If the approximate value of $$ \log _{ 10 }{ (4.04) }$$is $$\ abcdef,$$ it is given that $$\log _{ 10 }{ (4) }=0.6021$$ &$$ \log _{ 10 }{ (e) }=0.4343,$$ then the value of abcd must be
37%
$$6064$$
35%
$$6063$$
12%
$$6065$$
16%
N.O.T
Q.5.
If $$\log_{10}e=0.4343$$, then $$\log_{10}1016$$ is
5%
$$2.99$$
11%
$$3$$
81%
$$3.006949$$
3%
$$3.02$$
Q.6.
The number of zeroes after decimal and before first significant digit in $$(50)^{-100}$$ is equal to : (take $$log_{10}$$ 5=0.699)
14%
168
52%
169
28%
170
7%
171
Q.7.
Find the value of $$\log_{10}{\left(0.\bar{9}\right)}$$
40%
$$0$$
30%
$$1$$
27%
$$-1$$
3%
$$2$$
Q.8.
If $$\log 4=1.3868$$, then the approximate value of $$\log\, (4.01)$$
21%
$$1.3968$$
29%
$$1.3898$$
42%
$$1.3893$$
8%
$$1.9338$$
Q.9.
The equation $$\log_{e}x+\log_{e}(1+x)=0$$ can be written as
7%
$$x^{2}+x-e=0$$
73%
$$x^{2}+x-1=0$$
13%
$$x^{2}+x+1=0$$
7%
$$x^{2}+xe-e=0$$
Q.10.
The logarithmic form of $$4 = 2^2$$ is
50%
$$ log_{ 2 }^{ 4 }= 2$$
33%
$$ log_{ 2 }^{ 2 }= 2$$
12%
$$ log_{ 2 }^{ 4 }=4$$
4%
None of these
Q.11.
If $$x=500,y=100$$ and $$z=5050$$, then the value of $$(\log _{ xyz }{ { x }^{ z } } )(1+\log _{ x }{ yz } )$$ is equal to.
0%
500
0%
100
100%
5050
0%
10
Q.12.
The greatest value of $$(4\log_{10}{x}-\log_{x}{(0.0001)})$$ for $$0 < x < 1$$ is
5%
$$4$$
15%
$$-4$$
75%
$$8$$
5%
$$-8$$
Q.13.
The value of $$ 3 ^{log_4 5} -5 ^{log_4 3}$$
33%
$$0$$
22%
$$1$$
33%
$$2$$
11%
None of these
Q.14.
The number of $$\log_2 7 $$ is
6%
an integer
0%
a rational number
89%
an irrational number
6%
a prime number
Q.15.
The value of $$0.2^{log_{\sqrt{5}} \Big( \dfrac{1}{4} + \dfrac{1}{8} + \dfrac{1}{16} + \dots \Big)}$$ is
65%
$$4$$
18%
$$log 4$$
18%
$$log 2$$
0%
none of these
Q.16.
The value of $$\frac { \log _{ 2 }{ 24 } }{ \log _{ 96 }{ 2 } } -\frac { \log _{ 2 }{ 192 } }{ \log _{ 12 }{ 2 } } $$ is: