CBSE Questions for Class 11 Commerce Applied Mathematics Logarithm And Antilogarithm Quiz 6 - MCQExams.com

If the value of $$(\log_{10} 2 )+ 1$$ is in the form of $$\log_{10}m$$, then $$m$$ is equal to 
  • $$11$$
  • $$14$$
  • $$20$$
  • $$17$$
The value of $$\displaystyle \log_{10}0.001 $$ is equal to
  • $$-3$$
  • $$3$$
  • $$-2$$
  • $$2$$
If $$ \log (a)^{3} + \log a$$ = $$m \log a$$, then value of $$m$$ is equal to
  • $$1$$
  • $$4$$
  • $$2$$
  • $$-5$$
The logarithm form of $$\displaystyle (81)^\frac{3}{4} = 27$$ is $$\log_{81} 27 = \displaystyle \frac{3}{m}$$. Then value of $$m$$ is equal to
  • $$2$$
  • $$0$$
  • $$4$$
  • $$3$$
If $$ \dfrac{\log 81}{\log 27} = x$$, then the value of $$x$$ is equal to 
  • $$\dfrac { 4 }{ 3 } \\ \\ $$
  • $$\dfrac { 3 }{ 4 } \\ \\ $$
  • $$\dfrac { 1 }{ 3 } \\ \\ $$
  • Not solvable
The logarithm form of $$10^{-3} = 0.001$$ is $$\log_{10} 0.001 = -m$$, then value of $$m$$ is 
  • $$-1$$
  • $$-2$$
  • $$3$$
  • $$-4$$
If $$\log_{10}(x - 10) = 1$$, then value of $$x$$ is
  • $$10$$
  • $$13$$
  • $$20$$
  • $$26$$
If $$\displaystyle 64^{a}=\frac{1}{256^{b}}$$, then $$3a + 4b$$ equals:
  • $$2$$
  • $$4$$
  • $$8$$
  • $$0$$
If $$x = 2$$ and $$y = 3$$, then find the value of $$\left[ \displaystyle\frac { 1 }{ x^{ x } } +\displaystyle\frac { 1 }{ y^{ y } }  \right] $$.
  • $$ \displaystyle\frac { -31 }{108 } $$
  • $$ \displaystyle\frac { 31 }{108 } $$
  • $$ \displaystyle\frac { 125 }{171} $$
  • $$ \displaystyle\frac { 153 }{222} $$
If $$\log_4m\,=\,1.5$$, then the value of $$m$$ is equal to
  • $$m=8$$
  • $$m=4$$
  • $$m=16$$
  • $$m=64$$
The value of $$[ 5 (8^{\tfrac 13} + 27^{\tfrac 13} )^3 ]^{\tfrac 14}$$ is
  • $$5^4$$
  • $$5^{\tfrac 14}$$
  • $$5$$
  • None of these
If $$\displaystyle \sqrt{3^{n}}=81$$. Then n is equal to
  • 2
  • 4
  • 6
  • 8
The value of $$512^\frac {-2}{9}$$ is
  • $$\displaystyle \frac {1}{2}$$
  • $$2$$
  • $$4$$
  • $$\displaystyle \frac {1}{4}$$
The value of $$(-3)^0 - (-3)^3 - (-3)^{-1} + (-3)^4 - (-3)^{-2}$$ is
  • $$109\, \displaystyle \frac {2}{9}$$
  • $$109\, \displaystyle \frac {9}{2}$$
  • $$109$$
  • None of these
SImplify: $$(256)^{0.16} \times (256)^{0.09}$$
  • $$4$$
  • $$16$$
  • $$64$$
  • $$256.25$$
The value of $$4(7^1.\, 7^{-1}.\, 7^{-1}.7^0)$$ is
  • $$3\displaystyle \frac {7}{3}$$
  • $$\displaystyle \frac {6}{7}$$
  • $$3\displaystyle \frac {3}{7}$$
  • None of these
The value of $$[10^{150}\, \div\, 10^{146} ]$$ is
  • $$1000$$
  • $$10000$$
  • $$100000$$
  • $$10^5$$
$$\log_4 $$1 is equal to
  • $$1$$
  • $$0$$
  • $$\infty$$
  • none of these
Value of $$\displaystyle \log _{4}18 $$ is:
  • an irrational number
  • a rational number
  • natural number
  • whole number
The value of $$(6^{-1} -7^{-1})^{-1} (5^{-1} -4^{-1})^{-1}$$ is equal to
  • $$\displaystyle \frac{1}{2}$$
  • $$\displaystyle \frac{1}{3}$$
  • $$\displaystyle \frac{1}{4}$$
  • None of these
Value of the expression $$\displaystyle \log _{2}\sqrt[5]{2.\sqrt[3]{2\sqrt{2}}}$$ is
  • $$0.1$$
  • $$0.2$$
  • $$0.3$$
  • does not exist
Simplify : $$(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$$ is-
  • $$20$$
  • $$30$$
  • $$10$$
  • $$40$$
If  $$\left (\dfrac {a}{b}\right )^{x-1}=\left (\dfrac {a}{b}\right )^{x-3}$$ then the value of $$x$$ is
  • -1
  • 1
  • 2
  • 3
If $$x=\log _{ a }{ bc } ,y=\log _{ b }{ ca } ,z=\log _{ c }{ ab } $$, then the value of $$\dfrac { 1 }{ 1+x } +\dfrac { 1 }{ 1+y } +\dfrac { 1 }{ 1+z } $$ will be
  • $$x+y+z$$
  • $$1$$
  • $$ab+bc+ca$$
  • $$abc$$
If $$\displaystyle { log }_{ 5 }{ log }_{ 5 }{ log }_{ 2 }x=0$$, then the value of $$x$$ is
  • $$32$$
  • $$125$$
  • $$625$$
  • $$25$$
The value of $$\displaystyle \log_{2}\left [ \log_{2}\left \{ \log_{3}\left ( \log_{3}27^{3} \right ) \right \} \right ]$$ is equal to
  • 2
  • 3
  • 0
  • 1
If there are $$n$$ zeros after the decimal point, then the characteristic of that number will be
  • $$n+1$$
  • $$-n+1$$
  • $$-(n+1)$$
  • $$n-1$$
The characteristic of a number having $$m$$ $$(m>1)$$ digits is given by,
  • $$m-1$$
  • $$m+1$$
  • $$m$$
  • None of the above
Let $$x = (0.15)^{20}$$. Find the characteristic in the logarithm of $$x$$ to the base $$10$$.
  • $$17$$
  • $$21$$
  • $$-21$$
  • $$-17$$
The value of $$\log_{10} 0.0006024$$ is equal to
  • $$\overline {3}.7979$$
  • $$\overline {1}.9779$$
  • $$\overline {4}.7799$$
  • $$0.7279$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers