CBSE Questions for Class 11 Commerce Applied Mathematics Logarithm And Antilogarithm Quiz 3 - MCQExams.com

The value of $$(2^0 - 3^0) \times 4^2$$ is---
  • $$16$$
  • $$0$$
  • $$-16$$
  • None of these
If $$\displaystyle \log x=n$$ then 2n is equal to
  • $$\displaystyle \log\left ( x^{2} \right )$$
  • $$\displaystyle \left ( \log x \right )^{2}$$
  • $$\displaystyle \log \left ( x+2 \right )$$
  • $$\displaystyle \log 2x$$
$$a^0=1$$ is true for all $$a$$ except
  • $$-1$$
  • negative integers
  • 0
  • 1
If $$\displaystyle \log _{x}y=100\: and\: \log _{2}x=10 $$ then the value of y is
  • $$\displaystyle 2^{1000}$$
  • $$\displaystyle 2^{100}$$
  • $$\displaystyle 2^{2000}$$
  • $$\displaystyle 2^{10000}$$
If $$\displaystyle x=\frac{y}{(1+a)^p}$$, then $$p$$ is equal to
  • $$\displaystyle\frac{\displaystyle\log_e{\left(\frac{y}{x}\right)}}{\log_e{(1+a)}}$$
  • $$\displaystyle\log{\left\{\frac{y}{x(1+a)}\right\}}$$
  • $$\displaystyle\log{\left\{\frac{y-x}{1+a}\right\}}$$
  • $$\displaystyle\frac{\log{y}}{\log{\{x(1+a)\}}}$$
Which of the following expresses zero law of exponents?
  • $$0^{x} = 0$$
  • $$x^{0} = 1$$
  • $$x^{1} = x$$
  • None of the above
$$4\times 4^{10}$$ is represented as:
  • $$4^{40}$$
  • $$4^{10}$$
  • $$4^{11}$$
  • $$16^{10}$$
In simplified form, $$((3)^{0} + (5)^{0})^{0}$$ is equal to:
  • $$2$$
  • $$1$$
  • $$0$$
  • $$8$$
Find the value of $$(6)^{0} - (10)^{0}$$
  • $$-4$$
  • $$2$$
  • $$1$$
  • $$0$$
The expression $$((2)^{0} + (3)^{0} + (5)^{0})^{0}$$ is equal to _____
  • $$3$$
  • $$1$$
  • $$10$$
  • $$0$$
The value of $$21^{0}$$ is _____.
  • $$0$$
  • $$21$$
  • $$1$$
  • $$-21$$
Which of the following expresses product law of exponents?
  • $$(a^{m})^{n} = a^{mn}$$
  • $$a^{m}\times a^{n} = a^{m+n}$$
  • $$a^{m} \div a^{n} = a^{m-n}$$
  • $$a^{m}\div b^{m} = \left (\dfrac {a}{b}\right )^{m}$$
The value of $$((6)^{0} + (16)^{0}) \div ((7)^{0} + (17)^{0})$$ is _____
  • $$2$$
  • $$4$$
  • $$1$$
  • $$0$$
The value of $$(100)^{0}$$ is _____.
  • $$1$$
  • $$0$$
  • $$100$$
  • $$1000$$
Evaluate: $$({(10)^0} + (12)^{0})\times (18)^{0}$$
  • $$1$$
  • $$0$$
  • $$2$$
  • $$18$$
Given that $$2^h\times 2^3 = 2^9$$, find the value of h.
  • $$3$$
  • $$6$$
  • $$8$$
  • $$12$$
Find the correct expression, if $$\log _{ c }{ a } =x$$.
  • $${ x }^{ c }=a$$
  • $${ a }^{ x }=c$$
  • $${ c }^{ a }=x$$
  • $${ c }^{ x }=a$$
  • None of these
Which one of the following is the value of $$(101)^{0}$$?
  • $$0$$
  • $$101$$
  • $$1010$$
  • $$1$$
To simplify the following expression correctly, what must be done with the exponents?
$${ { 5 }^{ a }\times { 5 }^{ b }\times  }{ 5 }^{ c }$$
  • Add the exponents.
  • Multiply the exponents.
  • Divide the exponents
  • Subtract the exponents.
The value of $$(10)^{0} \times (20)^{0}\times (30)^{0}$$ is:
  • $$1$$
  • $$3$$
  • $$60$$
  • $$0$$
Which of the following is equal to $$1$$?
  • $$(3)^{0} + (3)^{0}$$
  • $$(3)^{0} - (3)^{0}$$
  • $$(3)^{0}$$
  • $$(3^{3})^{0} + (3^{0})^{3}$$
Simplify and give reasons:
$${(-2)}^{7}$$
  • $$-128$$
  • $$128$$
  • $$-28$$
  • None of these
$${(1000)}^{9}\div {10}^{24}=$$?
  • $$10000$$
  • $$1000$$
  • $$100$$
  • $$10$$
  • None of the above
Simplify and give reasons:
$${(-3)}^{-4}$$
  • $$\cfrac{1}{81}$$
  • $$\cfrac{-1}{81}$$
  • $$\cfrac{3}{81}$$
  • None of these
Simplify:
$$\left( { 4 }^{ -1 }\times { 3 }^{ -1 } \right) \div { 6 }^{ -1 }$$
  • $$\cfrac{1}{2}$$
  • $$\cfrac{1}{4}$$
  • $$\cfrac{2}{2}$$
  • None of these
Simplify the following:
$${ (-2) }^{ 7 }\times { (-2) }^{ 3 }\times { (-2) }^{ 4 }$$
  • $${(-2)}^{14}$$
  • $${(-2)}^{24}$$
  • $${(-2)}^{54}$$
  • None of these
Simplify and give reasons:
$$\cfrac { { 3 }^{ -2 } }{ 3 } \times \left( { 3 }^{ 0 }-{ 3 }^{ -1 } \right) $$
  • $$\cfrac{2}{81}$$
  • $$\cfrac{1}{81}$$
  • $$\cfrac{4}{81}$$
  • None of these
The logarithmic form of $${5}^{2}=25$$ is
  • $$\log _{ 5 }{ 2 } =25$$
  • $$\log _{ 2 }{ 5 } =25$$
  • $$\log _{ 5 }{ 25 } =2$$
  • $$\log _{ 25 }{ 5 } =2$$
Exponential form of $$\log_{4}8 = x$$ is _____
  • $$x^{8} = 4$$
  • $$x^{4} = 8$$
  • $$4^{x} = 8$$
  • $$8^{x} = 4$$
The exponential form of $$\log _{ 2 }{ 16 } =4$$ is
  • $${2}^{4}=16$$
  • $${4}^{2}=16$$
  • $${2}^{16}=4$$
  • $${4}^{16}=2$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers