
−
tan
x
2
)
⇒
lim
x
→
0
cos
(
tan
x
)
−
cos
x
x
4
=
lim
x
→
0
2
sin
(
x
+
tan
x
2
)
sin
(
x
−
tan
x
2
)
x
4
=
lim
x
→
0
2
sin
(
x
+
tan
x
2
)
sin
(
x
−
tan
x
2
)
x
4
(
x
+
tan
x
2
)
(
x
−
tan
x
2
)
(
x
2
−
tan
2
x
4
)
=
1
2
lim
x
→
0
x
2
−
tan
2
x
x
4
=
1
2
lim
x
→
0
x
2
−
(
x
+
x
3
3
+
2
15
x
5
+
⋯
)
2
x
4
=
1
2
lim
x
→
0
1
x
2
(
1
−
(
1
+
x
2
3
+
2
15
x
4
+
…
)
2
)
=
−
1
3
The value of
lim
n
→
∞
[
1
n
+
e
1
/
n
n
+
e
2
/
n
n
+
…
.
+
e
(
n
−
1
)
/
n
n
]
is
Report Question
0%
1
0%
0
0%
e-1
0%
e+1
Explanation
lim
n
→
∞
[
1
n
+
e
1
/
n
n
+
e
2
/
n
n
+
⋯
+
e
(
n
−
1
)
/
n
n
]
=
lim
n
→
∞
[
1
+
e
1
/
n
+
(
e
1
/
n
)
2
+
⋯
+
(
e
1
/
n
)
n
−
1
n
]
=
lim
n
→
∞
1
⋅
[
(
e
1
/
n
)
n
−
1
]
n
(
e
1
/
n
−
1
)
=
(
e
−
1
)
lim
n
→
∞
1
(
e
1
/
n
−
1
1
/
n
)
=
(
e
−
1
)
×
1
=
(
e
−
1
)
lim
x
→
0
x
4
(
cot
4
x
−
cot
2
x
+
1
)
(
tan
4
x
−
tan
2
x
+
1
)
is equal to
Report Question
0%
1
0%
0
0%
2
0%
None of these
Explanation
x
4
(
cot
4
x
−
cot
2
x
+
1
)
(
tan
4
x
−
tan
2
x
+
1
)
=
x
4
(
1
+
tan
2
x
+
tan
4
x
)
tan
4
x
(
tan
4
x
−
tan
2
x
+
1
)
=
x
4
tan
4
x
,
x
≠
0
⇒
lim
x
→
0
x
4
(
cot
4
x
−
cot
2
x
+
1
)
(
tan
4
x
−
tan
2
x
+
1
)
=
lim
x
→
0
x
4
tan
4
x
=
1
lim
n
→
∞
20
∑
x
=
1
cos
2
n
(
x
−
10
)
is equal to
Report Question
0%
0
0%
1
0%
19
0%
20
Explanation
∵
lim
n
→
∞
cos
2
n
x
=
{
1
,
x
=
r
π
,
r
∈
I
0
,
x
≠
r
π
,
r
∈
I
Here, for
x
=
10
,
lim
n
→
∞
cos
2
n
(
x
−
10
)
=
1
and in all other cases it is zero.
∴
lim
n
→
∞
∞
∑
x
=
1
cos
2
n
(
x
−
10
)
=
1
The value of
l
i
m
n
→
∞
(
1
n
+
1
+
1
n
+
2
+
.
.
.
+
1
6
n
)
is
Report Question
0%
log
2
0%
log
6
0%
1
0%
log
3
A point where function
f
(
x
)
is not continuous where
f
(
x
)
=
[
sin
[
x
]
]
in
(
0
,
2
π
)
; is (
[
∗
]
denotes greatest integer
≤
x
)
Report Question
0%
(
3
,
0
)
0%
(
2
,
0
)
0%
(
1
,
0
)
0%
(
4
,
−
1
)
L
i
m
x
→
π
/
4
2
√
2
(
c
o
s
x
+
s
i
n
x
)
3
1
−
s
i
n
2
x
=
2
is equal to
Report Question
0%
3
√
2
2
0%
2
√
2
0%
4
√
2
3
0%
d
o
e
s
⧸
\exist
$
lim
x
→
0
sin
(
x
2
)
ln
(
cos
(
2
x
2
−
x
)
)
is equal to
Report Question
0%
2
0%
-2
0%
1
0%
-1
Explanation
lim
x
→
0
s
i
n
(
x
2
)
I
n
(
c
o
s
(
2
x
2
−
x
)
)
$$\displaystyle \
lim_{x \to 0}\dfrac{sin(x^2)}{log \left(1-2 sin^2 \left(\dfrac{2x^2-x}{2}\right)\right)}$$
=
lim
x
→
0
s
i
n
(
x
2
)
x
2
x
2
l
o
g
(
1
−
2
s
i
n
2
(
2
x
2
−
x
2
)
)
−
2
s
i
n
2
(
2
x
2
−
x
2
)
[
−
2
s
i
n
2
(
2
x
2
−
x
2
)
]
=
lim
x
→
0
x
2
2
s
i
n
2
(
2
x
2
−
x
2
)
(
2
x
2
−
x
2
)
2
(
2
x
2
−
x
2
)
2
lim
x
→
0
−
2
x
2
(
2
x
2
−
x
)
2
=
lim
x
→
0
−
2
(
2
x
−
1
)
2
=
−
2
lim
x
→
0
x
tan
2
x
−
2
x
tan
x
(
1
−
cos
2
x
)
2
is equal to
Report Question
0%
2
0%
-2
0%
1/2
0%
-1/2
Explanation
lim
x
→
0
x
tan
2
x
−
2
x
tan
x
4
sin
4
x
=
lim
x
→
0
x
4
sin
4
x
[
2
tan
x
1
−
tan
2
x
−
2
tan
x
]
=
lim
x
→
0
x
tan
3
x
2
sin
4
x
(
1
−
tan
2
x
)
=
1
2
lim
x
→
0
x
sin
x
1
cos
3
x
1
1
−
tan
2
x
=
1
2
×
1
×
1
1
3
×
1
1
−
0
=
1
2
lim
x
→
0
1
x
[
∫
a
y
e
sin
2
t
d
t
−
∫
a
x
+
y
e
sin
2
t
d
t
]
is equal to
Report Question
0%
e
sin
2
y
0%
sin
2
y
e
sin
2
y
0%
0
0%
None of these
Explanation
lim
x
→
0
1
x
[
∫
a
y
e
sin
2
t
d
t
+
∫
x
+
y
a
e
sin
2
t
d
t
]
=
lim
x
→
0
1
x
∫
x
+
y
y
e
sin
2
t
d
t
∴
(
0
0
form
)
Apply L'Hopital Rule
=
lim
x
→
0
e
sin
2
(
x
+
y
)
(
1
+
d
y
d
x
)
−
e
sin
2
y
d
y
d
x
1
=
e
sin
2
y
[
1
+
d
y
d
x
−
d
y
d
x
]
=
e
sin
2
y
If
y
r
=
n
!
n
+
r
−
1
C
r
−
1
r
n
,
where
n
=
k
r
(
k
is constant
)
,
then
lim
r
→
∞
y
is equal to
Report Question
0%
(
k
−
1
)
log
e
(
1
+
k
)
−
k
0%
(
k
+
1
)
log
e
(
k
−
1
)
+
k
0%
(
k
+
1
)
log
e
(
k
−
1
)
−
k
0%
(
k
−
1
)
log
e
(
k
−
1
)
+
k
Explanation
y
r
=
(
1
+
1
r
)
(
1
+
2
r
)
(
1
+
3
r
)
⋯
(
1
+
n
−
1
r
)
⇒
log
y
=
1
r
n
−
1
∑
p
=
1
log
(
1
+
p
r
)
⇒
lim
n
→
∞
y
=
lim
r
→
∞
y
=
∫
k
−
∞
log
(
1
+
x
)
d
x
=
(
k
−
1
)
log
e
(
1
+
k
)
−
k
The value of
lim
x
→
a
√
a
2
−
x
2
cot
π
2
√
a
−
x
a
+
x
is
Report Question
0%
2
a
π
0%
−
2
a
π
0%
4
a
π
0%
−
4
a
π
Explanation
lim
x
→
a
√
a
2
−
x
2
⋅
cot
π
2
√
a
−
x
a
+
x
=
lim
x
→
a
√
a
2
−
x
2
tan
π
2
√
a
−
x
a
+
x
=
2
π
lim
x
→
a
π
2
√
a
−
x
a
+
x
tan
π
2
√
a
−
x
a
+
x
(
a
+
x
)
=
4
a
π
If function
f
(
x
)
=
x
2
−
9
x
−
3
is continuous at
x
=
3
, then value of
(
3
)
will be:
Report Question
0%
6
0%
3
0%
1
0%
0
Explanation
f
(
x
)
=
x
2
−
9
x
−
3
Left hand limit
f
(
3
+
0
)
=
lim
h
→
0
f
(
3
+
h
)
=
lim
h
→
0
(
3
+
h
)
2
−
9
3
+
h
−
3
=
lim
h
→
0
h
(
6
+
h
)
h
=
lim
h
→
0
(
6
+
h
)
=
6
Function is continous at
x
=
3
, so
f
(
3
)
=
f
(
3
+
0
)
f
(
3
)
=
6
Hence, option
(
a
)
is correct.
If
f
(
x
)
=
{
log
(
1
+
m
x
)
−
log
(
1
−
n
x
)
x
;
x
≠
0
k
;
x
=
0
is continuous at
x
=
0
then the value of
k
will be:
Report Question
0%
0
0%
m
+
n
0%
m
−
n
0%
m
.
n
Explanation
∴
Function is continous at
x
=
0
∴
lim
x
→
0
f
(
x
)
=
f
(
0
)
⇒
lim
x
→
0
log
(
1
+
m
x
)
−
log
(
1
−
n
x
)
x
=
k
⇒
lim
x
→
0
[
m
x
−
m
2
x
2
2
+
m
3
x
3
3
−
.
.
.
]
−
[
n
x
−
n
2
x
2
2
+
n
3
x
3
3
−
.
.
.
]
x
=
k
⇒
lim
x
→
0
x
[
m
−
m
2
x
2
2
+
m
3
x
3
3
−
.
.
.
+
n
+
n
2
x
2
2
+
n
3
x
3
3
+
.
.
.
]
x
=
k
⇒
lim
x
→
0
m
−
m
2
x
2
2
+
m
3
x
3
3
−
.
.
.
+
n
+
n
2
x
2
2
+
n
3
x
3
3
+
.
.
.
=
k
⇒
m
+
n
=
k
⇒
k
=
m
+
n
Hence, option
(
b
)
is correct.
If function
f
(
x
)
=
{
sin
3
x
x
;
x
≠
0
m
;
x
=
0
is continuous at
x
=
2
then value of
m
will be:
Report Question
0%
3
0%
1
/
3
0%
1
0%
0
Explanation
f
(
x
)
=
{
sin
3
x
x
;
x
≠
0
m
;
x
=
0
f
(
0
)
=
m
f
(
0
+
0
)
=
lim
h
→
0
f
(
0
+
h
)
lim
h
→
0
sin
3
(
0
+
h
)
0
+
h
lim
h
→
0
3
sin
3
h
3
h
=
3
×
1
=
3
At
x
=
a
function is continuous.
So,
f
(
0
)
=
f
(
0
+
0
)
m
=
3
Hence, option
(
a
)
is correct.
The value of
lim
x
→
0
x
e
x
−
log
e
(
1
+
x
)
x
2
is
Report Question
0%
2
/
3
0%
1
/
3
0%
1
/
2
0%
3
/
2
Explanation
lim
x
→
0
x
e
x
−
log
e
(
1
+
x
)
x
2
x
[
1
+
x
+
x
2
2
!
+
x
3
3
!
+
.
.
.
.
]
=
lim
x
→
0
−
[
x
−
x
2
2
+
x
3
3
−
x
4
4
+
.
.
.
.
]
x
2
=
lim
x
→
0
[
x
+
x
2
+
x
3
2
!
+
x
4
3
!
+
.
.
.
.
−
x
+
x
2
2
−
x
3
3
+
x
4
4
−
.
.
.
.
]
x
2
=
lim
x
→
0
x
2
[
1
+
x
2
!
+
x
2
3
!
+
.
.
.
+
1
2
−
x
3
+
x
2
4
−
.
.
.
.
]
x
2
=
[
1
+
0
+
0
+
.
.
.
+
1
2
−
0
+
0
.
.
.
]
=
1
+
1
2
=
3
2
Hence, option (D) is correct.
If
f
(
x
)
=
{
1
−
√
2
sin
x
π
−
4
x
,
i
f
x
≠
π
4
a
,
i
f
x
=
π
4
is continous at
x
=
π
4
then
a
=
Report Question
0%
4
0%
2
0%
1
0%
1
/
4
The value of
lim
x
→
∞
sin
x
x
is
Report Question
0%
0
0%
∞
0%
1
0%
−
1
Explanation
lim
x
→
∞
sin
x
x
Let
x
=
1
/
y
or
y
=
1
x
Som
x
→
∞
⇒
y
→
0
∴
lim
x
→
∞
(
sin
x
x
)
=
lim
y
→
0
y
sin
(
1
y
)
=
lim
y
→
0
y
⋅
lim
y
→
0
sin
1
y
=
0
×
(any variable quantity)
=
0
Hence, option (A) is correct.
The value of
lim
x
→
0
1
−
cos
x
x
2
is
Report Question
0%
0
0%
1
/
2
0%
−
1
/
2
0%
−
1
Explanation
lim
x
→
0
1
−
cos
x
x
2
=
lim
x
→
0
1
−
1
+
2
sin
2
x
/
2
x
2
=
lim
x
→
0
2
sin
2
x
/
2
x
2
=
lim
x
→
0
2
(
sin
x
/
2
x
/
2
)
2
×
1
4
=
1
2
×
lim
x
→
0
(
sin
x
/
2
x
/
2
)
2
=
1
2
×
1
=
1
2
Hence option (B) is correct.
The value of
lim
x
→
0
(
sin
3
x
tan
x
)
4
is
Report Question
0%
0
0%
81
0%
4
0%
1
Explanation
lim
x
→
0
(
sin
3
x
tan
x
)
4
=
lim
x
→
0
(
sin
3
x
3
x
×
3
x
)
4
×
1
tan
4
x
=
lim
x
→
0
(
sin
3
x
3
x
)
4
×
3
4
tan
4
x
x
4
=
lim
x
→
0
(
sin
3
x
3
x
)
4
×
1
(
tan
x
x
)
4
×
81
=
1
×
1
×
81
=
81
Hence, option (B) is correct.
The value of
lim
x
→
∞
sin
π
4
x
cos
π
4
x
is
Report Question
0%
π
/
4
0%
π
/
2
0%
0
0%
∞
Explanation
lim
→
∞
x
sin
π
4
x
cos
π
4
x
=
lim
x
→
∞
2
sin
π
4
x
cos
π
4
x
(
π
2
x
)
×
1
2
×
π
2
x
=
lim
x
→
∞
sin
(
2
×
π
4
x
)
(
π
2
x
)
×
π
4
=
π
4
×
lim
x
→
∞
sin
(
π
2
x
)
(
π
2
x
)
=
π
4
×
1
=
π
4
Hence, option (A) is correct.
Let
f
(
x
)
=
(
256
+
a
x
)
1
/
8
−
2
(
32
+
b
x
)
1
/
5
−
2
. If
f
is continuous at
x
=
0
, then the value of
a
/
b
is:
Report Question
0%
8
5
f
(
0
)
0%
32
5
f
(
0
)
0%
64
5
f
(
0
)
0%
16
5
f
(
0
)
Explanation
f
(
x
)
=
(
256
+
a
x
)
1
/
8
−
2
(
32
+
b
x
)
1
/
5
−
2
Given ,
f
is continuous at
x
=
0
.
lim
x
→
0
f
(
x
)
=
f
(
0
)
Now,
lim
x
→
0
f
(
x
)
=
lim
x
→
0
(
256
+
a
x
)
1
/
8
−
2
(
32
+
b
x
)
1
/
5
−
2
It is of the form
0
0
, so applying L-Hospital's rule
=
lim
x
→
0
1
8
a
(
256
+
a
x
)
−
7
/
8
1
5
b
(
32
+
b
x
)
−
4
/
5
=
5
a
64
b
Hence,
5
a
64
b
=
f
(
0
)
⇒
a
b
=
64
5
f
(
0
)
Let
α
(
a
)
and
β
(
a
)
be the roots of the equation
(
3
√
1
+
a
−
1
)
x
2
+
(
√
1
+
a
−
1
)
x
+
(
6
√
1
+
a
−
1
)
=
0
where
a
>
−
1
.
Then
lim
a
→
0
+
α
(
a
)
and
lim
a
→
0
+
β
(
a
)
are
Report Question
0%
−
5
2
and 1
0%
−
1
2
and
−
1
0%
−
7
2
and 2
0%
−
9
2
and 3
Explanation
Let
1
+
a
=
y
.
The equation becomes
(
y
1
3
−
1
)
x
2
+
(
y
1
2
−
1
)
x
+
(
y
1
6
−
1
)
=
0
Dividing by
y
−
1
, we get
(
y
1
3
−
1
y
−
1
)
x
2
+
(
y
1
2
−
1
y
−
1
)
x
+
(
y
1
6
−
1
y
−
1
)
=
0
When
a
→
0
,
y
→
1
.
Hence, taking
lim
y
→
1
on both the sides,
⇒
lim
y
→
1
(
y
1
3
−
1
y
−
1
)
x
2
+
(
y
1
2
−
1
y
−
1
)
x
+
(
y
1
6
−
1
y
−
1
)
=
0
⇒
1
3
x
2
+
1
2
x
+
1
6
=
0
...[Using
lim
x
→
a
x
n
−
a
n
x
−
a
=
n
a
n
−
1
]
⇒
2
x
2
+
3
x
+
1
=
0
Solving the quadratic equation, we get
⇒
x
=
−
1
or
x
=
−
1
2
.
Since
α
(
a
)
and
β
(
a
)
are roots of the given equation, we get
lim
a
→
0
+
α
(
a
)
=
−
1
and
lim
a
→
0
+
β
(
a
)
=
−
1
2
.
If
f
(
x
)
=
{
(
c
o
s
x
)
1
/
s
i
n
x
f
o
r
x
≠
0
k
f
o
r
x
=
0
Then the value of
k
, so that
f
is continuous at
x
=
0
is
Report Question
0%
0
0%
1
0%
1
2
0%
2
Explanation
lim
x
→
0
f
(
x
)
=
k
lim
x
→
0
(
cos
x
)
1
sin
k
=
k
1
∞
form
e
lim
x
→
0
cos
x
−
1
sin
x
=
e
lim
x
→
0
−
sin
x
cos
x
(
0
0
f
o
r
m
)
=
e
−
0
1
=
1
=
k
The function
f
:
R
/
{
0
}
→
R
given by
f
(
x
)
=
1
x
−
2
e
2
x
−
1
can be made continuous at
x
=
0
by defining
f
(
0
)
as -
Report Question
0%
2
0%
−
1
0%
0
0%
1
Explanation
f
(
x
)
=
1
x
−
2
e
2
x
−
1
=
e
2
x
−
1
−
2
x
x
(
e
2
x
−
1
)
Using expansion of
e
x
f
(
x
)
=
(
1
+
2
x
+
(
2
x
)
2
2
!
+
(
2
x
)
3
3
!
+
.
.
.
)
−
1
−
2
x
x
(
e
2
x
−
1
)
f
(
x
)
=
(
2
x
)
2
2
!
+
(
2
x
)
3
3
!
x
(
e
2
x
−
1
)
=
2
x
(
(
2
x
)
2
!
+
(
2
x
)
2
3
!
)
x
×
(
e
2
x
−
1
)
f
(
x
)
=
2
x
(
e
2
x
−
1
)
×
(
(
2
x
)
2
!
+
(
2
x
)
2
3
!
)
x
Now,
lim
x
→
0
2
x
(
e
2
x
−
1
)
×
(
2
x
)
2
!
+
(
2
x
)
2
3
!
+
.
.
.
x
=
1
×
1
=
1
Hence, option D.
f
(
x
)
=
{
cos
2
x
−
sin
2
x
−
1
√
x
2
+
4
−
2
,
x
≠
0
a
,
x
=
0
then the value of
a
in order that
f
(
x
)
may be continuous at
x
=
0
is
Report Question
0%
−
8
0%
8
0%
−
4
0%
4
Explanation
Given:
f
(
x
)
=
{
cos
2
x
−
sin
2
x
−
1
√
x
2
+
4
−
2
,
(
x
≠
0
)
a
,
(
x
≠
0
)
is continuous at
x
=
0
, then
lim
x
→
0
f
(
x
)
=
lim
x
→
0
cos
2
x
−
sin
2
x
−
1
√
x
2
+
4
−
2
=
lim
x
→
0
cos
2
x
−
1
√
x
2
+
4
−
2
As th function is of the
0
0
form,applying L-Hospital's rule,
=
lim
x
→
0
[
−
2
sin
2
x
x
√
x
2
+
4
]
=
lim
x
→
0
2
−
sin
2
x
√
x
2
+
4
x
=
−
lim
x
→
0
2
[
2
cos
2
x
√
x
2
+
4
+
sin
2
x
x
√
x
2
+
4
]
=
−
[
4
√
4
]
=
−
8
Thus,
lim
x
→
0
f
(
x
)
=
−
8
For function to be continuous at
x
=
0
.
f
(
0
)
=
lim
x
→
0
f
(
x
)
⇒
a
=
−
8
If
f
(
x
)
=
sin
3
x
+
A
sin
2
x
+
B
sin
x
x
5
;
x
≠
0
is continuous at
x
=
0
, then
Report Question
0%
A
+
B
=
2
0%
A
+
B
=
1
0%
A
+
B
=
0
0%
A
−
B
=
1
Explanation
f
(
x
)
=
s
i
n
3
x
+
A
s
i
n
2
x
+
B
s
i
n
x
x
5
;
x
≠
0
lim
x
→
0
f
(
x
)
=
lim
x
→
0
s
i
n
3
x
+
A
s
i
n
2
x
+
B
s
i
n
x
x
5
It is of the form
0
0
, so applying L-Hospital's rule
=
lim
x
→
0
3
cos
3
x
+
2
A
cos
2
x
+
B
cos
x
5
x
4
As
x
→
0
,
D
r
→
0
⇒
N
r
→
0
lim
x
→
0
3
cos
3
x
+
2
A
cos
2
x
+
B
cos
x
=
0
⇒
3
+
2
A
+
B
=
0
.....(i)
Again
lim
x
→
0
3
cos
3
x
+
2
A
cos
2
x
+
B
cos
x
5
x
4
is of the form
0
0
=
lim
x
→
0
−
9
sin
3
x
−
4
A
sin
2
x
−
B
sin
x
20
x
3
Again of the form
0
0
=
lim
x
→
0
−
27
cos
3
x
−
8
A
cos
2
x
−
B
cos
x
60
x
2
As
x
→
0
,
D
r
→
0
⇒
N
r
→
0
lim
x
→
0
−
27
cos
3
x
−
8
A
cos
2
x
−
B
cos
x
=
0
⇒
27
+
8
A
+
B
=
0
.....(ii)
Solving (i) and (ii), we get
A
=
−
4
,
B
=
5
Thus,
A
+
B
=
1
f
(
x
)
=
{
(
x
+
b
x
2
)
1
/
2
−
x
1
/
2
b
x
3
/
2
x
>
0
c
x
=
0
sin
(
a
+
1
)
x
+
sin
x
x
x
<
0
is continuous at
x
=
0
, then
Report Question
0%
a
=
−
3
2
,
b
=
0
,
c
=
1
2
0%
a
=
−
3
2
,
b
≠
0
,
c
=
1
2
0%
a
=
3
2
,
b
≠
0
,
c
=
1
2
0%
a
=
3
2
,
b
≠
0
,
c
=
−
1
2
Explanation
Given:
f
(
x
)
=
{
(
x
+
b
x
2
)
1
/
2
−
x
1
/
2
b
x
3
/
2
x
>
0
c
x
=
0
sin
(
a
+
1
)
x
+
sin
x
x
x
<
0
is continuous at
x
=
0
Multiply and divide by
(
(
x
+
b
x
2
)
1
/
2
+
x
1
/
2
)
lim
x
→
0
+
=
lim
x
→
0
(
x
+
b
x
2
)
+
(
x
)
b
x
3
2
(
(
x
+
b
x
2
)
1
2
+
x
1
2
)
=
lim
x
→
0
x
1
2
(
x
+
b
x
2
)
1
2
+
x
1
2
=
lim
x
→
0
1
(
1
+
b
x
)
1
2
+
1
=
1
2
lim
x
→
0
(
a
+
1
)
s
i
n
(
a
+
1
)
x
(
a
+
1
)
x
+
s
i
n
x
x
(
a
+
1
)
+
1
=
1
2
a
=
−
3
2
c
=
1
2
(By continuity)
The graph of the function
y
=
f
(
x
)
has a unique tangent at the point
(
e
a
,
0
)
through which the graph passes then
lim
x
→
e
a
l
o
g
e
{
1
+
7
f
(
x
)
}
−
s
i
n
f
(
x
)
3
f
(
x
)
is
Report Question
0%
1
0%
2
0%
0
0%
−
1
Explanation
Given
y
=
f
(
x
)
has a unique tangent at the point
(
e
a
,
0
)
.
So, as
x
→
e
a
,
f
(
x
)
→
0
Now,
lim
x
→
e
a
l
o
g
e
{
1
+
7
f
(
x
)
}
−
sin
f
(
x
)
3
f
(
x
)
lim
x
→
e
a
l
o
g
e
(
1
+
7
f
(
x
)
)
3
f
(
x
)
−
sin
f
(
x
)
3
f
(
x
)
=
7
3
lim
x
→
e
a
l
o
g
e
(
1
+
7
f
(
x
)
)
7
f
(
x
)
−
1
3
lim
x
→
e
a
sin
f
(
x
)
f
(
x
)
=
7
−
1
3
=
2
Assertion(A):
f
(
x
)
=
{
x
2
sin
(
1
x
)
,
x
≠
0
0
,
x
=
0
is continuous at
x
=
0
Reason(R): Both
h
(
x
)
=
x
2
,
g
(
x
)
=
{
sin
(
1
x
)
,
x
≠
0
0
,
x
=
0
are continuous at
x
=
0
Report Question
0%
Both A and R are true and R is the correct explanation of A
0%
Both A and R are true and R is not the correct explanation of A
0%
A is true but R is false
0%
R is true but A is false
Explanation
Assertion
f
(
0
)
=
0
lim
x
→
0
x
2
sin
(
1
x
)
=
0
2
×
(finite value)
=
0
∴
It is continuous at
x
=
0
Reason:
h
(
x
)
=
x
2
is continuous
but
g
(
x
)
is not continuous
lim
x
→
0
sin
(
1
x
)
=
not defined (value oscillates)
lim
x
→
0
sin
(
1
x
)
≠
0
∴
not continuous.
Let
a
,
b
,
c
ϵ
R
+
and
lim
n
→
∞
n
∑
k
=
1
n
(
k
+
a
n
)
(
k
+
b
n
)
=
A
a
−
b
l
n
a
(
b
+
B
)
b
(
a
+
C
)
,
a
≠
b
,
then
(
A
+
B
+
C
)
is equal to
Report Question
0%
2
0%
3
0%
4
0%
5
Explanation
Let
a
,
b
,
c
ϵ
R
+
and
lim
n
→
∞
n
∑
k
=
1
n
n
2
(
a
+
k
n
)
(
b
+
k
n
)
=
lim
n
→
∞
1
n
n
∑
k
=
1
1
(
a
+
k
n
)
(
b
+
k
n
)
=
∫
1
0
1
(
a
+
x
)
(
b
+
x
)
d
x
=
1
a
−
b
∫
1
0
(
a
+
x
)
−
(
b
+
x
)
(
a
+
x
)
(
b
+
x
)
d
x
=
1
a
−
b
∫
1
0
(
1
b
+
x
−
1
a
+
x
)
d
x
=
1
a
−
b
(
l
n
(
b
+
x
)
−
l
n
(
a
+
x
)
)
1
0
=
1
a
−
b
(
l
n
(
b
+
x
)
(
a
+
x
)
)
1
0
=
1
a
−
b
l
n
(
b
+
1
)
a
(
a
+
1
)
b
∴
A
+
B
+
C
=
3
Hence, option 'B' is correct.
If f (x)
=
{
|
x
+
2
|
t
a
n
−
1
(
2
x
+
2
)
x
≠
−
2
x
=
−
2
,
then f(x) is
Report Question
0%
continuous at
x
=
−
2
0%
not continuous at
x
=
−
2
0%
differentiable at
x
=
−
2
0%
continuous but not differentiable at
x
=
−
2
Explanation
L.H.L
=
lim
x
→
−
2
−
f
(
x
)
=
lim
h
→
0
+
f
(
−
2
−
h
)
=
lim
h
→
0
+
|
−
2
−
h
+
2
|
t
a
n
−
1
(
−
2
−
h
+
2
)
lim
h
→
0
+
h
t
a
n
−
1
(
−
h
)
lim
h
→
0
+
h
−
t
a
n
−
1
h
& R.H.L.
=
lim
x
→
−
2
+
f
(
x
)
=
lim
h
→
0
+
f
−
2
+
h
=
lim
h
→
0
+
|
−
2
+
h
+
2
|
t
a
n
−
1
(
−
2
+
h
+
2
)
=
lim
h
→
0
+
h
t
a
n
−
1
(
h
)
=
1
∴
lim
x
→
−
2
−
f
(
x
)
≠
lim
x
→
−
2
+
f
(
x
)
so, f(x) is not continuous & not differentiable at x
=
−
2
The function
f
(
x
)
=
x
−
|
x
−
x
2
|
,
−
1
≤
x
≤
1
is continuous on the interval
Report Question
0%
[
−
1
,
1
]
0%
[
−
1
,
2
]
0%
[
−
1
,
1
]
−
{
0
}
0%
(
−
1
,
1
)
−
{
0
}
Explanation
Given,
f
(
x
)
=
x
−
|
x
−
x
2
|
=
x
−
|
x
(
1
−
x
)
|
∴
continuity is to be checked at
x
=
0
and
x
=
1
At
x
=
0
L
H
L
=
lim
h
→
0
f
(
0
−
h
)
=
lim
h
→
0
[
−
h
−
|
−
h
(
1
+
h
)
|
]
=
0
R
H
L
=
lim
h
→
0
f
(
0
+
h
)
=
lim
h
→
0
[
h
−
|
h
(
1
−
h
)
|
]
=
0
Also,
f
(
0
)
=
0
Since
L
H
L
=
R
H
L
=
f
(
0
)
∴
f
(
x
)
is continuous at
x
=
0
At
x
=
1
L
H
L
=
lim
h
→
0
f
(
1
−
h
)
=
lim
h
→
0
[
(
1
−
h
)
−
|
(
1
−
h
)
(
1
−
1
+
h
)
|
]
=
1
R
H
L
=
lim
h
→
0
f
(
1
+
h
)
=
lim
h
→
0
[
(
1
+
h
)
−
|
(
1
+
h
)
(
1
−
1
−
h
)
|
]
=
1
Also,
f
(
1
)
=
1
∴
f
(
x
)
is continuous at
x
=
1
Hence
f
(
x
)
is continuous for all
x
∈
[
−
1
,
1
]
lim
x
→
∞
2
√
x
+
3
3
√
x
+
4
4
√
x
+
.
.
.
+
n
n
√
x
√
(
2
x
−
3
)
+
3
√
(
2
x
−
3
)
+
4
√
(
2
x
−
3
)
+
.
.
.
+
n
√
(
2
x
−
3
)
is equal to
Report Question
0%
1
0%
∞
0%
√
2
0%
None of these
Explanation
lim
x
→
∞
2
√
x
+
3
3
√
x
+
4
4
√
x
+
.
.
.
+
n
n
√
x
√
(
2
x
−
3
)
+
3
√
(
2
x
−
3
)
+
4
√
(
2
x
−
3
)
+
.
.
.
+
n
√
(
2
x
−
3
)
Dividing numerator and denominator by
√
x
=
lim
x
→
∞
2
+
3
x
−
1
6
+
4
x
−
1
4
+
.
.
.
+
n
x
(
2
−
n
)
2
n
√
(
2
−
3
x
)
+
3
√
(
2
x
−
3
)
√
x
+
.
.
.
+
n
√
(
2
x
−
3
)
√
x
=
lim
x
→
∞
2
+
3
x
1
/
6
+
4
x
1
/
4
+
.
.
.
+
n
x
(
n
−
2
)
2
n
√
(
2
−
3
x
)
+
6
√
(
2
x
−
3
)
2
x
3
+
.
.
.
+
2
n
√
(
2
x
−
3
)
2
x
n
=
2
√
2
=
√
2
If
f
(
x
)
=
3
x
2
+
a
x
+
a
+
1
x
2
+
x
−
2
, then which of the following can be correct?
Report Question
0%
lim
x
→
1
f
(
x
)
exists
⇒
a
=
−
2
0%
lim
x
→
−
2
f
(
x
)
exists
⇒
a
=
13
0%
lim
x
→
1
f
(
x
)
=
4
3
0%
lim
x
→
−
2
f
(
x
)
=
−
1
3
Explanation
f
(
x
)
=
3
x
2
+
a
x
+
a
+
1
(
x
+
2
)
(
x
−
1
)
As
x
→
1
,
Denominator
→
0
. Hence as
x
→
1
,
Numerator
→
0
.
Therefore,
3
+
2
a
+
1
=
0
or
a
=
−
2
As
x
→
−
2
,
Denominator
→
0
.Hence as
x
→
−
2
,
Numerator
→
0
.
Therefore,
12
−
2
a
+
a
+
1
=
0
or
a
=
13
Now,
lim
x
→
1
f
(
x
)
=
lim
x
→
1
3
x
2
−
2
x
−
1
(
x
+
2
)
(
x
−
1
)
=
lim
x
→
1
(
3
x
+
1
)
(
x
−
1
)
(
x
+
2
)
(
x
−
1
)
=
4
3
Now,
lim
x
→
−
2
3
x
2
+
13
x
+
14
(
x
+
2
)
(
x
−
1
)
=
lim
x
→
−
2
(
3
x
+
7
)
(
x
+
2
)
(
x
+
2
)
(
x
−
1
)
=
−
1
3
If the function
f
(
x
)
=
{
(
1
+
|
tan
x
|
)
p
|
tan
x
|
,
−
π
3
<
x
<
0
q
x
=
0
e
sin
3
x
sin
2
x
,
0
<
x
<
π
3
is continuous at
x
=
0
, then
Report Question
0%
p
=
3
2
0%
p
=
2
3
0%
log
e
q
=
p
0%
q
=
2
Explanation
Since f(x) is continuous at
x
=
0
lim
x
→
0
−
f
(
x
)
=
f
(
0
)
=
lim
x
→
0
+
f
(
x
)
...(1)
Now ,
L
H
L
=
lim
x
→
0
−
f
(
x
)
=
lim
x
→
0
(
1
−
t
a
n
x
)
−
p
t
a
n
x
Since
lim
x
→
0
(
1
+
x
)
1
/
x
=
e
⇒
L
H
L
=
e
p
...(2)
Now,
R
H
L
=
lim
x
→
0
+
f
(
x
)
=
lim
x
→
0
e
sin
3
x
sin
2
x
=
lim
x
→
0
e
3
2
(
sin
3
x
3
x
)
(
2
x
sin
2
x
)
R
H
L
=
e
3
/
2
....(3)
From (1), (2) and (3)
e
p
=
e
3
/
2
=
q
⇒
p
=
3
2
=
log
e
q
Let
tan
α
.
x
+
sin
α
.
y
=
α
and
α
cosec
α
.
x
+
cos
α
.
y
=
1
be two variable straight line,
α
being the parameter. Let
P
be the point of intersection of the lines. In the limiting position when
α
→
0
, the point
P
lies on the line
Report Question
0%
x
=
2
0%
x
=
−
1
0%
y
+
1
=
0
0%
y
=
2
Explanation
Solving
tan
α
.
x
+
sin
α
.
y
=
α
and
α
cosec
α
.
x
+
cos
α
.
y
=
1
, we get
x
=
α
cos
α
−
sin
α
sin
α
−
α
and
y
=
α
−
x
tan
α
sin
α
lim
α
→
0
x
=
lim
α
→
0
cos
α
−
α
sin
α
−
cos
α
cos
α
−
1
=
lim
α
→
0
α
sin
α
2
sin
2
α
2
=
lim
α
→
0
4
(
α
2
)
2
sin
α
α
(
sin
α
2
)
2
2
=
2
lim
α
→
0
y
=
lim
α
→
α
α
−
x
tan
α
sin
α
=
lim
α
→
0
(
α
sin
α
−
x
cos
α
)
=
1
−
2
=
−
1
Hence
P
=
(
2
,
−
1
)
if
f
(
x
)
=
{
cos
[
x
]
,
x
≥
0
|
x
|
+
a
,
x
<
0
}
Find
the value of a , given that
lim
x
→
0
f
(
x
)
exists,
where[.] denotes
Report Question
0%
-1
0%
2
0%
1
0%
0
f
(
x
)
=
{
(
3
/
x
2
)
sin
2
x
2
i
f
x
M
0
x
2
+
2
x
+
c
1
−
3
x
2
i
f
x
≥
0
,
x
≠
1
√
3
0
x
=
1
/
√
3
then in order that
f
be continuous at
x
=
0
, the value of
c
is
Report Question
0%
2
0%
4
0%
6
0%
8
L
t
x
→
0
(
c
o
s
e
c
x
−
1
x
)
=
?
Report Question
0%
0
0%
1
/
2
0%
1
0%
Does not exits
For each
t
∈
R
, let [t] be the greatest integer less than or equal to t. Then,
l
i
m
x
→
0
+
x
(
[
1
x
]
+
[
2
x
]
+
.
.
.
+
[
15
x
]
)
Report Question
0%
is equal to 0
0%
is equal to 15
0%
is equal to 120
0%
does not exist (in R)
If
ϕ
(
x
)
=
lim
n
→
∞
x
2
n
f
(
x
)
+
g
(
x
)
1
+
x
2
n
, then
Report Question
0%
ϕ
(
x
)
=
g
(
x
)
for all x
∈
R
0%
ϕ
(
x
)
=
f
(
x
)
for all x
∈
R
0%
{
g
(
x
)
f
o
r
−
1
<
x
<
1
f
(
x
)
f
o
r
|
x
|
≥
1
0%
{
g
(
x
)
f
o
r
|
x
|
<
1
f
(
x
)
f
o
r
|
x
|
>
1
f
(
x
)
+
g
(
x
)
2
f
o
r
|
x
|
=
1
Explanation
We have,
lim
n
→
∞
x
2
n
=
{
0
,
i
f
|
x
|
<
1
∞
,
i
f
|
x
|
>
1
1
,
i
f
|
x
|
=
1
Thus, we have the following cases:
CASE I
When
−
1
<
x
<
1
In this case, we have
lim
n
→
∞
x
2
n
=
0
∴
ϕ
(
x
)
=
lim
n
→
∞
x
2
n
f
(
x
)
+
g
(
x
)
1
+
x
2
n
=
g
(
x
)
CASE II
When
|
x
|
>
1
In this case, we have
lim
n
→
∞
1
x
2
n
=
0
∴
ϕ
(
x
)
=
lim
n
→
∞
x
2
n
f
(
x
)
+
g
(
x
)
1
+
x
2
n
⇒
ϕ
(
x
)
=
lim
n
→
∞
f
(
x
)
+
g
(
x
)
x
2
n
1
+
1
x
2
n
=
f
(
x
)
+
0
1
+
0
=
f
(
x
)
CASE III
When
|
x
|
=
1
In this case, we have
x
2
n
=
1
⇒
lim
n
→
∞
x
2
n
=
1
.
∴
ϕ
(
x
)
=
f
(
x
)
+
g
(
x
)
2
If
f
(
x
)
=
x
−
e
x
+
c
o
s
2
x
x
2
,
x
≠
0
, is continuous at
x
=
0
,
where [x] and {x} denotes the greatest integer and fractional part functions, respectively.
Then which of the following is correct?
Report Question
0%
f
(
0
)
=
5
/
2
0%
[
f
(
0
)
]
=
−
2
0%
{
f
(
0
)
}
=
−
0.5
0%
[
f
(
0
)
]
{
f
(
0
)
}
=
−
1.5
Explanation
lim
h
→
0
x
−
e
x
+
1
−
(
1
−
c
o
s
2
x
)
x
2
=
lim
h
→
0
[
x
−
e
x
+
1
x
2
−
(
1
−
c
o
s
2
x
)
x
2
]
=
lim
h
→
0
[
x
+
1
−
(
1
+
x
+
x
2
2
)
x
2
−
2
s
i
n
2
x
x
2
]
(Using expansion of
e
x
)
=
−
1
2
−
2
=
−
5
2
Hence, for continuity,
f
(
0
)
=
−
5
2
Now,
[
f
(
0
)
]
=
−
3
;
{
f
(
0
)
}
=
{
−
5
2
}
=
1
2
.
Hence,
[
f
(
0
)
]
{
f
(
0
)
}
=
−
3
2
=
−
1.5
Hence, option D is correct.
Let
f
(
x
)
=
x
2
−
9
x
+
20
x
−
[
x
]
where [x] is the greatest integer not greater than
x
, then
Report Question
0%
lim
x
→
5
−
f
(
x
)
=
0
0%
lim
x
→
5
+
f
(
x
)
=
1
0%
lim
x
→
5
f
(
x
)
does not exists
0%
n
o
n
e
o
f
t
h
e
s
e
Explanation
lim
x
→
5
−
f
(
x
)
=
lim
x
→
5
−
x
2
−
9
x
+
20
x
−
[
x
]
=
lim
x
→
5
−
(
x
−
5
)
(
x
−
4
)
x
−
4
=
lim
x
→
5
−
(
x
−
5
)
=
0
Hence, option A is correct.
Now,
lim
x
→
5
−
f
(
x
)
=
0
lim
x
→
5
+
x
2
−
9
x
+
20
x
−
[
x
]
=
lim
x
→
5
+
(
x
−
5
)
(
x
−
4
)
x
−
5
=
lim
x
→
5
+
(
x
−
4
)
=
1
Hence, option B is correct.
Since,
L
H
L
≠
R
H
L
Hence, limit does not exist.
If
x
1
,
x
2
,
x
3
,
.
.
,
x
n
are the roots of the equation
x
n
+
a
x
+
b
=
0
,
then the value of
(
x
1
−
x
2
)
(
x
1
−
x
3
)
(
x
1
−
x
4
)
.
.
.
(
x
1
−
x
n
)
is equal to
Report Question
0%
n
x
1
n
−
1
+
a
0%
n
x
1
n
−
1
0%
n
x
−
1
+
b
0%
n
x
1
n
−
1
+
b
Explanation
Given:
x
1
,
x
2
,
x
3
.
.
.
.
.
x
n
are the roots of
x
n
+
a
x
+
b
=
0
To find:
(
x
1
−
x
2
)
(
x
1
−
x
3
)
.
.
.
.
.
.
(
x
1
−
x
n
)
=
?
Sol:
(
x
1
−
x
2
)
(
x
1
−
x
3
)
.
.
.
.
.
.
(
x
1
−
x
n
)
=
(
x
1
−
x
1
)
(
x
1
−
x
2
)
(
x
1
−
x
1
)
.
.
.
.
.
.
.
.
(
x
1
−
x
2
)
=
lim
x
→
x
1
(
x
−
x
1
)
(
x
−
x
2
)
.
.
.
.
.
.
.
.
.
(
x
−
x
n
)
(
x
−
x
1
)
=
lim
x
→
x
1
x
n
+
a
x
+
b
(
x
−
x
1
)
Using l'Hospital rule, we get
lim
x
→
x
1
n
.
x
n
−
1
+
a
1
=
n
x
n
−
1
1
+
a
Hence, correct answer is
n
x
n
−
1
1
+
a
STATEMENT-1 :
lim
x
→
0
[
x
]
{
e
1
/
x
−
1
e
1
/
x
+
1
}
(where [.] represents the greatest integer function) does not exist.
STATEMENT-2 :
lim
x
→
0
(
e
1
/
x
−
1
e
1
/
x
+
1
)
does not exists.
Report Question
0%
STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is a correct explanation for STATEMENT-1
0%
STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is NOT a correct explanation for STATEMENT-1
0%
STATEMENT-1 is True, STATEMENT-2 is False
0%
STATEMENT-1 is False, STATEMENT-2 is True
Explanation
I)
lim
x
→
0
[
x
]
{
e
1
/
x
−
1
e
1
/
x
+
1
}
R
H
L
=
lim
x
→
0
+
[
x
]
(
e
1
/
x
−
1
e
1
/
x
+
1
)
=
lim
h
→
0
[
h
]
(
e
1
/
h
−
1
e
1
/
h
+
1
)
=
lim
h
→
0
[
h
]
(
1
−
e
−
1
/
h
1
+
e
−
1
/
h
)
=
0
×
1
=
0
L
H
L
=
lim
x
→
0
−
[
x
]
(
e
1
/
x
−
1
e
1
/
x
+
1
)
=
lim
h
→
0
[
−
h
]
(
e
−
1
/
h
−
1
e
−
1
/
h
+
1
)
=
−
1
×
(
−
1
)
=
1
Here,
L
H
L
≠
R
H
L
Thus, given limit does not exist.
II)
lim
x
→
0
(
e
1
/
x
−
1
e
1
/
x
+
1
)
R
H
L
=
lim
x
→
0
+
(
e
1
/
x
−
1
e
1
/
x
+
1
)
=
lim
h
→
0
(
e
1
/
h
−
1
e
1
/
h
+
1
)
=
lim
h
→
0
(
1
−
e
−
1
/
h
1
+
e
−
1
/
h
)
R
H
L
=
1
L
H
L
=
lim
x
→
0
−
(
e
1
/
x
−
1
e
1
/
x
+
1
)
=
lim
h
→
0
(
e
−
1
/
h
−
1
e
−
1
/
h
+
1
)
L
H
L
=
−
1
So,
lim
x
→
0
(
e
1
/
x
−
1
e
1
/
x
+
1
)
does not exist, but this cannot be taken as only reason for non-existence of
lim
x
→
0
[
x
]
(
e
1
/
x
−
1
e
1
/
x
+
1
)
.
If
lim
x
→
a
(
f
(
x
)
+
g
(
x
)
)
=
2
and
lim
x
→
a
(
f
(
x
)
−
g
(
x
)
)
=
1
,
then the value of
lim
x
→
a
f
(
x
)
g
(
x
)
is?
Report Question
0%
Does not exist
0%
Exists and is
3
4
0%
Exists and is
−
3
4
0%
Exists and is
4
3
Explanation
Given,
lim
x
→
a
(
f
(
x
)
+
g
(
x
)
)
=
2
and
lim
x
→
a
(
f
(
x
)
−
g
(
x
)
)
=
1
,
Lets, assume
F
(
x
)
=
(
f
(
x
)
+
g
(
x
)
)
and
G
(
x
)
=
(
f
(
x
)
−
g
(
x
)
)
∵
Limits of both
F
(
x
)
and
G
(
x
)
exists as
x
→
a
, we can say that
lim
x
→
a
(
F
(
x
)
+
G
(
x
)
)
and
lim
x
→
a
(
F
(
x
)
−
G
(
x
)
)
also exists.
∴
lim
x
→
a
(
F
(
x
)
+
G
(
x
)
)
=
3
⇒
2
×
lim
x
→
a
f
(
x
)
=
3
⇒
lim
x
→
a
f
(
x
)
=
3
2
Similarly,
lim
x
→
a
(
F
(
x
)
−
G
(
x
)
)
=
1
⇒
2
×
lim
x
→
a
g
(
x
)
=
1
⇒
lim
x
→
a
g
(
x
)
=
1
2
Hence,
lim
x
→
a
(
f
(
x
)
⋅
g
(
x
)
)
=
lim
x
→
a
f
(
x
)
⋅
lim
x
→
a
g
(
x
)
=
3
2
×
1
2
=
3
4
Hence, option B.
x
1
2
3
4
5
f
(
x
)
4
3
7
1
3
The function f is continuous on the closed interval
[
1
,
5
]
and values of the function are shown in the table above. If the values in the table are used to calculate a trapezoidal sum, the approximate value of
∫
5
1
f
(
x
)
d
x
is
Report Question
0%
14
0%
14.5
0%
15
0%
29
lim
n
→
∞
1
n
2
n
∑
r
=
1
r
√
n
2
+
r
2
equal to:
Report Question
0%
1
+
√
5
0%
−
1
+
√
5
0%
1
+
√
2
0%
1
+
√
2
The value of
lim
x
→
0
(
(
sin
x
)
1
/
x
+
(
1
+
x
)
sin
x
)
whre
x
>
0
is
Report Question
0%
0
0%
−
1
0%
1
0%
2
Explanation
Given
lim
x
→
0
(
(
s
i
n
x
)
1
x
+
(
1
+
x
)
s
i
n
x
)
=
lim
x
→
0
(
s
i
n
x
)
1
x
+
lim
x
→
0
(
1
+
x
)
s
i
n
x
=
(
s
i
n
0
)
1
0
+
lim
x
→
0
(
1
+
x
)
s
i
n
x
=
(
0
)
∞
+
lim
x
→
0
(
1
+
x
)
s
i
n
x
=
0
+
e
lim
x
→
0
[
l
o
g
(
1
+
x
)
s
i
n
x
]
(
∵
e
l
o
g
a
=
a
)
=
e
lim
x
→
0
[
s
i
n
x
.
l
o
g
(
1
+
x
)
]
=
e
lim
x
→
0
s
i
n
x
×
lim
x
→
0
l
o
g
(
1
+
x
)
=
e
s
i
n
(
0
)
×
l
o
g
(
1
+
0
)
=
e
0
×
l
o
g
(
1
)
=
e
0
×
0
=
e
0
=
1
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
0
Answered
1
Not Answered
49
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page