CBSE Questions for Class 11 Commerce Applied Mathematics Logarithm And Antilogarithm Quiz 9 - MCQExams.com

Multiply $$10^4$$ by $$10^2$$
  • $$10^8$$
  • $$10^2$$
  • $$10^6$$
  • $$10^{-2}$$
  • $$10^3$$
Evaluate using logarithm table: $$\dfrac {28.45 \times \sqrt [3] {0.3254}}{32.43 \times \sqrt [5] {0.3046}}$$
  • $$0.7666$$
  • $$0.7656$$
  • $$0.5686$$
  • $$0.2936$$
If $$\dfrac{\log_{2}a}{4} = \dfrac{\log_{2}b}{6} = \dfrac{\log_{2}c}{3p}$$ and also $$a^{3}b^{2}c = 1$$, then the value of $$p$$ is equal to
  • $$-6$$
  • $$-7$$
  • $$-8$$
  • $$-9$$
Given $$log_3(a) = c$$ and $$log_3(b)=2c, a =$$
  • $$3c$$
  • $$c + 3$$
  • $$b^2$$
  • $$\sqrt{b}$$
  • $$\dfrac{b}{2}$$
The number $$ N=6 \log_{10}2+\log_{10}31$$ lies between two successive integers, whose sum is equal to
  • $$5$$
  • $$7$$
  • $$9$$
  • $$10$$
If $$\log_{10} 2 = 0.3010$$, then the number of digits in $$2^{64}$$ is
  • $$18$$
  • $$24$$
  • $$22$$
  • $$20$$
Approximate of $$\log_{11}21$$ is
  • 1.27
  • 1.21
  • 1.18
  • 1.15
  • 1.02
$$2^{1/4}4^{1/8}8^{1/16}16^{1/32}$$....... is equal to
  • 1
  • 2
  • $$\frac{3}{2}$$
  • $$\frac{5}{2}$$
Let $$a = \log_3\log_32$$. An integer k satisfying  $$1< 2^{(-k+3^{-a})} < 2,$$  must be less than _____.
  • $$1.25766$$
  • $$2.256$$
  • $$3$$
  • $$1$$
If $$log_AD= a, $$ then value of $$log_612$$ is (in terms of a)
  • $$\frac{1+3a}{3a}$$
  • $$\frac{1+2a}{3a}$$
  • $$\frac{1+2a}{2a}$$
  • $$\frac{1+3a}{2a}$$
If $$x=198!$$ then value of the expression $$\dfrac {1}{\log_{2}x}+\dfrac {3}{\log_{2}x}+...\dfrac {198}{\log_{2}x}$$ equals ?
  • $$-1$$
  • $$0$$
  • $$1$$
  • $$198$$
Given $$log2=a,log3=b$$ express the following in terms of $$a$$ or $$b$$ or both
  • $$\log1.5$$
  • $$ \log1.2$$
  • $$\log0.24$$
  • $$ \log0.5$$
  • $$\log0.036$$
If $$y=a\log\left|x\right|+bx^{2}+x$$ has extreme values at $$x=2$$ and $$x=-4/3$$ then 
  • $$a=12,b=-10$$
  • $$a=4,b=-3/4$$
  • $$a=-6,b=1/4$$
  • $$none$$
The value of $$\dfrac{log_2 24}{log_{96} 2}-\dfrac{log_2192}{log_{12}{2}}$$ is
  • $$3$$
  • $$0$$
  • $$2$$
  • $$1$$
The value of $$(0.2)^{log_{\sqrt{5}} \left(\dfrac{1}{4} + \dfrac{1}{8} + \dfrac{1}{16} + ...\right)}$$ is
  • $$1$$
  • $$2$$
  • $$\dfrac{1}{2}$$
  • $$4$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers