CBSE Questions for Class 11 Commerce Applied Mathematics Number Theory Quiz 10 - MCQExams.com

A number system with a base of two is referred as ______________.
  • Unary number system
  • Binary number system
  • Octal number system
  • None of these
If a register containing data (11001100)2 is subjected to arithmetic shift left operation, then the content of the register after 'ashl' shall be _____________.
  • (11001100)2
  • (1101100)2
  • (10011001)2
  • (10011000)2
C it refers to a _____________.
  • computer language.
  • CPU instruction.
  • 0 or 1 value.
  • digital representation of an alphabetic character.
Which of the following is true?
  • Byte is a single digit in a binary number
  • Bit represents a grouping of digital numbers
  • Eight-digit binary number is called a bit
  • Eight-digit binary number is called a byte
State true(T) or false(F).
The sum of primes cannot be a prime.
  • True
  • False
State true or false:
The product of primes cannot be a prime.
  • True
  • False
State true(T) or false(F).
Odd numbers cannot be composite.
  • True
  • False
State true(T) or false(F).
An even number is composite.
  • True
  • False
Mark the correct alternative of the following.
Which of the following numbers is prime?
  • $$23$$
  • $$51$$
  • $$38$$
  • $$26$$
The least prime is?
  • $$1$$
  • $$2$$
  • $$3$$
  • $$5$$
Mark the correct alternative of the following.
Which of the following are not twin-primes?
  • $$3, 5$$
  • $$5, 7$$
  • $$11, 13$$
  • $$17, 23$$
Mark the correct alternative of the following.
Which of the following numbers are twin primes?
  • $$3, 5$$
  • $$5, 11$$
  • $$3, 11$$
  • $$13, 17$$
Mark the correct alternative of the following.
The smallest number which is neither prime nor composite is?
  • $$0$$
  • $$1$$
  • $$2$$
  • $$3$$
Express the following complex numbers in the standard form $$ a+ib$$ :
$$ \left ( \dfrac{1}{1-4i}-\dfrac{2}{1+i} \right )\left ( \dfrac{3-4i}{5+i} \right )$$
  • $$ \dfrac{307}{442}+i \dfrac{599}{442}i$$
  • $$ \dfrac{307}{442}-i \dfrac{599}{442}i$$
  • $$ \dfrac{-307}{442}+i \dfrac{599}{442}i$$
  • None of the above
Express the following complex numbers in the standard form $$ a+ib$$ :
$$ \dfrac{\left ( 2+i \right )^{3}}{2+3i}$$
  • $$ \dfrac{37}{13}-\dfrac{16}{13}i$$
  • $$ \dfrac{-37}{13}+\dfrac{16}{13}i$$
  • $$ \dfrac{37}{13}+\dfrac{16}{13}i$$
  • None of the above
Find the modulus and argument of the following complex numbers and hence express each of them in the polar form:
$$1-i$$
  • $$\sqrt{2}(cos\,\pi /4+i\, sin\, \pi /4)$$
  • $$\sqrt{2}(cos\,\pi /3-i\, sin\, \pi /3)$$
  • $$\sqrt{2}(cos\,\pi /4-i\, sin\, \pi /4)$$
  • $$\sqrt{2}(cos\,\pi /3+i\, sin\, \pi /3)$$
Express the following complex numbers in the standard form $$ a+ib$$ :
$$ \dfrac{3-4i}{\left ( 4-2i \right )\left ( 1+i \right )}$$
  • $$ \dfrac{1}{4}+\dfrac{3}{4}i$$
  • $$ \dfrac{1}{4}-\dfrac{3}{4}i$$
  • $$ \dfrac{-1}{4}-\dfrac{3}{4}i$$
  • None of the above
Express the following complex numbers in the standard from $$ a+ib$$ :
$$ \dfrac{5+\sqrt{2}i}{1-\sqrt{2}i}$$
  • $$ 1-2\sqrt{2}i$$
  • $$ 1+\sqrt{2}i$$
  • $$ 1+2\sqrt{2}i$$
  • $$ 1-\sqrt{2}i$$
The real part of $$(i - \sqrt{3})^{13}$$ is
  • $$2^{-10}\sqrt3$$
  • $$-2^{12}\sqrt3$$
  • $$2^{-12}\sqrt3$$
  • $$-2^{-12}\sqrt3$$
  • $$-2^{10}\sqrt3$$
Let z be a complex number such that $$\left|\dfrac{z-i}{z+2i}\right|=1$$ and $$|z|=\dfrac{5}{2}$$. Then the value of $$|z+3i|$$ is?
  • $$\dfrac{7}{2}$$
  • $$\dfrac{15}{4}$$
  • $$2\sqrt{3}$$
  • $$\sqrt{10}$$
Mark against the correct answer in each of the following .
$$i^{91}=$$?
  • $$1$$
  • $$-1$$
  • $$i$$
  • $$-i$$
$$(1-\sqrt{-1})(1+\sqrt{-1})(5-\sqrt{-7})(5+\sqrt{-7})=?$$
  • $$(25+7i)$$
  • $$(32+5i)$$
  • $$(29-3i)$$
  • $$none\ of\ these$$
Mark against the correct answer in each of the following .
$$i^{326}=$$?
  • $$1$$
  • $$-1$$
  • $$i$$
  • $$-i$$
If $$\mid z^2 - 3\mid = 3\mid z\mid$$ then the maximum value of $$\mid z\mid$$ is
  • 1
  • $$\dfrac{3+\sqrt {21}}{2}$$
  • $$\dfrac{\sqrt {21} - 3}{2}$$
  • none of these
If $$z_1$$ and $$z_2$$ are any two complex numbers then
$$|z_1 +\sqrt {z_1^2 -z_2^2}| + |z_1 -\sqrt {z_1^2 -z_2^2}|$$ is equal to
  • $$|z_1|$$
  • $$|z_2|$$
  • $$|z_1 + z_2|$$
  • $$None\ of\ these$$
$$(2-3i)(-3+4i)=?$$
  • $$(6+17i)$$
  • $$(6-17i)$$
  • $$(-6+17i)$$
  • $$none\ of\ these$$
Mark against the correct answer in each of the following .
$$i^{273}=$$?
  • $$i$$
  • $$-i$$
  • $$1$$
  • $$-1$$
Compare List I with List II and choose the correct answer using codes given below:
List I (Complex number)List II (Its modulus)
$$(4-3i)$$$$10$$
$$(8+6i)$$$$\dfrac{1}{5}$$
$$\dfrac{1}{(3+4i)}$$$$1$$
$$\dfrac{(3-4i)}{(3+4i)}$$$$5$$
  • $$(i)-(p), (ii)-(s), (iii)-(r), (iv)-(q)$$
  • $$(i)-(s), (ii)-(p), (iii)-(q), (iv)-(r)$$
  • $$(i)-(s), (ii)-(p), (iii)-(r), (iv)-(q)$$
  • $$(i)-(r), (ii)-(p), (iii)-(s), (iv)-(q)$$
Which of the following is a composite number?
  • $$23$$
  • $$29$$
  • $$32$$
  • none of these
State whether the following statements are true (T) or false (F) :
There are infinitely many prime numbers.
  • True
  • False
State whether the following statements are true (T) or false (F):
A natural number is called a composite number if it has at least one more factor other than $$ 1$$ and the number itself. 
  • True
  • False
Which of the following is an odd composite number ?
  • $$ 7 $$
  • $$ 9 $$
  • $$ 11 $$
  • $$ 12 $$
The modulus of $$\overline { 6+{ i }^{ 3 } } +\overline { 6+{ i } }+\overline { 6+{ i }^{ 2 } } $$ is
  • $$17$$
  • $$\sqrt{533}$$
  • $$\sqrt{456}$$
  • $$49$$
Given $$z$$ is a complex number with modulus $$1$$. Then the equation in $$a$$, $$\left(\dfrac{1+ia}{1-ia}\right )^4=z$$ has
  • all roots real and distinct.
  • two real and two imaginary.
  • three roots real and one imaginary.
  • one root real and three imaginary.
If $$ \displaystyle z_{0}=\frac{1-i}{2}$$,  then $$ \displaystyle \left (1+z_{0}  \right )\left (1+z_{0}^{{2}^{1}}  \right )\left (1+z_{0}^{{2}^{2}}  \right ).......... \left (1+z_{0}^{2^n}  \right )$$  must be
  • $$(1-i)(1+\dfrac{1}{2^{2^n}})$$ for $$n>1$$
  • $$(1-i)(1-\dfrac{1}{2^{2^n}})$$ for $$n>1$$
  • $$\dfrac{1+i}{2}$$ for $$n>1$$
  • $$(1-i)(1-\dfrac{1}{2^{2^{n+1}}})$$ for $$n>1$$
Dividing f(z) by $$z-i$$, we obtain the remainder $$i$$ and dividing it by $$z+i$$, we get the remainder $$1+i$$, then remainder upon the division of f(z) by $$z^2+1$$ is
  • $$\displaystyle \frac {1}{2}(z+1)+i$$
  • $$\displaystyle \frac {1}{2}(iz+1)+i$$
  • $$\displaystyle \frac {1}{2}(iz-1)+i$$
  • $$\displaystyle \frac {1}{2}(z+i)+1$$
The number of solutions of $$log _{\frac{1}{5}}log_{\frac{1}{2}}(\left | z \right |^{2}+4\left | z \right |+3)< 0$$ is/are?
  • $$0$$
  • $$2$$
  • $$4$$
  • infinite
Let $$z$$ be a complex number and $$c$$ be a real number $$\geq $$ 1 such that z + $$c\left | z+1 \right |+i=0 ,$$ then $$c$$ belongs to 
  • $$[2, 3]$$
  • $$(3, 4)$$
  • $$[1,\sqrt{2}]$$
  • None of these
lf $$\displaystyle \log_{\tan 30^{\circ}}\left(\frac{2|Z|^{2}+2|Z|-3}{|z|+1}\right) <-2$$ then
  • $$|\displaystyle \mathrm{z}|<\frac{3}{2}$$
  • $$|z|>\displaystyle \frac{3}{2}$$
  • $$|z|>2$$
  • $$|z|<2$$
If $$x = 2 + 5i($$where $$1 i = \sqrt{-1})$$ and $$2(\displaystyle \frac{1}{1! 9!}  + \frac{1}{3! 7!}) + \frac{1}{5! 5!} = \frac{2^{a}}{b!}$$ then $$ x^{3}-5x^{2}+33x-10 = $$
  • $$a + b$$
  • $$b - a$$
  • $$a-b$$
  • $$-a-b$$
  • $$(a - b)(a + b)$$
If $$\left | \log_{\sqrt{3}} \frac{\left | z \right |^{2}-\left | z \right |+1}{2+{}\left | z \right |}\right |< 2$$, then
  • $$|\displaystyle \mathrm{z}|<\frac{1}{3}$$
  • $$|\mathrm{z}|=1$$
  • $$|\mathrm{z}|=5$$
  • $$1<|\mathrm{z}|<5$$
If z be a complex number satisfying$$\displaystyle\ z^{4}+z^{3}+2z^{2}+z+1=0$$ then $$\displaystyle\ |z|$$ is 
  • $$\displaystyle\ \frac{1}{2}$$
  • $$\displaystyle\ \frac{3}{4}$$
  • $$\displaystyle\ 1$$
  • None of these
If the expression $${(1+ir)}^{3}$$ is of the form of $$s(1+i)$$ for some real $$s$$ where $$r$$ is also real and $$i=\sqrt{-1}$$, then the value of $$r$$ can be
  • $$\cot{\cfrac{\pi}{8}}$$
  • $$\sec{\pi}$$
  • $$\tan{\cfrac{\pi}{12}}$$
  • $$\tan{\cfrac{5\pi}{12}}$$
Find the value of $$x$$ such that $$\displaystyle \frac{(x + \alpha)^2 - (x + \beta)^2}{ \alpha + \beta} = \frac{sin  2 \theta}{sin^2  \theta}$$. when $$\alpha$$ and $$\beta $$ are the roots of $$t^2 - 2t + 2 = 0$$
  • $$x = icot \, \, \, \theta - 1$$
  • $$x = -(icot \, \, \, \theta + 1$$)
  • $$x = icot \, \, \, \theta $$
  • $$x = itan \, \, \, \theta - 1$$
If $$z_1, z_2$$ be two non zero complex numbers satisfying the equation $$\displaystyle \left | \frac{z_1 + z_2}{z_1 - z_2} \right | = 1$$ then $$\displaystyle \frac{z_1}{z_2} + \left ( \frac{z_1}{z_2} \right )$$ is
  • zero
  • 1
  • purely imaginary
  • 2
Find the range of real number $$\alpha$$ for which the equation $$z + \alpha |z - 1| + 2i = 0;  z= x + iy$$ has a solution. Find the solution.
  • $$\displaystyle x = 5/2, y = - 2$$
  • $$\displaystyle x = -2, y = 5/2$$
  • $$\displaystyle x = -5/2, y = 2$$
  • $$\displaystyle x = 2, y = -5/2$$
If n is a natural number $$\geq 2$$, such that $$z^n=(z+1)^n$$, then
  • Roots of equation lie on a straight line parallel to the $$y-axis$$
  • Roots of equation lie on a straight line parallel to the $$x-axis$$
  • Sum of the real parts of the roots is $$-[(n-1)/2]$$
  • None of these
Let $$\displaystyle\ z_{1}= a+ib, z_{2}= p+iq$$ be two unimodular complex numbers such that $$\displaystyle\ Im(z_{1}z_{2})=1$$. If$$\displaystyle\ \omega_{1}= a+ip, \omega_{2}=b+iq$$ then
  • $$\displaystyle\ Re(\omega_{1}\omega_{2})=1$$
  • $$\displaystyle\ Im(\omega_{1}\omega_{2})=1$$
  • $$\displaystyle\ Rm(\omega_{1}\omega_{2})=0$$
  • $$\displaystyle\ Im(\omega_{1}\bar{\omega_{2}})=0$$
Find the regions of the z-plane for which $$\displaystyle \left | \frac{z - a}{z + \overline a} \right | < 1, = 1$$ or $$> 1$$. when the real part of a is positive.
  • The required regions are the right half of the z-pane, the imaginary axis and the left half of the z-plane respectively.
  • The required regions are the left half of the z-pane, the imaginary axis and the right half of the z-plane respectively.
  • The required regions are the right half of the z-pane the real axis and the left half of the z-plane respectively.
  • The required regions are the left half of the z-pane the real axis and the right half of the z-plane respectively.
Find all complex numbers satisfying the equation $$2|z|^2 + z^2 - 5 + i \sqrt{3} = 0$$
  • $$\displaystyle \pm \left ( \frac{\sqrt{6}}{2} + \frac{1}{\sqrt{2}} i \right ); \pm \left ( \frac{1}{\sqrt{6}} + \frac{3}{2} i \right )$$
  • $$\displaystyle \pm \left ( \frac{\sqrt{6}}{2} - \frac{1}{\sqrt{2}} i \right ); \pm \left ( \frac{2}{\sqrt{6}} - \frac{3}{2} i \right )$$
  • $$\displaystyle \pm \left ( \frac{\sqrt{6}}{2} - \frac{1}{\sqrt{3}} i \right ); \pm \left ( \frac{1}{\sqrt{6}} - \frac{3}{2} i \right )$$
  • $$\displaystyle \pm \left ( \frac{\sqrt{6}}{2} - \frac{1}{\sqrt{2}} i \right ); \pm \left ( \frac{1}{\sqrt{6}} - \frac{3}{\sqrt{2}} i \right )$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers