Processing math: 12%

CBSE Questions for Class 11 Commerce Applied Mathematics Number Theory Quiz 11 - MCQExams.com

An example for twin primes is _____.
  • 5,11
  • 3,5
  • 11,17
  • 3,7
If z=x+iy and w=(1iz)(zi), then |w|=1 implies that, in the complex plane
  • z lies on the imaginary axis
  • z lies on the real axis
  • z lies on the unit circle
  • None of these
(3+i2)6+(i32)6=
  • 2
  • 2
  • 1
  • 1
If z1 and z2 are two complex numbers such that |z1|=|z2|+|z1z2|, then arg(z1)arg(z2) is
  • 0
  • π/2
  • π/2
  • none of these
Dividing f(z) by zi we obtain the remainder i and dividing it by z+i we get the remainder 1+i then remainder upon the division of f(z) by z2+1 is
  • 12(z+1)+i
  • 12(iz+1)+i
  • 12(z1)+i
  • 12(z+1)+1
If (3i)n=2n,nN, then n is a multiple of
  • 6
  • 10
  • 9
  • 12
Evaluate in standard form: \dfrac {(2-3i)}{(2-2i)}, where {i}^{2}=-1.
  • \dfrac {5}{4}-\dfrac {i}{4}
  • \dfrac {5}{4}+\dfrac {i}{4}
  • -\dfrac {5}{4}-\dfrac {i}{4}
  • -\dfrac {5}{4}+\dfrac {i}{4}
If z_1, z_2, ..., z_n lie on |z|=r and Re\left(\displaystyle\sum_{j=1}^n\displaystyle\sum_{k=1}^n{\displaystyle\frac{z_j}{z_k}}\right) = 0, then
  • \displaystyle\sum_{j=1}^n{z_j}=0
  • \left|\displaystyle\sum_{j=1}^n{z_j}\right|=0
  • \displaystyle\sum_{j=1}^n{\displaystyle\frac{1}{z_j}}=0
  • None of these
Given that i = \sqrt {-1}, find the multiplicative inverse of 5 - i.
  • 5 + i
  • \dfrac {5 + i}{26}
  • \dfrac {1}{5 + i}
  • \dfrac {5 + i}{24}
  • \dfrac {5 - i}{24}
Write the complete number - 2 - 2i in polar form.
  • 2(cos\dfrac{\pi}{4}+i\,sin\dfrac{\pi}{4})
  • -2(cos\dfrac{\pi}{4}-i\,sin\dfrac{\pi}{4})
  • 2\sqrt{2}(cos\dfrac{3\pi}{4}+i\,sin\dfrac{3\pi}{4})
  • 2\sqrt{2}(cos\dfrac{7\pi}{4}+i\,sin\dfrac{7\pi}{4})
  • 2\sqrt{2}(cos\dfrac{5\pi}{4}+i\,sin\dfrac{5\pi}{4})
What is the product of the complex numbers \left( -3i+4 \right)  and \left( 3i+4 \right) ?
  • 1
  • 7
  • 25
  • -7+24i
  • 7+24i
Add and express in the form of a complex number a+bi
(2+3i)+(-4+5i)-\dfrac {(9-3i)}{3}
  • -4+9i
  • -5+9i
  • 2+9i
  • -5+8i
What is the next-highest prime number after 67?
  • 68
  • 69
  • 71
  • 73
  • 76
If z is a complex number such that |z|\geq 2 then the minimum value of \left |z + \dfrac {1}{2}\right | is
  • Is strictly greater than \dfrac {5}{2}
  • Is strictly greater than \dfrac 32 but less than \dfrac {5}{2}
  • Is equal to \dfrac {5}{2}
  • Lies in the interval (1, 2)
If \alpha and \beta are two different complex numbers with |\beta|=1, then \left | \dfrac{\beta -\alpha}{1-\bar{\alpha }\beta } \right | is equal to.
  • 0
  • 1
  • \dfrac{1}{2}
  • -1
If z_ 1 = 2 \sqrt 2 (1 + i) and z = 1 + i \sqrt 3, then z_1^2 z_2^3 is equal to
  • 128 i
  • 64 i
  • -64 i
  • - 128 i
  • 256
Express in the form of a complex number a+bi
-(7-i)(-4-2i)(2-i)
  • 60-10i
  • 70-10i
  • 28-14i
  • 70-15i
The numbers which have more than two factors are called ______.
  • Prime
  • Composite
  • Both (A) and (B)
  • None of these
If z be any complex number such that |3z-2|+|3z+2|=4, then locus of z is
  • An ellipse
  • A circle
  • A line-segment
  • None of these
In binary system the highest value of a 8-bit number is
  • 255
  • 256
  • 253
  • none of these
The 3 bit operation code for ADD operation is 001 and indirect memory address is 23 then 16-bit instruction code can be written as-
  • 00001000000010111
  • 1001000000010111
  • 100010000000010111
  • None of the above
Let z_1 = 18 + 83i, z_2 = 18 + 39i, ana z_3 = 78 + 99i. where i = \sqrt-1. Let z be a unique comlpex number with the properties that \dfrac{z_3 - z_1}{z_2 - z_1} \cdot \dfrac{z - z_2}{z - z_3} is a real number and the imaginary part of the size z is the greatest possible.
  • Re (z) = 56
  • Re (z) = 61
  • Re (z) = 54
  • Re (z) = 59
What is { i }^{ 1000 }+{ i }^{ 1001 }+{ i }^{ 1002 }+{ i }^{ 1003 } equal to (where i=\sqrt { -1 } )?
  • 0
  • i
  • -i
  • 1
If z_1+ z_2 + z_3 = 0 and |z_1|=|z_2|=|z_3|= 1, then area of triangle whose vertices are z_1, z_2 and z_3 is:
  • \dfrac{3 \sqrt{3}}{4}
  • \dfrac{\sqrt{3}}{4}
  • 1
  • 2
The least positive integer n for which \left(\dfrac {1+i}{1-i}\right)^{n}=\dfrac {2}{\pi} \sin^{-1}\left(\dfrac {1+x^{2}}{2x}\right), where x>0, is 
  • 2
  • 4
  • 8
  • 12
If {z}_{1},{z}_{2},..{z}_{n} lie on the circle |z|=2 then the value of |{z}_{1},{z}_{2},..{z}_{n}|-4|\dfrac {1}{{z}_{1}}+\dfrac {1}{{z}_{2}}++\dfrac {1}{{z}_{n}}|=
  • 0
  • n
  • -n
  • 1
If {z}_{1},{z}_{2} and {z}_{3} be three complex numbers such that \left| { z }_{ 1 }+1 \right| \le 1,\left| { z }_{ 2 }+2 \right| \le 2 and \left| { z }_{ 3 }+4 \right| \le 4, then the maximum value of \left| { z }_{ 1 } \right| +\left| { z }_{ 2 } \right| +\left| { z }_{ 3 } \right| is ?
  • 7
  • 10
  • 12
  • 14
If Z_{1},Z_{2} are two complex numbers satisfying |\dfrac{Z_{1}-3Z_{2}}{3-Z_{1}Z_{2}}|=1|z_{1}|\neq 3 then |z_{2}|=
  • 1
  • 2
  • 3
  • 4
A complex number z is said to be unimodular if |z| =. Suppose z_1 and z_2 are complex numbers such that \frac{z_1-2z_2}{2-z_1\overline {z}_2} is unimolecolar and z_2 is not unimodular. Then the point z_1 lies on a:
  • straight line parallel to y-axis
  • circle of radius 2.
  • Circle of radius \sqrt2.
  • Staright line parallel to x-axis.
If \sqrt{3}+i(a+ib)(c+id), then \tan^{-1}\left(\dfrac{b}{a}\right)+\tan^{-1}\left(\dfrac{d}{c}\right) has the value
  • \dfrac{\pi}{3}+2n\pi, n \notin 1
  • n\pi+\dfrac{\pi}{6}, n \in 1
  • n\pi-\dfrac{\pi}{3}, n \in 1
  • 2n\pi-\dfrac{\pi}{3}, n \in 1
If z is a complex number such that |z|\ge\ 2, then the minimum value of \left| z+\dfrac { 1 }{ 2 }  \right| 
  • is equal to \dfrac{5}{2}
  • is strictly greater than \dfrac{5}{2}
  • lies in the interval (1,2)
  • is strictly greater than \dfrac{3}{2} but less than \dfrac{5}{2}
The value of (z+3) (\overline{z} +3) is eqquivalent to
  • |z +3 | ^2
  • | z- 3|
  • z^2+3
  • None of these
The imaginary part of (z - 1)(\cos \, \alpha - i \, \sin \, \alpha) + (z - 1)^{-1} \times (\cos \, \alpha + i \, \sin \, \alpha ) is zero, if 
  • |z - 1 | = 2
  • \text{arg} \, (z - 1) = 2 \alpha
  • \text{arg} \, (z - 1) = \alpha
  • |z | = 1
If     | z _ { 1 } | < 1 \text { and } | \frac { z _ { 1 } - z _ { 2 } } { 1 - \overline { z } _ { 1 } z _ { 2 } } | < 1 , \text { then  } | z _ { 2 } | > 1
  • True
  • False
If \left| z \right| =1 and \left| \omega -1 \right| =1 where z,\omega \in C then the largest set of values of { \left| 2z-1 \right|  }^{ 2 }+{ \left| 2\omega -1 \right|  }^{ 2 } equals 
  • \left[1,9\right]
  • \left[2,6\right]
  • \left[2,12\right]
  • \left[2,18\right]
If \dfrac {3+2i \sin x}{1-2i \sin x} is purely imaginary then x= ?
  • n \pi \pm \dfrac {\pi}{6}
  • n \pi \pm \dfrac {\pi}{3}
  • 2n \pi \pm \dfrac {\pi}{3}
  • 2n \pi \pm \dfrac {\pi}{6}
If \alpha and \beta are different complex number with |\beta|=1, then \left |\dfrac {\beta-\alpha}{1-\overline {\alpha }\beta}\right| is equal to
  • 0
  • 1/2
  • 1
  • 2
Which of the following pairs are twin primes?
  • (19,21)
  • (29,31)
  • (39,41)
  • (49,51)
If z^4+1=\sqrt{3}i then?
  • z^3 is purely real
  • z represents vertices of a square of side 2^{\dfrac{1}{4}}
  • z^9 is purely imaginary
  • z represents vertices of a square of side 2^{\dfrac{3}{4}}
If a,b,c are non-zero numbers and the equation ax^{2}+bx+c+i=0 has purely imaginary roots, then
  • a=bc
  • a=b^{2}c
  • a=\sqrt {bc}\ if\ b > 0
  • none\ of\ these
If the roots a^2x^2 +2bx+c^2 = 0 are imaginary then the roots of b(x^2+1)+2acx = 0 are 
  • complex number
  • real and unequal
  • real and equal
  • none
If z is a complex number of unit modulus and argument \theta , then the real part of 
\dfrac { z\left( 1-\bar { z }  \right)  }{ \bar { z } \left( 1+2 \right)  } is:
  • 1+cos\dfrac { \theta }{ 2 }
  • 1-sin{ \dfrac { \theta }{ 2 } }
  • -2\sin { ^{ 2 } } \dfrac { \theta }{ 2 }
  • 2cos^{ 2 }\dfrac { \theta }{ 2 }
If a > b > c, a\neq 0 and the system of equations
ax+by+cz=0, bx+cy+az=0, cx+ay+bz=0 has non-trivial solutions, then the roots of the quadratic equation at^2+bt+c=0.
  • Are imaginary
  • Are real and equal
  • Are real and distinct
  • May be real of imaginary
The value of (sin\frac{\pi }{8}+i\cos \frac{\pi }{8})^{8}{(sin\frac{\pi }{8}-i cos \frac{\pi }{8})^{8}} is 
  • -1
  • 0
  • 1
  • 2i
The equation x(x+2)(x^{2}-x)=-1, has 
  • All roots imaginary
  • All roots negative
  • Two roots real and two roots imaginary
  • All roots real
If \overline { \Delta  } =\begin{vmatrix} -1 & 2-3i & 5+4i \\ 2+3i & 8 & 1-i \\ 5-4i & 1+i & 3 \end{vmatrix} then \Delta =
  • Purely real
  • Purely imaginary
  • Complex
  • 0
If \theta real then the modulus of \dfrac{1}{1+\cos\theta+i\sin\theta} is
  • \dfrac{1}{2}\sec\dfrac{\theta}{2}
  • \dfrac{1}{2}\cos\dfrac{\theta}{2}
  • \sec\dfrac{\theta}{2}
  • \cos\dfrac{\theta}{2}
The function of imaginary roots of the equation (x-1)(x-2)(3x+1)=32 is 
  • 0
  • 1
  • 2
  • 4
The number of imaginar roots of the equation (x-1)(x-2)(3x-2)(3x+1)=32 is
  • Zero
  • 1
  • 2
  • 4
If \mathrm{{z} _ { 1 }} = 10 + 6\mathrm{i} ,  \mathrm{{ z } _ { 2 }}= 4 + 6 \mathrm { i } and \mathrm{ z} is a complex number such that \operatorname { amp } \left( \dfrac { \mathrm { z } - \mathrm { z } _ { 1 } } { \mathrm { z } - \mathrm { z } _ { 2 } } \right) = \dfrac { \pi } { 4 } , then the value of \left| \mathrm{z} - 7 - 9 \mathrm { i } \right| is equal to
  • \sqrt { 2 }
  • 2\sqrt { 2 }
  • 3\sqrt { 2 }
  • 2\sqrt { 3 }
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Commerce Applied Mathematics Quiz Questions and Answers