Processing math: 100%

CBSE Questions for Class 11 Commerce Applied Mathematics Limits And Continuity     Quiz 8 - MCQExams.com

limx0cos(tanx)cosxx4 is equal to
  • 1/6
  • -1/3
  • 1/2
  • 1
The value of limn[1n+e1/nn+e2/nn+.+e(n1)/nn] is
  • 1
  • 0
  • e-1
  • e+1
 limx0x4(cot4xcot2x+1)(tan4xtan2x+1) is equal to
  • 1
  • 0
  • 2
  • None of these
limn20x=1cos2n(x10) is equal to
  • 0
  • 1
  • 19
  • 20
The value of limn(1n+1+1n+2+...+16n) is
  • log2
  • log6
  • 1
  • log3
A point where function f(x) is not continuous where f(x)=[sin[x]] in (0,2π); is ([] denotes greatest integer x)
  • (3,0)
  • (2,0)
  • (1,0)
  • (4,1)
Limxπ/422(cosx+sinx)31sin2x=2 is equal to
  • 322
  • 22
  • 423
  • does\exist$
limx0sin(x2)ln(cos(2x2x)) is equal to
  • 2
  • -2
  • 1
  • -1
limx0xtan2x2xtanx(1cos2x)2 is equal to
  • 2
  • -2
  • 1/2
  • -1/2
limx01x[ayesin2tdtax+yesin2tdt] is equal to
  • esin2y
  • sin2yesin2y
  • 0
  • None of these
If yr=n!n+r1Cr1rn, where n=kr(k is constant ), then limry is equal to
  • (k1)loge(1+k)k
  • (k+1)loge(k1)+k
  • (k+1)loge(k1)k
  • (k1)loge(k1)+k
The value of limxaa2x2cotπ2axa+x is
  • 2aπ
  • 2aπ
  • 4aπ
  • 4aπ
If function f(x)=x29x3 is continuous at x=3, then value of (3) will be:
  • 6
  • 3
  • 1
  • 0
If f(x)={log(1+mx)log(1nx)x;x0k;x=0
is continuous at x=0 then the value of k will be:
  • 0
  • m+n
  • mn
  • m.n
If function f(x)={sin3xx;x0m;x=0
is continuous at x=2 then value of m will be:
  • 3
  • 1/3
  • 1
  • 0
The value of limx0xexloge(1+x)x2 is
  • 2/3
  • 1/3
  • 1/2
  • 3/2
If f(x)={12sinxπ4x,ifxπ4a,ifx=π4 is continous at x=π4 then a=
  • 4
  • 2
  • 1
  • 1/4
The value of limxsinxx is
  • 0
  • 1
  • 1
The value of limx01cosxx2 is
  • 0
  • 1/2
  • 1/2
  • 1
The value of limx0(sin3xtanx)4 is
  • 0
  • 81
  • 4
  • 1
The value of limxsinπ4xcosπ4x is
  • π/4
  • π/2
  • 0
Let f(x)=(256+ax)1/82(32+bx)1/52. If f is continuous at x=0, then the value of a/b is:
  • 85f(0)
  • 325f(0)
  • 645f(0)
  • 165f(0)
Let α(a) and β(a) be the roots of the equation (31+a1)x2+(1+a1)x+(61+a1)=0 where a>1Then lima0+α(a) and lima0+β(a) are 
  • 52 and 1
  • 12 and 1
  • 72 and 2
  • 92 and 3
If f(x)={(cosx)1/sinxforx0kforx=0
Then the value of k, so that f is continuous at x=0 is
  • 0
  • 1
  • 12
  • 2
The function f : R/{0}R given by f(x)=1x2e2x1 can be made continuous at x=0 by defining f(0) as -
  • 2
  • 1
  • 0
  • 1
f(x)={cos2xsin2x1x2+42,x0a,x=0 then the value of a in order that f(x) may be continuous at x=0 is
  • 8
  • 8
  • 4
  • 4
If f(x)=sin3x+Asin2x+Bsinxx5;x0 is continuous at x=0 , then
  • A+B=2
  • A+B=1
  • A+B=0
  • AB=1
f(x)={(x+bx2)1/2x1/2bx3/2x>0cx=0sin(a+1)x+sinxxx<0 is continuous at x=0, then
  • a=32,b=0,c=12
  • a=32,b0,c=12
  • a=32,b0,c=12
  • a=32,b0,c=12
The graph of the function y=f(x) has a unique tangent at the point (ea,0) through which the graph passes then limxealoge{1+7f(x)}sinf(x)3f(x) is
  • 1
  • 2
  • 0
  • 1
Assertion(A): f(x)={x2sin(1x),x00,x=0 is continuous at x=0
Reason(R): Both h(x)=x2,g(x)={sin(1x),x00,x=0are continuous at x=0
  • Both A and R are true and R is the correct explanation of A
  • Both A and R are true and R is not the correct explanation of A
  • A is true but R is false
  • R is true but A is false
Let a,b,cϵR+ and limnnk=1n(k+an)(k+bn)=Aablna(b+B)b(a+C),ab, then (A+B+C) is equal to
  • 2
  • 3
  • 4
  • 5
If f (x)={|x+2|tan1(2x+2)x2
x=2, then f(x) is
  • continuous at x=2
  • not continuous at x=2
  • differentiable at x=2
  • continuous but not differentiable at x=2
The function f(x)=x|xx2|,1x1 is continuous on the interval
  • [1,1]
  • [1,2]
  • [1,1]{0}
  • (1,1){0}
limx2x+33x+44x+...+nnx(2x3)+3(2x3)+4(2x3)+...+n(2x3) is equal to
  • 1
  • 2
  • None of these
If f(x)=3x2+ax+a+1x2+x2, then which of the following can be correct?
  • limx1f(x) exists a=2
  • limx2f(x) exists a=13
  • limx1f(x)=43
  • limx2f(x)=13
If the function f(x)={(1+|tanx|)p|tanx|,π3<x<0qx=0esin3xsin2x,0<x<π3
is continuous at x=0, then 

  • p=32
  • p=23
  • logeq=p
  • q=2
Let tanα.x+sinα.y=α and α cosecα.x+cosα.y=1 be two variable straight line, α being the parameter. Let P be the point of intersection of the lines. In the limiting position when α0, the point P lies on the line
  • x=2
  • x=1
  • y+1=0
  • y=2
if f(x)={cos[x],x0|x|+a,x<0} Find
the value of a , given that limx0f(x)  exists,
where[.]  denotes
  • -1
  • 2
  • 1
  • 0
f(x)={(3/x2)sin2x2ifxM0x2+2x+c13x2if x0,x130x=1/3 then in order that f be continuous at x=0, the value of c is
  • 2
  • 4
  • 6
  • 8
Ltx0(cosecx1x)=?
  • 0
  • 1/2
  • 1
  • Does not exits
For each tR, let [t] be the greatest integer less than or equal to t. Then, 
limx0+x([1x]+[2x]+...+[15x])
  • is equal to 0
  • is equal to 15
  • is equal to 120
  • does not exist (in R)
If ϕ(x)=limnx2nf(x)+g(x)1+x2n, then
  • ϕ(x)=g(x) for all x R
  • ϕ(x)=f(x) for all x R
  • {g(x)for1<x<1f(x)for|x|1
  • {g(x)for|x|<1f(x)for|x|>1f(x)+g(x)2for|x|=1
If f(x)=xex+cos2xx2,x0, is continuous at x=0
where [x] and {x} denotes the greatest integer and fractional part functions, respectively.

Then which of the following is correct?
  • f(0)=5/2
  • [f(0)]=2
  • {f(0)}=0.5
  • [f(0)]{f(0)}=1.5
Let f(x)=x29x+20x[x] where [x] is the greatest integer not greater than x, then
  • limx5f(x)=0
  • limx5+f(x)=1
  • limx5f(x) does not exists
  • none of these
If x1,x2,x3,..,xn are the roots of the equation xn+ax+b=0, then the value of (x1x2)(x1x3)(x1x4)...(x1xn) is equal to
  • nx1n1+a
  • nx1n1
  • nx1+b
  • nx1n1+b
STATEMENT-1 : limx0[x]{e1/x1e1/x+1} (where [.] represents the greatest integer function) does not exist.
STATEMENT-2 : limx0(e1/x1e1/x+1) does not exists.
  • STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is a correct explanation for STATEMENT-1
  • STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is NOT a correct explanation for STATEMENT-1
  • STATEMENT-1 is True, STATEMENT-2 is False
  • STATEMENT-1 is False, STATEMENT-2 is True
If limxa(f(x)+g(x))=2 and limxa(f(x)g(x))=1
then the value of limxaf(x)g(x) is?
  • Does not exist
  • Exists and is 34
  • Exists and is 34
  • Exists and is 43
x12345
f(x)43713
The function f is continuous on the closed interval [1,5] and values of the function are shown in the table above. If the values in the table are used to calculate a trapezoidal sum, the approximate value of 51f(x)dx is
  • 14
  • 14.5
  • 15
  • 29
limn1n2nr=1rn2+r2 equal to:
  • 1+5
  • 1+5
  • 1+2
  • 1+2
The value of limx0((sinx)1/x+(1+x)sinx) whre x>0 is
  • 0
  • 1
  • 1
  • 2
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers