Processing math: 22%

CBSE Questions for Class 11 Commerce Applied Mathematics Logarithm And Antilogarithm Quiz 9 - MCQExams.com

Multiply 104 by 102
  • 108
  • 102
  • 106
  • 102
  • 103
Evaluate using logarithm table: 28.45×30.325432.43×50.3046
  • 0.7666
  • 0.7656
  • 0.5686
  • 0.2936
If log2a4=log2b6=log2c3p and also a3b2c=1, then the value of p is equal to
  • 6
  • 7
  • 8
  • 9
Given log_3(a) = c and log_3(b)=2c, a =
  • 3c
  • c + 3
  • b^2
  • \sqrt{b}
  • \dfrac{b}{2}
The number N=6 \log_{10}2+\log_{10}31 lies between two successive integers, whose sum is equal to
  • 5
  • 7
  • 9
  • 10
If \log_{10} 2 = 0.3010, then the number of digits in 2^{64} is
  • 18
  • 24
  • 22
  • 20
Approximate of \log_{11}21 is
  • 1.27
  • 1.21
  • 1.18
  • 1.15
  • 1.02
2^{1/4}4^{1/8}8^{1/16}16^{1/32}....... is equal to
  • 1
  • 2
  • \frac{3}{2}
  • \frac{5}{2}
Let a = \log_3\log_32. An integer k satisfying  1< 2^{(-k+3^{-a})} < 2,  must be less than _____.
  • 1.25766
  • 2.256
  • 3
  • 1
If log_AD= a, then value of log_612 is (in terms of a)
  • \frac{1+3a}{3a}
  • \frac{1+2a}{3a}
  • \frac{1+2a}{2a}
  • \frac{1+3a}{2a}
If x=198! then value of the expression \dfrac {1}{\log_{2}x}+\dfrac {3}{\log_{2}x}+...\dfrac {198}{\log_{2}x} equals ?
  • -1
  • 0
  • 1
  • 198
Given log2=a,log3=b express the following in terms of a or b or both
  • \log1.5
  • \log1.2
  • \log0.24
  • \log0.5
  • \log0.036
If y=a\log\left|x\right|+bx^{2}+x has extreme values at x=2 and x=-4/3 then 
  • a=12,b=-10
  • a=4,b=-3/4
  • a=-6,b=1/4
  • none
The value of \dfrac{log_2 24}{log_{96} 2}-\dfrac{log_2192}{log_{12}{2}} is
  • 3
  • 0
  • 2
  • 1
The value of (0.2)^{log_{\sqrt{5}} \left(\dfrac{1}{4} + \dfrac{1}{8} + \dfrac{1}{16} + ...\right)} is
  • 1
  • 2
  • \dfrac{1}{2}
  • 4
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers