Processing math: 14%

CBSE Questions for Class 11 Commerce Applied Mathematics Number Theory Quiz 10 - MCQExams.com

A number system with a base of two is referred as ______________.
  • Unary number system
  • Binary number system
  • Octal number system
  • None of these
If a register containing data (11001100)2 is subjected to arithmetic shift left operation, then the content of the register after 'ashl' shall be _____________.
  • (11001100)2
  • (1101100)2
  • (10011001)2
  • (10011000)2
C it refers to a _____________.
  • computer language.
  • CPU instruction.
  • 0 or 1 value.
  • digital representation of an alphabetic character.
Which of the following is true?
  • Byte is a single digit in a binary number
  • Bit represents a grouping of digital numbers
  • Eight-digit binary number is called a bit
  • Eight-digit binary number is called a byte
State true(T) or false(F).
The sum of primes cannot be a prime.
  • True
  • False
State true or false:
The product of primes cannot be a prime.
  • True
  • False
State true(T) or false(F).
Odd numbers cannot be composite.
  • True
  • False
State true(T) or false(F).
An even number is composite.
  • True
  • False
Mark the correct alternative of the following.
Which of the following numbers is prime?
  • 23
  • 51
  • 38
  • 26
The least prime is?
  • 1
  • 2
  • 3
  • 5
Mark the correct alternative of the following.
Which of the following are not twin-primes?
  • 3,5
  • 5,7
  • 11,13
  • 17,23
Mark the correct alternative of the following.
Which of the following numbers are twin primes?
  • 3,5
  • 5,11
  • 3,11
  • 13,17
Mark the correct alternative of the following.
The smallest number which is neither prime nor composite is?
  • 0
  • 1
  • 2
  • 3
Express the following complex numbers in the standard form a+ib :
(114i21+i)(34i5+i)
  • 307442+i599442i
  • 307442i599442i
  • 307442+i599442i
  • None of the above
Express the following complex numbers in the standard form a+ib :
(2+i)32+3i
  • 37131613i
  • 3713+1613i
  • 3713+1613i
  • None of the above
Find the modulus and argument of the following complex numbers and hence express each of them in the polar form:
1i
  • 2(cosπ/4+isinπ/4)
  • 2(cosπ/3isinπ/3)
  • 2(cosπ/4isinπ/4)
  • 2(cosπ/3+isinπ/3)
Express the following complex numbers in the standard form a+ib :
34i(42i)(1+i)
  • 14+34i
  • 1434i
  • 1434i
  • None of the above
Express the following complex numbers in the standard from a+ib :
5+2i12i
  • 122i
  • 1+2i
  • 1+22i
  • 12i
The real part of (i - \sqrt{3})^{13} is
  • 2^{-10}\sqrt3
  • -2^{12}\sqrt3
  • 2^{-12}\sqrt3
  • -2^{-12}\sqrt3
  • -2^{10}\sqrt3
Let z be a complex number such that \left|\dfrac{z-i}{z+2i}\right|=1 and |z|=\dfrac{5}{2}. Then the value of |z+3i| is?
  • \dfrac{7}{2}
  • \dfrac{15}{4}
  • 2\sqrt{3}
  • \sqrt{10}
Mark against the correct answer in each of the following .
i^{91}=?
  • 1
  • -1
  • i
  • -i
(1-\sqrt{-1})(1+\sqrt{-1})(5-\sqrt{-7})(5+\sqrt{-7})=?
  • (25+7i)
  • (32+5i)
  • (29-3i)
  • none\ of\ these
Mark against the correct answer in each of the following .
i^{326}=?
  • 1
  • -1
  • i
  • -i
If \mid z^2 - 3\mid = 3\mid z\mid then the maximum value of \mid z\mid is
  • 1
  • \dfrac{3+\sqrt {21}}{2}
  • \dfrac{\sqrt {21} - 3}{2}
  • none of these
If z_1 and z_2 are any two complex numbers then
|z_1 +\sqrt {z_1^2 -z_2^2}| + |z_1 -\sqrt {z_1^2 -z_2^2}| is equal to
  • |z_1|
  • |z_2|
  • |z_1 + z_2|
  • None\ of\ these
(2-3i)(-3+4i)=?
  • (6+17i)
  • (6-17i)
  • (-6+17i)
  • none\ of\ these
Mark against the correct answer in each of the following .
i^{273}=?
  • i
  • -i
  • 1
  • -1
Compare List I with List II and choose the correct answer using codes given below:
List I (Complex number)List II (Its modulus)
(4-3i)10
(8+6i)\dfrac{1}{5}
\dfrac{1}{(3+4i)}1
\dfrac{(3-4i)}{(3+4i)}5
  • (i)-(p), (ii)-(s), (iii)-(r), (iv)-(q)
  • (i)-(s), (ii)-(p), (iii)-(q), (iv)-(r)
  • (i)-(s), (ii)-(p), (iii)-(r), (iv)-(q)
  • (i)-(r), (ii)-(p), (iii)-(s), (iv)-(q)
Which of the following is a composite number?
  • 23
  • 29
  • 32
  • none of these
State whether the following statements are true (T) or false (F) :
There are infinitely many prime numbers.
  • True
  • False
State whether the following statements are true (T) or false (F):
A natural number is called a composite number if it has at least one more factor other than 1 and the number itself. 
  • True
  • False
Which of the following is an odd composite number ?
  • 7
  • 9
  • 11
  • 12
The modulus of \overline { 6+{ i }^{ 3 } } +\overline { 6+{ i } }+\overline { 6+{ i }^{ 2 } }  is
  • 17
  • \sqrt{533}
  • \sqrt{456}
  • 49
Given z is a complex number with modulus 1. Then the equation in a, \left(\dfrac{1+ia}{1-ia}\right )^4=z has
  • all roots real and distinct.
  • two real and two imaginary.
  • three roots real and one imaginary.
  • one root real and three imaginary.
If \displaystyle z_{0}=\frac{1-i}{2},  then \displaystyle \left (1+z_{0}  \right )\left (1+z_{0}^{{2}^{1}}  \right )\left (1+z_{0}^{{2}^{2}}  \right ).......... \left (1+z_{0}^{2^n}  \right )  must be
  • (1-i)(1+\dfrac{1}{2^{2^n}}) for n>1
  • (1-i)(1-\dfrac{1}{2^{2^n}}) for n>1
  • \dfrac{1+i}{2} for n>1
  • (1-i)(1-\dfrac{1}{2^{2^{n+1}}}) for n>1
Dividing f(z) by z-i, we obtain the remainder i and dividing it by z+i, we get the remainder 1+i, then remainder upon the division of f(z) by z^2+1 is
  • \displaystyle \frac {1}{2}(z+1)+i
  • \displaystyle \frac {1}{2}(iz+1)+i
  • \displaystyle \frac {1}{2}(iz-1)+i
  • \displaystyle \frac {1}{2}(z+i)+1
The number of solutions of log _{\frac{1}{5}}log_{\frac{1}{2}}(\left | z \right |^{2}+4\left | z \right |+3)< 0 is/are?
  • 0
  • 2
  • 4
  • infinite
Let z be a complex number and c be a real number \geq  1 such that z + c\left | z+1 \right |+i=0 , then c belongs to 
  • [2, 3]
  • (3, 4)
  • [1,\sqrt{2}]
  • None of these
lf \displaystyle \log_{\tan 30^{\circ}}\left(\frac{2|Z|^{2}+2|Z|-3}{|z|+1}\right) <-2 then
  • |\displaystyle \mathrm{z}|<\frac{3}{2}
  • |z|>\displaystyle \frac{3}{2}
  • |z|>2
  • |z|<2
If x = 2 + 5i(where 1 i = \sqrt{-1}) and 2(\displaystyle \frac{1}{1! 9!}  + \frac{1}{3! 7!}) + \frac{1}{5! 5!} = \frac{2^{a}}{b!} then x^{3}-5x^{2}+33x-10 =
  • a + b
  • b - a
  • a-b
  • -a-b
  • (a - b)(a + b)
If \left | \log_{\sqrt{3}} \frac{\left | z \right |^{2}-\left | z \right |+1}{2+{}\left | z \right |}\right |< 2, then
  • |\displaystyle \mathrm{z}|<\frac{1}{3}
  • |\mathrm{z}|=1
  • |\mathrm{z}|=5
  • 1<|\mathrm{z}|<5
If z be a complex number satisfying\displaystyle\ z^{4}+z^{3}+2z^{2}+z+1=0 then \displaystyle\ |z| is 
  • \displaystyle\ \frac{1}{2}
  • \displaystyle\ \frac{3}{4}
  • \displaystyle\ 1
  • None of these
If the expression {(1+ir)}^{3} is of the form of s(1+i) for some real s where r is also real and i=\sqrt{-1}, then the value of r can be
  • \cot{\cfrac{\pi}{8}}
  • \sec{\pi}
  • \tan{\cfrac{\pi}{12}}
  • \tan{\cfrac{5\pi}{12}}
Find the value of x such that \displaystyle \frac{(x + \alpha)^2 - (x + \beta)^2}{ \alpha + \beta} = \frac{sin  2 \theta}{sin^2  \theta}. when \alpha and \beta are the roots of t^2 - 2t + 2 = 0
  • x = icot \, \, \, \theta - 1
  • x = -(icot \, \, \, \theta + 1)
  • x = icot \, \, \, \theta
  • x = itan \, \, \, \theta - 1
If z_1, z_2 be two non zero complex numbers satisfying the equation \displaystyle \left | \frac{z_1 + z_2}{z_1 - z_2} \right | = 1 then \displaystyle \frac{z_1}{z_2} + \left ( \frac{z_1}{z_2} \right ) is
  • zero
  • 1
  • purely imaginary
  • 2
Find the range of real number \alpha for which the equation z + \alpha |z - 1| + 2i = 0;  z= x + iy has a solution. Find the solution.
  • \displaystyle x = 5/2, y = - 2
  • \displaystyle x = -2, y = 5/2
  • \displaystyle x = -5/2, y = 2
  • \displaystyle x = 2, y = -5/2
If n is a natural number \geq 2, such that z^n=(z+1)^n, then
  • Roots of equation lie on a straight line parallel to the y-axis
  • Roots of equation lie on a straight line parallel to the x-axis
  • Sum of the real parts of the roots is -[(n-1)/2]
  • None of these
Let \displaystyle\ z_{1}= a+ib, z_{2}= p+iq be two unimodular complex numbers such that \displaystyle\ Im(z_{1}z_{2})=1. If\displaystyle\ \omega_{1}= a+ip, \omega_{2}=b+iq then
  • \displaystyle\ Re(\omega_{1}\omega_{2})=1
  • \displaystyle\ Im(\omega_{1}\omega_{2})=1
  • \displaystyle\ Rm(\omega_{1}\omega_{2})=0
  • \displaystyle\ Im(\omega_{1}\bar{\omega_{2}})=0
Find the regions of the z-plane for which \displaystyle \left | \frac{z - a}{z + \overline a} \right | < 1, = 1 or > 1. when the real part of a is positive.
  • The required regions are the right half of the z-pane, the imaginary axis and the left half of the z-plane respectively.
  • The required regions are the left half of the z-pane, the imaginary axis and the right half of the z-plane respectively.
  • The required regions are the right half of the z-pane the real axis and the left half of the z-plane respectively.
  • The required regions are the left half of the z-pane the real axis and the right half of the z-plane respectively.
Find all complex numbers satisfying the equation 2|z|^2 + z^2 - 5 + i \sqrt{3} = 0
  • \displaystyle \pm \left ( \frac{\sqrt{6}}{2} + \frac{1}{\sqrt{2}} i \right ); \pm \left ( \frac{1}{\sqrt{6}} + \frac{3}{2} i \right )
  • \displaystyle \pm \left ( \frac{\sqrt{6}}{2} - \frac{1}{\sqrt{2}} i \right ); \pm \left ( \frac{2}{\sqrt{6}} - \frac{3}{2} i \right )
  • \displaystyle \pm \left ( \frac{\sqrt{6}}{2} - \frac{1}{\sqrt{3}} i \right ); \pm \left ( \frac{1}{\sqrt{6}} - \frac{3}{2} i \right )
  • \displaystyle \pm \left ( \frac{\sqrt{6}}{2} - \frac{1}{\sqrt{2}} i \right ); \pm \left ( \frac{1}{\sqrt{6}} - \frac{3}{\sqrt{2}} i \right )
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers