Q.1.
If $$a=\log_35 $$ and $$b= \log_725$$ then correct option is:
Q.2.
$$\dfrac{8^{-1}\times 5^3}{2^{-4}\times 625}=$$
Q.3.
Multiple Correct:
Which of the following statements are true
Q.4.
If the approximate value of $$ \log _{ 10 }{ (4.04) }$$is $$\ abcdef,$$ it is given that $$\log _{ 10 }{ (4) }=0.6021$$ &$$ \log _{ 10 }{ (e) }=0.4343,$$ then the value of abcd must be
Q.5.
If $$\log_{10}e=0.4343$$, then $$\log_{10}1016$$ is
Q.6.
The number of zeroes after decimal and before first significant digit in $$(50)^{-100}$$ is equal to : (take $$log_{10}$$ 5=0.699)
Q.7.
Find the value of $$\log_{10}{\left(0.\bar{9}\right)}$$
Q.8.
If $$\log 4=1.3868$$, then the approximate value of $$\log\, (4.01)$$
Q.9.
The equation $$\log_{e}x+\log_{e}(1+x)=0$$ can be written as 
Q.10.
The logarithmic form of $$4 = 2^2$$ is
Q.11.
If $$x=500,y=100$$ and $$z=5050$$, then the value of $$(\log _{ xyz }{ { x }^{ z } } )(1+\log _{ x }{ yz } )$$ is equal to.
Q.12.
The greatest value of $$(4\log_{10}{x}-\log_{x}{(0.0001)})$$ for $$0 < x < 1$$ is
Q.13.
The value of $$ 3 ^{log_4 5} -5 ^{log_4 3}$$
Q.14.
The number of $$\log_2 7 $$ is 
Q.15.
The value of $$0.2^{log_{\sqrt{5}} \Big( \dfrac{1}{4} + \dfrac{1}{8} + \dfrac{1}{16} + \dots \Big)}$$ is
Q.16.
The value of $$\frac { \log _{ 2 }{ 24 }  }{ \log _{ 96 }{ 2 }  } -\frac { \log _{ 2 }{ 192 }  }{ \log _{ 12 }{ 2 }  } $$ is:
Q.17.
$$(-4)^{4}\times (4)^{1}=(4)^{5}$$
Q.18.
$$\left(\dfrac{2}{3}\right)^{2}\times \left(\dfrac{2}{3}\right)^{5}=\left(\dfrac{2}{3}\right)^{10}$$
Q.19.
$$a\times a\times b\times b\times b$$ can be written as 
Q.20.
$$\left(-\dfrac{8}{2}\right)^{0}=0$$
Q.21.
$$(-7)^{4}\times (-7)^{2}=(-7)^{6}$$
Q.22.
$$(-5)^{2}\times (-5)^{3}=(-5)^{6}$$
Q.23.
$$\left(\dfrac {1}{10}\right)^0$$ is equal to
Q.24.
By solving $$(6^0 -7^0) \times (6^0+7^0)$$, we get ________.
Q.25.
If $$x$$ be any integer different from zero and $$m,n$$ be any integers then $$({x^m})^n$$ is equal 
Q.26.
State whether the following statement is true (T) or false (F):
$$5^0 \times 3^0 = 8^0$$

Q.27.
$$\log_{\sqrt{2}} x = 4$$ then value of $$x$$ will be
Q.28.
The value of $$\log (1 + 2 * 3)$$:
Q.29.
Number $$\log_{2} 7$$ is:
Q.30.
$$\log_{x} 243 = 2.5$$, then value of $$x$$ will be: