Loading [MathJax]/jax/element/mml/optable/MathOperators.js

CBSE Questions for Class 11 Commerce Applied Mathematics Limits And Continuity     Quiz 8 - MCQExams.com

limx0cos(tanx)cosxx4 is equal to
  • 1/6
  • -1/3
  • 1/2
  • 1
The value of limn[1n+e1/nn+e2/nn+.+e(n1)/nn] is
  • 1
  • 0
  • e-1
  • e+1
 limx0x4(cot4xcot2x+1)(tan4xtan2x+1) is equal to
  • 1
  • 0
  • 2
  • None of these
limn20x=1cos2n(x10) is equal to
  • 0
  • 1
  • 19
  • 20
The value of \displaystyle \underset { n\rightarrow \infty  }{ lim } \left( \frac { 1 }{ n+1 } +\frac { 1 }{ n+2 } +...+\frac { 1 }{ 6n }  \right)  is
  • \displaystyle \log { 2 }
  • \displaystyle \log { 6 }
  • \displaystyle 1
  • \displaystyle \log { 3 }
A point where function f(x) is not continuous where f(x)=\left[ \sin { \left[ x \right]  }  \right] in \left( 0,2\pi  \right) ; is (\left[ \ast  \right] denotes greatest integer \le x)
  • (3,0)
  • (2,0)
  • (1,0)
  • (4,-1)
\underset { x\rightarrow \pi /4 }{ Lim } \dfrac { 2\sqrt { 2 } \left( cosx+sinx \right) ^{ 3 } }{ 1-sin2x } =2 is equal to
  • \dfrac{3\sqrt{2}}{2}
  • 2\sqrt{2}
  • \dfrac{4\sqrt{2}}{3}
  • does \not \exist$
\displaystyle  \lim _{x \rightarrow 0} \dfrac{\sin \left(x^{2}\right)}{\ln \left(\cos \left(2 x^{2}-x\right)\right)}  is equal to
  • 2
  • -2
  • 1
  • -1
\displaystyle \lim _{x \rightarrow 0} \dfrac{x \tan 2 x-2 x \tan x}{(1-\cos 2 x)^{2}}  is equal to
  • 2
  • -2
  • 1/2
  • -1/2
\displaystyle \lim _{x \rightarrow 0} \dfrac{1}{x}\left[\int_{y}^{a} e^{\sin ^{2} t} d t-\int_{x+y}^{a} e^{\sin ^{2} t} d t\right] is equal to
  • e^{\sin ^{2} y}
  • \sin 2 y e^{\sin ^{2} y}
  • 0
  • None of these
If y^{r}=\dfrac{n !^{n+r-1} C_{r-1}}{r^{n}}, where n=k r(k \text { is constant }), then \operatorname{lim}_{r\rightarrow\infty} y is equal to
  • (k-1) \log _{e}(1+k)-k
  • (k+1) \log _{e}(k-1)+k
  • (k+1) \log _{e}(k-1)-k
  • (k-1) \log _{e}(k-1)+k
The value of \displaystyle \lim _{x \rightarrow a} \sqrt{a^{2}-x^{2}} \cot \dfrac{\pi}{2} \sqrt{\dfrac{a-x}{a+x}}  is
  • \dfrac{2 a}{\pi}
  • -\dfrac{2 a}{\pi}
  • \dfrac{4 a}{\pi}
  • -\dfrac{4 a}{\pi}
If function f(x)=\dfrac{x^2-9}{x-3} is continuous at x=3, then value of (3) will be:
  • 6
  • 3
  • 1
  • 0
If f(x)=\begin{cases} \begin{matrix} \dfrac{\log (1+mx)- \log (1-nx)}{x}; & x \ne 0 \end{matrix} \\ \begin{matrix} k; & x=0 \end{matrix} \\ \begin{matrix}  &  \end{matrix} \end{cases}
is continuous at x=0 then the value of k will be:
  • 0
  • m+n
  • m-n
  • m.n
If function f(x)=\begin{cases} \begin{matrix} \dfrac{\sin 3x}{x}; & x \ne 0 \end{matrix} \\ \begin{matrix} m; & x=0 \end{matrix} \\ \begin{matrix}  &  \end{matrix} \end{cases}
is continuous at x=2 then value of m will be:
  • 3
  • 1/3
  • 1
  • 0
The value of \displaystyle \lim_{x\rightarrow 0} \dfrac {xe^{x} - \log_{e} (1 + x)}{x^{2}} is
  • 2/3
  • 1/3
  • 1/2
  • 3/2
If f(x)=\begin{cases} \dfrac { 1-\sqrt { 2 } \sin { x }  }{ \pi -4x } ,\quad \quad ifx\neq \dfrac { \pi  }{ 4 }  \\ a\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad ,\quad \quad ifx=\dfrac { \pi  }{ 4 }  \end{cases} is continous at x=\dfrac {\pi}{4} then a=
  • 4
  • 2
  • 1
  • 1/4
The value of \displaystyle \lim_{x\rightarrow \infty} \dfrac {\sin x}{x} is
  • 0
  • \infty
  • 1
  • -1
The value of \displaystyle \lim_{x\rightarrow 0} \dfrac {1 - \cos x}{x^{2}} is
  • 0
  • 1/2
  • -1/2
  • -1
The value of \displaystyle \lim_{x\rightarrow 0} \left (\dfrac {\sin 3x}{\tan x}\right )^{4} is
  • 0
  • 81
  • 4
  • 1
The value of \displaystyle \lim_{x\rightarrow \infty} \sin \dfrac {\pi}{4x} \cos \dfrac {\pi}{4x} is
  • \pi/4
  • \pi/2
  • 0
  • \infty
Let f(x)=\displaystyle \frac{(256+ax)^{1/8}-2}{(32+bx)^{1/5}-2}. If f is continuous at x = 0, then the value of a / b is:
  • \displaystyle \frac{8}{5}f(0)
  • \displaystyle \frac{32}{5}f(0)
  • \displaystyle \frac{64}{5}f(0)
  • \displaystyle \frac{16}{5}f(0)
Let \alpha(a) and \beta(a) be the roots of the equation (\sqrt[3]{1+a}-1)x^{2}+(\sqrt{1+a}-1){x}+(\sqrt[6]{1+a}-1)=0 where a>-1Then \underset{a\rightarrow 0^{+}}{\lim}\alpha(a) and \underset{a\rightarrow 0^{+}}{\lim}\beta(a) are 
  • -\displaystyle \frac{5}{2} and 1
  • -\displaystyle \frac{1}{2} and -1
  • -\displaystyle \frac{7}{2} and 2
  • -\displaystyle \frac{9}{2} and 3
If f(x)=\left\{\begin{matrix}(cos x)^{1/sinx} &for &x\neq 0 \\  k & for & x=0 \end{matrix}\right.
Then the value of k, so that f is continuous at x=0 is
  • 0
  • 1
  • \dfrac{1}{2}
  • 2
The function f : R/\{0\}\rightarrow R given by f(x)=\displaystyle \frac{1}{x}-\frac{2}{e^{2x}-1} can be made continuous at x=0 by defining f(0) as -
  • 2
  • -1
  • 0
  • 1
\displaystyle f\left( x \right)=\begin{cases} \begin{matrix} \frac { \cos ^{ 2 }{ x } -\sin ^{ 2 }{ x } -1 }{ \sqrt { { x }^{ 2 }+4 } -2} , & x\neq 0 \end{matrix} \\ \begin{matrix} a, & x=0 \end{matrix} \end{cases} then the value of a in order that f(x) may be continuous at x=0 is
  • -8
  • 8
  • -4
  • 4
If \displaystyle f(x)=\frac{\sin 3x+A\sin 2x+B\sin x}{x^{5}};x\neq 0 is continuous at x=0 , then
  • \displaystyle {A}+{B}=2
  • \displaystyle {A}+{B}=1
  • \displaystyle {A}+{B}=0
  • \displaystyle {A}-{B} =1
f(x)=\left\{\begin{array}{ll}\dfrac{(x+bx^{2})^{1/_{2}}-x^{1/2}}{bx^{3/2}} & x>0\\c & x=0\\\dfrac{\sin(a+1)x+\sin x}{x} & x<0\end{array}\right. is continuous at {x}=0, then
  • a=\displaystyle \frac{-3}{2},b=0,c=\frac{1}{2}
  • a=\displaystyle \frac{-3}{2},b\neq 0,c=\frac{1}{2}
  • a=\displaystyle \frac{3}{2},b\neq 0,c=\frac{1}{2}
  • a=\displaystyle \frac{3}{2},b\neq 0,c=-\dfrac{1}{2}
The graph of the function y = f (x) has a unique tangent at the point (e^{a} ,0) through which the graph passes then \displaystyle \lim_{x\rightarrow e^{a}}\frac{log_{e}\{1+7f(x)\}-sinf(x)}{3f(x)} is
  • 1
  • 2
  • 0
  • -1
Assertion(A): f(x)=\left\{\begin{array}{ll}x^{2}\sin(\frac{1}{x}) , & x\neq 0\\0, & x=0\end{array}\right. is continuous at {x}=0
Reason(R): Both h(x)=x^{2},g(x)= \left\{\begin{array}{ll}\sin(\frac{1}{x}) , & x\neq 0\\0, & x=0\end{array}\right.are continuous at x = 0
  • Both A and R are true and R is the correct explanation of A
  • Both A and R are true and R is not the correct explanation of A
  • A is true but R is false
  • R is true but A is false
Let a, b, c \epsilon R^+ and \displaystyle\lim_{n\rightarrow \infty }\sum_{k=1}^{n}\displaystyle \frac{n}{(k+an)(k+bn)}=\displaystyle \frac{A}{a-b}ln\displaystyle \frac{a(b+B)}{b(a+C)}, a \neq b, then (A + B + C) is equal to
  • 2
  • 3
  • 4
  • 5
If f (x)=\left \{ \displaystyle \frac{|x+2|}{tan^{-1}(_{2}x+2)} \right.x\neq -2
x=-2, then f(x) is
  • continuous at x = - 2
  • not continuous at x = - 2
  • differentiable at x = - 2
  • continuous but not differentiable at x = - 2
The function f(x) = x - |x - x^2|, -1 \leq x \leq 1 is continuous on the interval
  • [-1, 1]
  • [-1, 2]
  • [-1, 1]- \{0\}
  • (-1, 1)- \{0\}
\displaystyle \lim_{x\to\infty}{\displaystyle \frac{2\sqrt{x}+3\sqrt [\Large 3]{x}+4\sqrt [\Large 4]{x}+...+n\sqrt [\Large n]{x}}{\sqrt{(2x-3)}+\sqrt[\Large 3]{(2x-3)}+\sqrt[\Large 4]{(2x-3)}+...+\sqrt[\Large n]{(2x-3)}}} is equal to
  • 1
  • \infty
  • \sqrt{2}
  • None of these
If f(x) \displaystyle =\frac{3x^2 + ax + a + 1}{x^2 + x - 2}, then which of the following can be correct?
  • \displaystyle \lim_{x \rightarrow 1} f(x) exists \Rightarrow a = - 2
  • \displaystyle \lim_{x \rightarrow -2} f(x) exists \Rightarrow a = 13
  • \displaystyle \lim_{x \rightarrow 1} f(x) = \dfrac{4}{3}
  • \displaystyle \lim_{x \rightarrow -2} f(x) = -\dfrac{1}{3}
If the function f(x)= \left\{\begin{matrix} (1+\left | \tan x \right |)^{ \displaystyle \frac{p}{\left| \tan {x} \right|}} &, -\frac{\pi }{3}< x< 0 \\ \\  q& x=0\\ \\  e^{ \displaystyle \frac{\sin {3x}}{\sin {2x}}},& 0\: < \, x\, < \frac{\pi }{3} \end{matrix}\right.
is continuous at x=0, then 

  • \displaystyle \mathrm{p}=\frac{3}{2}
  • \displaystyle \mathrm{p}=\frac{2}{3}
  • \log_{e}\mathrm{q}=\mathrm{p}
  • \mathrm{q}=2
Let \tan \alpha .x+\sin \alpha .y=\alpha and \alpha \ \text{cosec} \alpha .x+\cos \alpha .y=1 be two variable straight line, \alpha being the parameter. Let P be the point of intersection of the lines. In the limiting position when \alpha \rightarrow 0, the point P lies on the line
  • x=2
  • x=-1
  • y+1=0
  • y=2
if f\left( x \right) = \left\{ {\matrix{   {\cos \left[ x \right],} & {x \ge 0}  \cr    {\left| x \right| + a,} & {x < 0}  \cr   } } \right\} Find
the value of a , given that \mathop {\lim }\limits_{x \to 0} f\left( x \right)  exists,
where[.]  denotes
  • -1
  • 2
  • 1
  • 0
f(x) = \left\{\begin{matrix}(3/x^{2})\sin 2x^{2} & if x M 0 \\\dfrac {x^{2} + 2x + c}{1 - 3x^{2}}  & if\ x \geq 0, x \neq \dfrac {1}{\sqrt {3}}\\ 0 & x = 1/ \sqrt {3}\end{matrix}\right. then in order that f be continuous at x = 0, the value of c is
  • 2
  • 4
  • 6
  • 8
\displaystyle\underset{x\rightarrow 0}{Lt}\left(cosec x-\dfrac{1}{x}\right)=?
  • 0
  • 1/2
  • 1
  • Does not exits
For each t\in R, let [t] be the greatest integer less than or equal to t. Then, 
\underset { { x\rightarrow 0 }^{ + } }{ lim } x([\frac { 1 }{ x } ]+[\frac { 2 }{ x } ]+...+[\frac { 15 }{ x } ])
  • is equal to 0
  • is equal to 15
  • is equal to 120
  • does not exist (in R)
If \phi (x) =\displaystyle \lim_{n \rightarrow \infty} \frac{x^{2n} f(x) + g(x)}{1 + x^{2n}}, then
  • \phi (x) = g(x) for all x \in R
  • \phi (x) = f(x) for all x \in R
  • \left\{\begin{matrix}g(x) & for -1 < x < 1\\ f(x) & for |x| \geq 1\end{matrix}\right.
  • \left\{\begin{matrix}g(x) & for |x| < 1\\ f(x) & for |x| > 1 \\\displaystyle \frac{f(x) + g(x)}{2} & for |x| = 1\end{matrix}\right.
If \displaystyle f(x) = \frac{x - e^x + cos  2x}{x^2}, x \neq 0, is continuous at x = 0
where [x] and {x} denotes the greatest integer and fractional part functions, respectively.

Then which of the following is correct?
  • f(0) = 5/2
  • [f(0)] = - 2
  • \{ f(0) \} = - 0.5
  • [f(0)]\{ f(0) \} = - 1.5
Let f(x) \displaystyle = \frac{x^2 - 9x + 20}{x -[x]} where [x] is the greatest integer not greater than x, then
  • \displaystyle \lim_{x \rightarrow 5^-} f(x) = 0
  • \displaystyle \lim_{x \rightarrow 5^+} f(x) = 1
  • \displaystyle \lim_{x \rightarrow 5} f(x) does not exists
  • none\ of\ these
If { x }_{ 1 },{ x }_{ 2 },{ x }_{ 3 },..,{ x }_{ n } are the roots of the equation x^n+ax+b=0, then the value of \left( { x }_{ 1 }-{ x }_{ 2 } \right) \left( { x }_{ 1 }-{ x }_{ 3 } \right) \left( { x }_{ 1 }-{ x }_{ 4 } \right) ...\left( { x }_{ 1 }-{ x }_{ n } \right) is equal to
  • n{ { x }_{ 1 } }^{ n-1 }+a
  • n{ { x }_{ 1 } }^{ n-1 }
  • nx-1+b
  • n{ { x }_{ 1 } }^{ n-1 }+b
STATEMENT-1 : \displaystyle \lim_{x \rightarrow 0} [x] \left \{ \frac{e^{1/x} - 1}{e^{1/x} + 1} \right \} (where [.] represents the greatest integer function) does not exist.
STATEMENT-2 : \displaystyle \lim_{x \rightarrow 0} \left ( \frac{e^{1/x} - 1}{e^{1/x} + 1} \right ) does not exists.
  • STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is a correct explanation for STATEMENT-1
  • STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is NOT a correct explanation for STATEMENT-1
  • STATEMENT-1 is True, STATEMENT-2 is False
  • STATEMENT-1 is False, STATEMENT-2 is True
If \displaystyle\lim_{x\rightarrow a}{(f(x)+g(x))}=2 and \displaystyle\lim_{x\rightarrow a}{(f(x)-g(x))}=1
then the value of \displaystyle\lim_{x\rightarrow a}{f(x)g(x)} is?
  • Does not exist
  • Exists and is \displaystyle\frac{3}{4}
  • Exists and is \displaystyle-\frac{3}{4}
  • Exists and is \displaystyle\frac{4}{3}
x12345
f(x)43713
The function f is continuous on the closed interval [1, 5] and values of the function are shown in the table above. If the values in the table are used to calculate a trapezoidal sum, the approximate value of \int_{1}^{5}f(x)dx is
  • 14
  • 14.5
  • 15
  • 29
\quad \lim _{ n\rightarrow \infty  }{ \cfrac { 1 }{ n } \sum _{ r=1 }^{ 2n }{ \cfrac { r }{ \sqrt { { n }^{ 2 }+{ r }^{ 2 } }  }  }  } equal to:
  • 1+\sqrt { 5 }
  • -1+\sqrt { 5 }
  • 1+\sqrt { 2 }
  • 1+\sqrt { 2 }
The value of \lim _{ x\rightarrow 0 }{ \left( { \left( \sin { x }  \right)  }^{ 1/x }+{ \left( 1+x \right)  }^{ \sin { x }  } \right)  } whre x> 0 is
  • 0
  • -1
  • 1
  • 2
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers