CBSE Questions for Class 11 Commerce Applied Mathematics Logarithm And Antilogarithm Quiz 1 - MCQExams.com

Find the characteristic of $$\log 27.93$$
  • $$0$$
  • $$1$$
  • $$2$$
  • $$3$$
Find the characteristic of $$\log 7.93$$
  • $$0$$
  • $$1$$
  • $$2$$
  • $$3$$
Find the characteristic of $$\log 277.9301$$
  • $$0$$
  • $$1$$
  • $$2$$
  • $$3$$
The value of $$10^{\log_{10}{10}^{7}}$$ is:
  • $$7$$
  • $$10^7$$
  • $$10$$
  • $$\log_{10}7$$
Solve the following using Product Law of Exponents.
$$a\times { a }^{ 2 }\times { a }^{ \tfrac { 1 }{ 2 }  }$$
  • $${ a }^{ 7 }$$
  • $${ a }^{ \tfrac { 2 }{ 7 } }$$
  • $${ a }^{ 3 }$$
  • $${ a }^{ \tfrac { 7 }{ 2 } }$$
If $$ \log_{10} x = a$$ and $$ \log_{10} y = b$$, then $$10^{a-1}$$ in terms of $$x$$ will be
  • $$\displaystyle \frac{x}{7}$$
  • $$\displaystyle \frac{x}{8}$$
  • $$\displaystyle \frac{x}{9}$$
  • $$\displaystyle \frac{x}{10}$$
Simplify: $$\left((9)^{0} + (11)^{0} + (13)^{0}\right) \div (23)^{0}$$
  • $$1$$
  • $$3$$
  • $$0$$
  • $$2$$
The value of $$x$$ satisfying $$\log _{ 243 }{ x } =0.8$$
  • $$81$$
  • $$1.8$$
  • $$2.43$$
  • $$27$$
If $$7^{10}= 7 \times 7^n$$, what is the value of $$n$$?
  • $$10$$
  • $$9$$
  • $$7$$
  • $$5$$
  • $$3$$
The value of $$x$$ satisfying the logarithm $$\log_{243} x = 0.8$$ is equal to
  • $$81$$
  • $$1.8$$
  • $$2.43$$
  • $$27$$
Given that $$4^{n+1} = 256$$, find the value of $$n$$.
  • $$2$$
  • $$3$$
  • $$5$$
  • $$63$$
The value of $$7^{\frac{1}{2}}.  8^{\frac{1}{2}}$$ is :
  • $$28^{\frac{1}{2}}$$
  • $$56^{\frac{1}{2}}$$
  • $$14^{\frac{1}{2}}$$
  • $$42^{\frac{1}{2}}$$
Find the product. $$(a^2) (2a^{22}) (4a^{26})$$

  • $$8a^{40}$$
  • $$8a^{50}$$
  • $$8a^{30}$$
  • $$8^{20a}$$
The value of $$\cfrac{3^0+7^0}{5^0}$$ is:
  • $$2$$
  • $$0$$
  • $$\dfrac{9}{5}$$
  • $$\dfrac{1}{5}$$
Simplified value of $$(25)^{\frac{1}{3}} \times (5)^{\frac{1}{3}}$$ is :
  • $$25$$
  • $$3$$
  • $$1$$
  • $$5$$
State true or false:
$$ (\cfrac{2}{3})^4 \times (\cfrac{27}{8})^{-2}= \cfrac{4}{9}$$
  • True
  • False
State true or false: 
If $$\displaystyle x^y = z$$, then $$\displaystyle y = log_z x$$.
  • True
  • False
If $$\displaystyle \log_3 x = 0$$, then value of $$x$$ is equal to
  • $$2$$
  • $$4$$
  • $$1$$
  • $$3$$
The value of $$\displaystyle \log_5 1$$ is
  • $$0$$
  • $$1$$
  • $$3$$
  • $$5$$
The exponential form of $$\log_8 0.125 = -1$$ is $$8 ^{-m} = 0.125$$. Then value of $$m$$ is
  • $$1$$
  • $$2$$
  • $$4$$
  • $$3$$
The value of $$\log_2 \displaystyle \frac{1}{8}$$ is equal to
  • $$2$$
  • $$0$$
  • $$-3$$
  • $$-1$$
The exponential form of $$\log_{10}1 = 0$$ is $$10^{m} = 1$$,  then the value of $$m$$ is 
  • $$2$$
  • $$0$$
  • $$1$$
  • $$6$$
The logarithm of $$27$$ to the base $$9$$ is $$\displaystyle \frac{3}{m}$$. Then the value of $$m$$ is equal to 
  • $$0$$
  • $$2$$
  • $$3$$
  • $$6$$
If exponential form of $$\log_{10} 0.01 = -2$$ is $$10^{m} = 0.01$$, then value of $$m$$ is equal to
  • $$-1$$
  • $$3$$
  • $$-2$$
  • $$4$$
The value of $$\log_{10}0.01$$ is equal to 
  • $$0$$
  • $$-2$$
  • $$-1$$
  • $$4$$
If $$\log_{x} 2 = -1$$ then value of $$2x$$ is equal to 
  • $$2$$
  • $$1$$
  • $$0$$
  • $$5$$
Value of $$\sqrt [4]{(81)^{-2}}$$ is
  • $$\dfrac {1}{9}$$
  • $$\dfrac {1}{3}$$
  • $$9$$
  • $$\dfrac {1}{81}$$
The value of $$\log_5\ 125$$ is equal to
  • $$0$$
  • $$1$$
  • $$2$$
  • $$3$$
Value of $$\displaystyle\frac{{2}^{100}}{2}$$ is-
  • $$1$$
  • $${50}^{100}$$
  • $${2}^{50}$$
  • $${2}^{99}$$
Express the following in logarithmic form$$\,\colon$$
$$81\,=\,3^{4}$$
  • $$\log_381\,=\,4$$
  • $$\log_981\,=\,2$$
  • $$2\log_39\,=\,4$$
  • $$4\log_93\,=\,2$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers