CBSE Questions for Class 11 Commerce Applied Mathematics Logarithm And Antilogarithm Quiz 7 - MCQExams.com

The value of $$\log_{10} 8$$ is equal to
  • $$.903$$
  • $$3.901$$
  • $$.301$$
  • None of the above
The logarithm of number lying between $$0$$ and $$1$$ is
  • positive
  • negative
  • zero
  • none of the above
Using logarithm table, determine the value of $$\log_{10}0.5432$$.
  • $$\overline {1}.7350$$
  • $$\overline {2}.7350$$
  • $$0.7350$$
  • $$0.07350$$
Find the value of $$\log_{10} 72$$ using log table
  • $$0.901+0.909$$
  • $$0.903+0.954$$
  • $$1.890$$
  • $$2.104$$
Find the value of $$\log_{10} {\dfrac{64^{2.1}\times 81^{4.2}}{49^{3.4}}}$$ using log table
  • $$2.1 \times 6 \times .303+ 4.2 \times 2 \times .854- 3.4 \times 2 \times .745$$
  • $$2.1 \times .303+ 4.2 \times .954- 3.4 \times .845$$
  • $$2.1 \times 6 \times .303- 4.2 \times 2 \times .954+3.4 \times 2 \times .845$$
  • $$2.1 \times 6 \times .303+ 4.2 \times 2 \times .954- 3.4 \times 2 \times .845$$
Find the value of $${\log_{10} 72} + {\log_{10} {\dfrac{1}{8}}}$$ using log table
  • $$0.903$$
  • $$0.303$$
  • $$0.954$$
  • $$1.234$$
Find the value of $$\dfrac {\log_{10} 72}{\log_{10} 8}$$ using log table
  • $$\log_{10} 9$$
  • $$1+\dfrac{.954}{.903}$$
  • $$2$$
  • $$\dfrac{.903+.954}{.954}$$
If $$\log 625 = k \log 5$$, then the value of $$k$$ is ____
  • $$5$$
  • $$4$$
  • $$3$$
  • $$2$$
If $$\dfrac{\log\, x}{l+m-2n} = \dfrac{\log\, y}{m+n-2l} = \dfrac{\log\, x}{n+l-2m}$$, then $$xyz$$ is equal to 
  • $$0$$
  • $$lmn$$
  • $$1$$
  • $$2$$
Simplify the following using law of exponents.
$$9^2 \times 9^{18}\times 9^{10}$$
  • $$9^{30}$$
  • $$9^{25}$$
  • $$9^{15}$$
  • $$9^{10}$$
Simplify the following using law of exponents for $$a=2, x=1,y=1,z=1$$
$$a^x\times a^y\times a^z$$
  • $$2$$
  • $$4$$
  • $$8$$
  • $$16$$
If $$\log_{x} 484 - \log_{x}4 + \log_{x}14641 - \log_{x}1331 = 3$$, then the value of $$x$$ is
  • $$1$$
  • $$3$$
  • $$11$$
  • None of these
$$\log_8 {64}$$ is equal to_____
  • $$2$$
  • $$3$$
  • $$4$$
  • $$5$$
$$\log_4{64}$$ is equal to____
  • $$2$$
  • $$3$$
  • $$4$$
  • $$5$$
The value of $$[2-3(2-3)^{-1}]^{-1}$$ is __________.
  • $$\displaystyle\frac{-1}{5}$$
  • $$\displaystyle\frac{1}{5}$$
  • $$-5$$
  • $$5$$
Which of the following values are equal?
(P) $$1^{4}$$ (Q) $$4^{\circ}$$ (R) $$0^{4}$$ (S) $$4^{1}$$.
  • $$P$$ and $$Q$$
  • $$Q$$ and $$R$$
  • $$P$$ and $$R$$
  • $$P$$ and $$S$$
$$\log_3 {27}$$ is equal to____
  • $$3$$
  • $$2$$
  • $$4$$
  • $$5$$
$$\log {5} + \log {8}$$ is equal to........
  • $$\log {40}$$
  • $$\log{13}$$
  • $$\dfrac{\log{8}}{\log{5}}$$
  • $$\log{3}$$
$$\log {3} + \log {5}$$ is equal to..........
  • $$\log {15}$$
  • $$\log {8}$$
  • $$\dfrac{\log {3}}{\log{5}}$$
  • $$\log{2}$$
If $$x^2+y^2=25$$ , then $$log_5 \begin {bmatrix} Max (3x+4y) \end {bmatrix}$$ is
  • $$2$$
  • $$3$$
  • $$4$$
  • $$5$$
$$\log_2 {64}$$ is equal to____
  • $$2$$
  • $$3$$
  • $$4$$
  • $$6$$
Simplify: $$(-1)^{19}+(-1)^{20}+(2)^5$$
  • $$34$$
  • $$32$$
  • $$30$$
  • $$0$$
If $$\displaystyle \int{ \frac{(\sqrt{x})^5}{(\sqrt{x})^7 + x^6} } dx = a\ log \left( \frac{x^k}{1 + x^k} \right) + c$$, then a and k are
  • $$\displaystyle \frac{2}{5}, \frac{5}{2}$$
  • $$\displaystyle \frac{1}{5}, \frac{2}{5}$$
  • $$\displaystyle \frac{5}{2}, \frac{1}{2}$$
  • $$\displaystyle \frac{2}{5}, \frac{1}{2}$$
If the mantissa of $$\log 2125 =3.3273$$, find the mantissa of $$\log21.25$$
  • $$1.3273$$
  • $$2.3273$$
  • $$0.3273$$
  • $$32.2321$$
The logarithm of $$0.0625$$ to the base $$2$$ is:
  • $$0.025$$
  • $$0.25$$
  • $$5$$
  • $$-4$$
  • $$-2$$
 The equation $$x^{\log_{\sqrt{x}}{2x}} = 4$$  has no solution.
  • True
  • False
If $$t = -2$$ then $$log_4 \dfrac{t^2}{4}-2 \, log_4 \, 4t^4 \, =$$
  • 2
  • -4
  • -6
  • 0
If mantissa of logarithm of 719.3 to the base 10 is 0.8569 , then mantissa of logarithm  of 71.93 is
  • 0.8569
  • $$\overline 1 .8569$$
  • 1.8569
  • 0.1431
If $$2y = log(12-5x-3x^2)$$ takes all real values then $$x$$ belongs to 
  • $$(-3, 5/3)$$
  • $$(-3, 3)$$
  • $$(-3, 4/3)$$
  • None
The value of $${\log _b}a.{\log _c}b.{\log _a}c$$  is 
  • 0
  • 1
  • $${\log _a}abc$$
  • 10
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers