CBSE Questions for Class 11 Commerce Applied Mathematics Logarithm And Antilogarithm Quiz 4 - MCQExams.com

$$p^{0}$$ is equal to
  • $$0$$
  • $$1$$
  • $$-1$$
  • $$p$$
If $$\log _8 m+{\log}_8\dfrac{1}{6}=\dfrac{2}{3}$$, then m is equal to
  • 24
  • 18
  • 12
  • 4
$$\log {(2\times 3\times 4)}$$ is equal to:
  • $$\log {2} + \log {3} +\log {4}$$
  • $$\log {12}$$
  • $$\log {9}$$
  • $$\log {4}$$
Evaluate $$2^0+3^0$$
  • $$2$$
  • $$3$$
  • $$5$$
  • $$1$$
Match the following provided that $$a$$ and $$b$$ any two rational numbers different from zero and $$x, y$$ are any two rational numbers.
$$(1)$$$$a^{x} \times a^{y}$$
$$(a)$$$$a^{x - y}$$
$$(2)$$$$a^{x} \div a^{y}$$$$(b)$$$$a^{xy}$$
$$(3)$$$$(a^{x})^{y}$$$$(c)$$$$a^{x + y}$$
$$(4)$$$$(ab)^{x}$$$$(d)$$$$\dfrac {a^{x}}{b^{x}}$$
$$(5)$$$$\left (\dfrac {a}{b}\right )^{x}$$$$(e)$$$$a^{x}\times b^{x}$$
  • $$1 - (c), 2 - (a) , 3 - (b), 4 - (e), 5 - (d)$$
  • $$1 - (b), 2 - (c) , 3 - (a), 4 - (e), 5 - (d)$$
  • $$1 - (a), 2 - (c) , 3 - (d), 4 - (e), 5 - (b)$$
  • $$1 - (a), 2 - (b) , 3 - (c), 4 - (d), 5 - (e)$$
If $$\left(\dfrac{3}{2}\right)^2 \times \left(\dfrac{3}{2}\right)^{a+5}=\left(\dfrac{3}{2}\right)^8$$, then $$a =$$______ .
  • $$-1$$
  • $$0$$
  • $$1$$
  • $$2$$
$$\log {28}$$ is same as_____
  • $$\log {16} +\log {12}$$
  • $$\log {15} + \log {13}$$
  • $$\log {2} + \log {14}$$
  • $$\log {26} + \log {2}$$
$$\log {10}$$ is same as______
  • $$\log {6} + \log {3}$$
  • $$\log {15} + \log {3}$$
  • $$\log {21} - \log {3}$$
  • $$\log {5} + \log {2}$$
Find the mantissa of $$\log 2.125$$
  • $$1.3273$$
  • $$2.3273$$
  • $$0.3273$$
  • $$32.2321$$
$$\log{(2\times 3\times 5)}$$ is equal to____
  • $$\log{2} + \log{3} + \log{5}$$
  • $$\log{10}$$
  • $$\log{30}$$
  • $$\log{5}$$
Find the value : 
i) $$\left(\dfrac{4}{5}\right)^3 \div \left(\dfrac{4}{5}\right)^2$$
ii) $$4^7 \div 4^5$$
  • i) $$\left(\dfrac{4}{5}\right)$$
    ii)  $$4$$
  •  i)  $$\left(\dfrac{4}{5}\right)$$
    ii)  $$49$$
  •  i)  $$\left(\dfrac{4}{5}\right)$$ 
    ii)  $$7$$
  •  i)  $$\left(\dfrac{4}{5}\right)$$ 
    ii)  $$16$$
Let $$\log_{\sqrt{8}}b=3\dfrac{1}{3},$$ then find the value of $$b$$ is
  • $$8$$
  • $$16$$
  • $$32$$
  • none of these
$$\log_ee^5$$ is equal to- 
  • $$2.5$$
  • $$1.5$$
  • $$2$$
  • $$5$$
$$y = log \,x$$ is a solution of
  • $$xy_2 = y_1$$
  • $$xy_1 + y_2 = 0$$
  • $$xy_2 + y_1 = 0$$
  • $$xy_2 + y = 0$$
$$a^{0}=1$$. Is it true or false?

  • True
  • False
If $$\log\ (-2x)=2\log\ (x+1)$$, then $$x$$ can be  equal to
  • $$-2+\sqrt {3}$$
  • $$-4+2\sqrt {3}$$
  • $$-2-\sqrt {3}$$
  • $$-4-2\sqrt {3}$$
The value of $$(0.125)^{\frac {2}{3}}$$ is
  • $$2.5$$
  • $$0.25$$
  • $$0.025$$
  • $$0.0025$$
State true or false:
$${ \log }_{ a }{ x }^{ n }=n{ \log }_{ a }x$$
  • True
  • False
If $$log_{8}m=3.5$$ and $$log_{2}n=7$$, then the value of $$m $$ in terms of $$n$$ is
  • $$n\sqrt{n}$$
  • $$2n$$
  • $$n^2$$
  • $$2n^2$$
Which of the following real numbers is(are) non-positive?
  • $$log{ }_{ 0.3 }(\dfrac { \sqrt { 5 } +2 }{ \sqrt { 5 } -2 }  )$$
  • $$log{ }_{ 7 }(\sqrt { 83 } -9\quad )$$
  • $$log{ }_{ 7\frac { \pi }{ 12 } }(cot\frac { \pi }{ 8 } \quad )$$
  • $${ log }_{ 2 }\sqrt { 9.\sqrt [ 3 ]{ { 27 }^{ \frac { -5 }{ 3 } }.243{ }^{ \frac { -7 }{ 5 } } } } $$
$${ \left( \dfrac { 2 }{ 3 }  \right)  }^{ 0 }=?$$
  • $$\dfrac{3}{2}$$
  • $$\dfrac{2}{3}$$
  • $$1$$
  • $$0$$
$$5^{0}=5$$
  • True
  • False
State whether the following statement is true (T) or false (F):
$$3^0 = (1000)^0$$.

  • True
  • False
If $$y$$ is any non-zero integer, then $$y^0$$ is equal to ....

  • $$1$$
  • $$0$$
  • $$-1$$
  • Not found
$$(-2)^{0}=2$$
  • True
  • False
$$(-6)^{0}=-1$$
  • True
  • False
If $$ \log_{10} x = a$$ and $$ \log_{10} y = b$$, then $$10^{2b}$$ in terms of $$y$$ is equal to 
  • $$y$$
  • $$y^2$$
  • $$y^3$$
  • $$y^4$$
The value of the logarithmic function $$\log_2 \log_2 \log_2 16$$ is equal to
  • $$0$$
  • $$1$$
  • $$2$$
  • $$4$$
The value of the expression $$\displaystyle\dfrac{(\log x - \log y)(\log x^{2} + \log y^{2})}{(\log x^{2} - \log y^{2})(\log x + \log y)}$$ is equal to
  • $$0$$
  • $$1$$
  • $$\log\displaystyle \frac{x}{y}$$
  • $$\log xy$$
$$\sqrt [4]{\sqrt [3]{2^{2}}}$$ equal
  • $$2^{\dfrac {-1}{6}}$$
  • $$2^{-6}$$
  • $$2^{\dfrac {1}{6}}$$
  • $$2^{6}$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers